taras v. gerya 1, james a.d. connolly 1, david a. yuen 2 1 eth– zurich 2 university of minnesota,...

34
s V. Gerya 1 , James A.D. Connolly 1 , David A. 1 ETH– Zurich 2 University of Minnesota, Minneapolis

Upload: alayna-hernandez

Post on 16-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Taras V. Gerya1, James A.D. Connolly1, David A. Yuen2

1 ETH– Zurich2 University of Minnesota,

Minneapolis

= (Pressure, Temperature, Composition, Mineralogy)

H = H (Pressure, Temperature, Composition, Mineralogy)

Gibbs free energy minimization

(Gerya et al., 2001, 2004, Connolly & Petrini, 2002, Vasiliev et al., 2004)

Cp(DT/Dt) = (kT/x)/x + (kT/z)/z + Qp + Qshear + Qradioactive

Qp = (DP/Dt)[1- (H/P)T] Cp = (H/T)P

Latent heating is implemented via effective heat capacity (Cp)

and effective adiabatic heating (Qp)computed numerically from the enthalpy and density maps

Lagrangian temperature equation

standard thermodynamic relations

D(ln)/Dt + div(v) = 0Lagrangian continuity equation for compressible flow

Volumetric effects of phase transformations are taken into account in both the momentum and the continuity equations

дP/дx = (P2-P1)/x

P1 P2x

Finite differencesT

Combination of finite-differences, on staggered grid , and

marker-in-cell technique

Method of numerical solutionoriginal 2-D and 3-D

single- & multi-processor C-codes I2, I3, I2VIS, I2ELVIS, I2IOMP, I3MG

(Gerya et al., 2000; Gerya & Yuen, 2003)

Marker technique

Staggered grid

The software fit advances in hardware technology - Work stations: n104 nodes, n107 markers Supercomputers: n107 nodes, n1010 markers

in visualization technology -ultra-high spatial resolution for very large numerical models

The software accounts forvariable tectonic environment phase transformations visco-elasto-plastic rheologyerosion/sedimentation processes

10

Accretion wedge

kmSubducting plate

Sea waterAir

ALL-IN-ONE TOOLBOX

10 million markers

Gerya et al. (2006)

Mixed and unmixed cold plumes

(with slab fluids signatures)

(with crustal melts)

10 billion markers

original view

zoom: 3

zoom: 10

zoom: 30

zoom: 100

zoom: 300

Internal structure of mixed plumes to 1 m scale

zoom: 30

Do we see cold plumes?Obata (2000)

1 km

1 km

Gerya et al. (2006) Zhao et al. (1992)

Numerical tomographic model

Seismic tomography

Do we see cold plumes?

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

100oC

200oC

300oC

400oC

The End