synthesis and structural characterization of two interesting sandwich and double sandwich type...

17
~ Pergamon PII : S0277-5387(97)00451-8 Po(vhedron Vol. 17, No. 10, pp. 1659 1675, 1998 (G 1998 Elsevier Science Ltd All rights reserved. Printed in Great Britain 0277 5387/98 $19.00+0.00 Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent teUurium-dithiocarbamate complexes; [Te Iv {52CN(C2H5)2}3] 2 [Te n{S~CN(C2Hs)2}2I(PF6)2 and [Te Iv { S2CN (CzHs) 2}31 ITe n { $2 CN (CzHs)2 } ( Cl o 4) R. Krishna Kumar,a'*'{ G. Aravamudan, ~'* M. Seshasayee, b Kandasamy Sivakumar,C't Hoong-Kun Fun c and Israel Goldberg d a Department of Chemistry, Indian Institute of Technology, Madras 600036, India b Department of Physics, Indian Institute of Technology, Madras 600036, India cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia d School of Chemistry, Tel Aviv University, 69978 Ramat Aviv, Israel (Received 25 August 1997; accepted 3 November 1997) Abstract--Two novel mixed-valent tellurium(II and IV) dithiocarbamate complexes have been prepared and their structures determined by X-ray diffraction studies. Complex 1, [TelV(S2CNEt2)3]2[TeII(S2CNEt2)2](PF6)2, was obtained from the metathesis reaction of [TeW(S2CNEt2)3C104] with KPF 6 due to the partial reduction of the primary product [Te~V(S2CNEt2)3]PF6, which is thermodynamically unstable. The preparation of tel- lurium(IV) dithiocarbamate in dilute perchloric acid medium results in complex 2, which has a composition [TetV(S2CNEtz)3][Te"(S2CNEt2)2](C104). These two complexes represent the first examples of mixed valent complexes of tellurium consisting only the sulphur ligands. Their structural investigation shows that these complexes are stabilized primarily due to the supramolecular Te...Te interaction, the distance of which is shorter than the earlier known complex. While Ten(S2CNEt2)2 is sandwiched between two TeW(S2CNEt2)3 molecules in 1, two such Te(II) molecules are sandwiched in complex 2. © 1998 Elsevier Science Ltd. All rights reserved Keywords: tellurium-dithiocarbamate complexes; mixed-valent; supramolecular interactions; crystal structures. One of the most interesting aspects in studies involving tellurium complexes with sulphur containing ligands, in both Te n and Te w oxidation states, is their ster- * Author to whom correspondence should be addressed. t On leave from Department of Physics, Anna University, Madras 600025, India. { Presently at School of Chemistry, Tel Aviv University. eochemical activity and supramolecular associations [1]. Tellurium, in the aforementioned oxidation states, is known to exhibit a wide range of coordination geo- metries. Complexes with monodentate sulphur ligands, particularly thiourea and its derivatives, have been characterized structurally relatively well [2]. The geometry around tellurium in these complexes reflects the bonding ability of tellurium. However, bidentate 1, l-dithiolate ligands, such as dithiocarbamates, xan- 1659

Upload: r-krishna-kumar

Post on 03-Jul-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

~ Pergamon PII : S0277-5387(97)00451-8

Po(vhedron Vol. 17, No. 10, pp. 1659 1675, 1998 (G 1998 Elsevier Science Ltd

All rights reserved. Printed in Great Britain 0277 5387/98 $19.00+0.00

Synthesis and structural characterization of two interesting sandwich and double sandwich type

mixed-valent teUurium-dithiocarbamate complexes; [Te Iv {52CN(C2H5)2}3] 2

[Te n{S~CN(C2Hs)2}2I(PF6)2 and [Te Iv { S2CN (CzHs) 2} 31

IT e n { $2 CN (CzHs)2 } ( Cl o 4)

R. Krishna Kumar,a'*'{ G. Aravamudan, ~'* M. Seshasayee, b Kandasamy Sivakumar,C't Hoong-Kun Fun c and Israel Goldberg d

a Department of Chemistry, Indian Institute of Technology, Madras 600036, India

b Department of Physics, Indian Institute of Technology, Madras 600036, India

c X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

d School of Chemistry, Tel Aviv University, 69978 Ramat Aviv, Israel

(Received 25 August 1997; accepted 3 November 1997)

Abstract--Two novel mixed-valent tellurium(II and IV) dithiocarbamate complexes have been prepared and their structures determined by X-ray diffraction studies. Complex 1, [TelV(S2CNEt2)3]2[TeII(S2CNEt2)2](PF6)2, was obtained from the metathesis reaction of [TeW(S2CNEt2)3C104] with KPF 6 due to the partial reduction of the primary product [Te~V(S2CNEt2)3]PF6, which is thermodynamically unstable. The preparation of tel- lurium(IV) dithiocarbamate in dilute perchloric acid medium results in complex 2, which has a composition [TetV(S2CNEtz)3][Te"(S2CNEt2)2](C104). These two complexes represent the first examples of mixed valent complexes of tellurium consisting only the sulphur ligands. Their structural investigation shows that these complexes are stabilized primarily due to the supramolecular Te...Te interaction, the distance of which is shorter than the earlier known complex. While Ten(S2CNEt2)2 is sandwiched between two TeW(S2CNEt2)3 molecules in 1, two such Te(II) molecules are sandwiched in complex 2. © 1998 Elsevier Science Ltd. All rights reserved

Keywords: tellurium-dithiocarbamate complexes; mixed-valent; supramolecular interactions; crystal structures.

One of the most interesting aspects in studies involving tellurium complexes with sulphur containing ligands, in both Te n and Te w oxidation states, is their ster-

* Author to whom correspondence should be addressed. t On leave from Department of Physics, Anna University,

Madras 600025, India. { Presently at School of Chemistry, Tel Aviv University.

eochemical activity and supramolecular associations [1]. Tellurium, in the aforementioned oxidation states, is known to exhibit a wide range of coordination geo- metries. Complexes with monodentate sulphur ligands, particularly thiourea and its derivatives, have been characterized structurally relatively well [2]. The geometry around tellurium in these complexes reflects the bonding ability of tellurium. However, bidentate 1, l-dithiolate ligands, such as dithiocarbamates, xan-

1659

Page 2: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

1660 R. K. Kumar et al.

thates and dithiophosphates exhibit a greater struc- tural diversity in their tellurium coordination chemistry owing to their small bite. Apart from being excellent chelating agents, these ligands produce strong distortion in the coordination geometries around the central tellurium, compared to the mon- odentate ligands. Another important aspect which determines the coordination geometry in the tellurium complexes is presence of the lone pair(s) of electrons, which in some cases are stereochemically active, occu- pying the vertices of the coordination polyhedra, while in many other cases they are stereochemically inactive.

The neutral dithiocarbamate complexes of tel- lurium in both + II and + IV oxidation states are very well known [3]. Our earlier work in the mixed halide- dithiocarbamate complexes, combined with the results from other groups shows the diverse nature in the geometry exhibited by tellurium [4]. In mixed iodide- dithiocarbamate complexes of tellurium(II and IV), when the number of ligand atoms cannot satisfy the preferred coordination number, then bridging through the iodide results leadings to dimeric or poly- meric structures [4a-c]. Despite the structural charac- terization of many tellurium complexes with sulphur ligands, their structures still remain largely unpre- dictable. Moreover, when the preferred coordination number of tellurium cannot be satisfied by the ligands of the specific molecular composition, then organ- ization of the molecules in the crystal takes place in such a way as to have supramolecular interaction, which results in an extended coordination. This pro- vides a strong motivation for our continuing studies in the chemistry of the dithiocarbamate complexes of tellurium.

Here we report the preparation and the charac- teristic structural features observed in two such com- plexes. In order to see what could be the geometrical features in the six-coordinated tris(dithio- carbamato)tellurium(IV) complex, if we are able to isolate that species with the non-coordinating PFff anion, we obtained complex 1 of composition [Te jv {(C2HOzNCS2}3]2Ten{(C2Hs)2NCS2}2](PF6)2 . Com- plex 2 was obtained from the reaction of sodium tellurite with diethyldithiocarbamate in 4N perchloric acid.

RESULTS AND DISCUSSION

Syntheses and general properties

Complex 1 resulted from an attempted isolation of the Te(S2CNEt2)3PF6 species by reaction of Te(S2CNEt2)3C104 with KPF6 in methanol dichlo- romethane mixture. However the resultant compound, crystallized from dichloromethane with few drops of ethylacetate, conformed to the com- position [Te(S2CNEt2)3]2[Te(SzCNEt2)2](PF6) 2. The reaction of sodium tellurite in 4N perchloric acid with sodium diethyldithiocarbamate resulted in 2. Recrys-

tallization in dichloromethane-ethylacetate mixture afforded black crystals. Both the compounds were characterized by elemental analyses. The infrared spectra exhibits the characteristic bands of the dithi- ocarbamate and that due to PF 6 and CIO4 anions in their respective complexes. The complexes 1 and 2 are the first examples of a mixed-valent complex of tellurium containing only the sulphur ligands.

When a dichloromethane solution of [Te(S2CNEt- 2)3C104] was reacted with the methanolic solution of KPF6, immediate precipitation of KC104 takes place. The resultant [Te(S2CNEtz)3]PF6, due to its inherent instability undergoes a partial reduction and hydroly- sis to yield 1 as one of the products. The most probable mechanistic pathway for such a reaction is given in Scheme 1.

2[TeIV(S2CNEt2)3]PF6 ~ Ten (S2CNEt2)2

+ [TelV(S2CNEt2)2](PF6)2 + Et2NC(S)SSC(S)NEt2

[TeJV (S2CNEt2)2](PF6)2 + 2 H 2 0 --~

TeO2+2(Et2NCS2) +4H + + 2 P F 6

[Te'V(S2CNEt2)2](PF6)2 +(Et2NCS2) --*

[TeJV(S2CNEt2)s]PF6 + PF6

the overall reaction is,

10[TeW(S2CNEt2)3]PF6 + 2 H 2 0

3[TeW ($2 CNEt2)3]2 [Te n ($2 CNEt2) 2 (PF6)2

+ TeO2 + 3Et2NC(S)SSC(S)NEt2 + 4HPF6

Scheme 1.

The coordinatively unsaturated [Te rv- (S2CNEt2)3]PF6 first undergoes a partial auto- reduction, as shown in Scheme 1, to Te"(S2CNEt2)2, tetraethylthiuramdisulphide, which is the oxidation product of the dithiocarbamate, and [Te ~v- (S2CNEt2)2] (PF6) 2. The resultant bis(di- ethyldithiocarbamato)tellurium(IV) dication is very unstable and as a result hydrolyzes slowly in the pres- ence of water in methanol to tellurium oxide. The liberated dithiocarbamate combines with the dica- tion and stabilizes it from further hydrolysis. The Tea(S2CNEt2)~ forms an adduct with tris- (diethyldithiocarbamato)-tellurium(IV) cation, to give 1. The final products formed are 1, tellurium oxide, disulphide and HPF6.

The reaction of aqueous sodium tellurite with the dithiocarbamate ligand in acidic conditions is used for the preparation of tetrakis(diethyldithio- carbamato)tellurium(IV). In 4N perchloric acid medium, and when methanol was used for dissolving the dithiocarbamate, [TerV(S2CNEt2)s(C104)] was obtained as the sole product [5]. The structural study of this complex shows that the two oxygen atoms of the perchlorate anion are also coordinated to tellurium, so that the tellurium(IV) attains its pre-

Page 3: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

Two tellurium-dithiocarbamate complexes

ferred coordination number of 8, which is responsible for the stability of this complex. If water is used for dissolving the dithiocarbamate, the product obtained is 2, representing an adduct of [Te~V(S2CNEt:)s] (C104) and Ten(S2CNEt2)2 in 1:1 molar ratio. The tel- lurium(IV) is partially reduced by the dithi- ocarbamate to tellurium(II). This reduced tellurium(l l) complexes with the dithiocarbamate and this complex stabilizes the already formed tris- (diethyldithiocarbamato)tellurium(IV) cation to yield adduct 2 as shown in equation 1.

2Na~TeWO~ + 12HC104 + 7NaS2CNEt2 -+

2 + Et2NC(S)SSC(S)NEt2 + 11NaC104

+ 6 H 2 0 (1)

Compound 2 undergoes hydrolytic decomposition very easily. In the presence of trace amount of water, the tellurium(IV) species undergoes hydrolysis to give tellurium oxide, while at the same time liberating the free dithiocarbamate. For each mole of [Te ~v- (S2CNEt2)3] + converting to TeO2, three moles of the free dithiocarbamate are released, which in turn com- plexes with the unhydrolysed [Te~V(S2CNEt2)3] + to give TeW(S2CNEt2)4. Thus the products of hydrolysis are TeJV(S2CNEt2)4, Ten(S2CNEt2)2 and TeO2. This clearly shows that the driving force for the formation of the adduct is the presence of the coordinatively unsaturated [Te~V(S2CNEtz)3] + species. Once the satu- ration of coordination occurs by complexing with the fourth dithiocarbamate, the tellurium(lI) complex is freed as shown in Scheme 2.

2+ H20 --+ [Te~V (S2CNEt2)3OH]

+ Te u (S2CNEt,)2 + HCIO4

[TeW(SzCNEt2)3OH] + H 2 0

TelVO2 + 3Et2NCS~- + 3H +

2+(Et2NCS2) -~ TeW(S2CNEt2)4

+ Te" ($2 CNEt2) 2 + C104

the overall reaction is,

4[Te 'v (S2CNEt2)3][ Ten (S2CNEtz)2]CIO4

+ 2H20 --* TelVO2 + 3TelV(SzCNEt2)4

+ 4Te u ($2 CNEt2) 2 + 4HC104

Scheme 2.

In [Te(S2CNR2)3]X (where X = I, Br, CI or SCN) [6], Te has a distorted pentagonal bipyramid geometry with the X atom occupying one of the axial positions, where the seventh coordination site is occupied by X. However, the isolation of the species, [Te(S2CNEt2)~] +, as such is difficult. In the per- chlorate salt of this complex, the two oxygen atoms of the perchlorate are coordinated to Te, so that it

1661

was eight-coordinated with a distorted dodecahedron geometry. In the present instance the isolation of [Te(S2CNEt2)3] + has become possible due to its adduct formation with Te"(S2CNEt2)2 through weak Te(II)...Te(1V) interaction. The complexes 1 and 2 differ only in the ratio of the Te(IV) and Te(ll).

Structural characterization

The detailed structural study of title complexes show some very interesting features. The structure of I can be described as consisting of two independent tellurium complexes, [TeW(S2CNEt2)3]PF6 and TeU(SzCNEt2)2 in the ratio of 2:1 (Fig. 1), with the Te~(S:CNEt): moiety sandwiched between two Te~V(S2CNEt2)3 molecules as shown in the crystal packing diagram (Fig. 2). This sandwich type struc- ture is held together by means of short Te.- .Te and weak Te- - -S interactions. Each Te(1V) is seven-coor- dinated; six primary coordinations, by the S atoms of three dithiocarbamate ligands, and one secondary coordination, to Te(II), if the short Te. . .Te inter- action is also taken into account. The Te(lI), on the other hand, has a coordination number of six. It is coordinated by the four S atoms of the two dithi- ocarbamates and by the two Te(IV) atoms in the axial positions.

The tetravalent tellurium Te(1) is in a general position, whereas the divalent tellurium Te(2) sits on a two-fold axis (0, y, 1/4). The six primary coordination sites of Te(1) are occupied by the sulphur atoms of the three dithiocarbamate ligands. The Te- -S bond distances ranges between 2.434-2.804 A, with all the three dithiocarbamates bound in anisobidentate man- ner to the tellurium. The occurrence of such long distances Te- -S bonds for these complexes have been explained on the basis of the three-centre four-electron bond concept [7]. All the Te- -S distances and S - - T e - - S angles are similar to that observed in other [Te(S2CNR2)3]X compounds. In the TeU(S2CNEt2), moiety, the tellurium atom sits on a crystallographic special position and only one dithiocarbamate forms a part of the asymmetric unit. The two dithi- ocarbamates are coordinated in an anisobidentate manner (the Te- -S distances being 2.487 and 2.859 A) and the two axial positions are occupied by the Te(IV) atoms. In the previously known examples of TeU(S2CNR2)2 [8], the geometry around the tellurium atom is planar trapezoidal with one of the S - - T e - - S angles being very large (about 145). Hence it could be interpreted as a planar pentagonal, with one of the corners missing. As Te(2) is on a two-fold axis, the Ten(S2CNR2)2 in 1 is symmetrically disposed. With two Te(l) atoms above and below, the geometry around Te(2) can be described as a distorted octa- hedron with the angle axial Te(1)- -Te(2)- -Te( l ' ) angle being 161.43 ~.

The shortest Te(IV)--S distance of 2.434 A in the present instance, is incidentally, of that of axial sul-

Page 4: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

1662 R . K . K u m a r e t a l .

0(8]

0 (7 ]

N(2)

C[6) S(3) ,~

C(13) I _1 5(4)

C(9) C[IO]

C(3]

0(14 N ( 3 ) _/~L'~ Te(1 S(l} 5(2) . . . . C(4]

~ C(12]

C(15] I

C[l l ] S(6)

N[4)

)C(18) C(1)

][17} S(8I

Te[2]

C(21 C(51

~ cc161

5(7]

Fig. 1. An ORTEP plot of the cationic complex {[TeIV{S2CN(C2Hs)2}3] 0.5[TeII{SzCN(C2Hs)2}2] +} of 1 present in the asymmetric unit, drawn with 50% probability ellipsoids. Tell is present on a crystallographic two-fold axis. The symmetry

related half of the molecule and the hydrogen atoms are omitted for clarity.

phur atom ($3). This axial Te--S bond is trans to the Te.. .Te interaction and hence produces a trans bond lengthening effect on the Te--Te bond. The Te.. .Te distance of 3.390 A is greater than the sum of the covalent radii of tellurium atoms (2.72 A) [9] but close to the sum of the atomic radii of Te (3.28 A), if the three-centre four-electron radii of Te is taken into account [7]. However in the latter case the radii was computed based on the square planar tellurium(II) complexes with monodentate ligands. This distance is also considerably shorter than the distance of 3.542 A observed in the only previous known example [10] of a mixed valent Te(IV)--Te(II) complex [I (Pr'2 NCS2)Ten (/t-I)TelV ($2 CNPri2) 21 ] containing the sulphur ligands. However in the already known example, iodide bridges the two tellurium atoms and the Te.- 'Te interaction is only secondary. The one other known example [11] containing a Te--Te bond, with sulphur ligands coordinated to Te, is TEL2_ TeLSCN, and the distance observed there is 3.221 /k. However, both the telluriums here are in + I I oxi- dation state.

Apart from the Te.. .Te interaction, the crystal structure is stabilized by Te---S secondary inter- actions. Te(1) has weak interaction with S(8), the sulphur atom bound to Te(2) at a distance of 3.500 A,. However, Te(II) has four such interactions, with

Fig. 2. The packing of the molecules of 1 in the unit cell illustrating the Te..-Te interaction, the secondary Te---S

interactions and the sandwich type arrangement.

Page 5: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

Two tellurium-dithiocarbamate complexes 1663

two symmetry related S(I) and S(2) atoms at distances of 3.885 and 3.890 A.

In complex 2 also there are two independent Te(IV) and Te(II) dithiocarbamate complexes [Te ~v- (S2CNEt2)3]C104 and TeII(SzCNEt2)2 (Fig. 3), how- ever in the ratio of I : 1. The structural difference with 1 arises basically due to the interleaving of another Te(II)-dithiocarbamate between the Te(II) and Te(IV) complexes, the two TeU(S2CNEt2)2 molecules being sandwiched between two [TelV(S2CNEt2)3] moi- eties as shown in Fig. 4.

The Te~V(S2CNEt2)3 moiety in this complex also is made of three anisobidentate dithiocarbamates and with almost similar geometrical features as that of 1 (Te--S distances ranges between 2.474-2.805 A).

Te(1) has six primary coordinations, with a pen- tagonal pyramidal geometry. When the secondary Te.. .Te interaction is also taken into account the geometry becomes pentagonal bipyramidal. The Te--S(3) bond distance (2.473 A) in 2 is a bit longer than that in 1, which again reflects in the Te.. .Te interaction, viz. shortening by almost similar magni- tude. Thus, the Te.. .Te interaction of 3.347/k is shor- ter than in 1. There is a secondary interaction between Te(1) and S(8) of distance 3.601 A, which essentially shows that the geometry around the Te(IV) centre is conserved as in 1.

The main difference between the crystal structures of 1 and 2 lies around the Te(II) centre. The geometry around Te(2) in 2 is unlike in 1. But it is similar to

21

]

31

Fig. 3. An ORTEP plot of the cationic complex {[TeW{S2CN(C2Hs)2}3] [TeU{SeCN(C2Hs)2}2] +} of 2 drawn with 50% probability ellipsoids. N(2) is hidden behind the atoms C(9) and C(10). The hydrogen atoms are omitted for the sake of

clarity.

o 6 c

Fig. 4. The packing diagram of the molecules of 2 in the unit cell illustrating the Te. • .Te interaction, the secondary Te- - -S interactions and the double sandwich type arrangement.

Page 6: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

1664 R.K. Kumaretal.

that observed in the other structures, with one small and one large interligand S - - T e - - S angles (79.5 and 147.8°). If the Te. . .Te interaction is also taken into consideration, then the geometry becomes capped trapezoid. The Te(II)-. .Te(II) distance is rather large, and is close to the sum of the van der Waal 's radii of the tellurium atoms (4.40 /~) [12], to be thus con- sidered as a secondary interaction. There is just one more Te---S secondary interaction involving Te(II), which is with S(2) at a distance of 3.853/~.

CzsHsoNsS,0CIO4Te2 : C, 27.4; H, 4.6; N, 6.4%. The red gummy residue obtained along with it was ident- ified as a mixture of TelV{S2CN(C2H02}4 and Te n { S2CN(CzHs)2} 2, formed as a result of hydrolysis of 2. They were removed by a rapid washing with methanol. Small amounts of insoluble tellurium dioxide formed was discarded.

X-ray crystalloyraphy

EXPERIMENTAL

Tellurium dioxide, sodium diethyldithiocarbamate and potassium hexafluorophosphate were used as obtained commercially. Dichloromethane, methanol and ethylacetate were distilled and stored over molec- ular sieves before use. The complex Te{(C2Hs)2NCS2}3C104 was prepared as described previously [5]. The C, H and N analyses of the com- plexes were performed using a Heraeus CHN-O- RAPID analyser.

Preparation of [TeW{S2CN(C2Hs)2}3]2[Te"{S2CN (C:Hs)2}:](PF6)2 (1)

Te{(C2Hs)zNCS2}3C104 (0.134 g, 0,2 mmol) was dissolved in dichloromethane (10 cm3). A methanol solution (10 cm 3) of KPF6 (0.076 g, 0.4 mmol) was then added to it with stirring. The white precipitate of KC104 was filtered off and the clear solution kept aside for solvent evaporation at room temperature. The gummy residue obtained was recrystallized in 10:1 v/v mixture of dichloromethane-ethylacetate, which yields small brown crystals of 1 (yield 70%). Found: C, 25.9; H, 4.2; N, 6.1. Calc. for C40Hs0N8 S16PzFI2Te3 : C, 25.9 ; H, 4.3 ; N, 6.0%.

Preparation of [TeW { S2CN(C2Hs)2} s] [Te" {S2CN (C2H5)2}2](CIO4) (2)

Tellurium dioxide (0.040 g, 0.25 mmol) was dis- solved in 1M NaOH (10 cm 3) in a beaker. This solu- tion was then acidified by 4N perchloric acid (25 cm3). To the clear solution, sodium diethyldithiocarbamate (0.281 g, 1.25 mmol) dissolved in water was added at room temperature with constant stirring. A red precipitate of 2 was formed and was filtered immedi- ately. The precipitate was then air dried, dissolved in dichloromethane and washed thrice with 1N per- chloric acid (10 cm3). The clear red solution was then dried over anhydrous sodium sulphate to remove any moisture. The solvent was evaporated and the red residue washed repeatedly with CC14 (10 cm3). Recrys- tallization in 10:1 v/v mixture of dicfiloromethane and ethylacetate yield dark black crystals of 2 (yield 60%). Found: C, 27.4; H, 4.7; N, 6.4. Calc. for

The X-ray diffraction experiments were carried out at room temperature on automated Siemens P4 diffractometer (complex 1) and Enraf-Nonius CAD4 (complex 2) diffractometers with graphite mono- chromator. Cell constants and the orientation matrix for the data collection were obtained by least squares refinement of 25 carefully chosen high angle reflec- tions. The crystal data and pertinent details of the experimental conditions are summarized in Table 1. The intensity data were collected by 0 20 and 0)-20 scan modes, respectively, for 1 and 2. Three standard reflections from different zones of the reciprocal space were measured periodically, with no significant vari- ation in the intensity. Absorption correction based on ~k-scans was applied to the data of complex ! (Train = 0.690 and Tma x = 0.959) while for data of complex 2 no corrections were employed.

The crystal structures were solved by direct methods (SHELXS-86) [13]. Their refinement were carried out by full-matrix least-squares method using SHELXL- 93 [14]. The refinement calculations were based on F 2 ; the hydrogen atoms were introduced at calculated positions. In both the cases the refinements converged at a reasonably low R-value (Table 1), allowing a reliable description of the atomic parameters and of the intermolecular interactions involving tellurium and dithiocarbamate sulphurs. The weighting schemes employed during refinement were w = l/[a2lFol+ (0.1517 p)2] and 1/[cr21Fol + (0.0488P) 2 + 3.76P] where P = [max (F 2, 0) +2IFcl2]/3 for 1 and 2, respectively. However some difficulties were encountered in the refinement procedure, similar to those typically observed in these types of compounds. The (PF6)- anion of I was disordered and no correct model could be assigned for the disorder. All the fluorine atoms were refined isotropically and significant residual elec- tron density was found around this anion, which does not in any way affect our observations in the positively charged tellurium complex. In 2, the atoms N2, C7, C8, C9 and C10 of one of the dithiocarbamates was highly disordered, apart from the (C104) anion. No satisfactory model could be ascribed to the disorder and hence these atoms were refined isotropically. The highest residual electron density of 1.7 electrons per A 3 in the final difference map is also around this dis- ordered fragment with no apparent effect on the precise location of the other atoms.

The selected bond lengths and angles are given in Table 4. Complete sets of the atomic coordinates,

Page 7: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

Two tellurium-dithiocarbamate complexes

Table 1. Crystallographic data

1665

Compound Empirical formula Formula weight Temperature (K) Crystal system Space group a (A) b (A) c (A)

/~ C) ~,() v (A 3) z Dc,,~ (Mg m 3) tl (mm t) F(O00) Crystal size (ram) o () hkl ranges Reflections collected Reflections observed [I > 2a(/)] S R "wR2

1

C4oHgoF~2NsP2SI6Te3 1858.8 293(2) orthorhombic Pbcn 22.671 (7) 14.127(5) 24.625(7) 90.0 90.0 90.0 7887(4) 4

1.565 1.628 3704 0.57 × 0.23 × 0.20 1.70-25.00 - 1 - 2 6 , - 1-13, -29-1 7608 3495 1.08

0.074 0.201

2

C25H5oC1 N~O4S)oTe2 1096.0 293(2) triclinic P1 10.045(2) 14.595(2) 16.903(2) 66.49(1) 78.98(1) 87.09(1) 2229.6(6) 2 1.632 1.872 1096 0.43×0.34×0.21 1.52-24.97 - 11-11, - 15-17, 0-20 7344 6328 1.28

0.049 0.135

"[Zw(F~, - F2)2 /Z(wF2o) 2] ,2.

Table 2. Selected bond distances in 1 and 2

1 2

Te(1)--S(1) 2.577(3) 2.584(2) Te(1)--S(2) 2.729(4) 2.772(2) Te(1)--S(3) 2.435(3) 2.473(2) Te(1 )--S(4) 2.803(4) 2.805(2) Ye(1)--S(5) 2.783(4) 2.711(2) Te(1)--S(6) 2.561 (4) 2.581 (2) Te(2)--S(7) 2.486(4) 2.500(2) Te(2)--S(8) 2.858(3) 2.899(2) Te(2)--S(9) - - 2.807(2) Ye(2)--S(10) - - 2.479(2) Te(l)-..Te(2) 3.389(1) 3.347(1)

thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.

R E F E R E N C E S

1. Haiduc, I., King, R. B. and Newton, M. G., Chem. Rev., 1994, 94, 301.

2. (a) Foss, O., Pure Appl. Chem., 1970, 24, 31 ; (b) Husebye, S., Phosphorus Sulfur, 1988, 38, 271.

3. (a) Foss, O., Acta Chem. Scand., 1949, 3, 708 ; (b) St. Nikolov, G., Jordanov, N. and Havezov, I., J. lnor 9. Nucl. Chem., 1971, 33, 1055.

4. (a) Krishna Kumar, R., Aravamudan, G., Udupa, M. R., Seshasayee, M. and Hamor, T. A., Acta Crystallogr., 1993, C49, 1328; (b) Krishna Kumar R., Aravamudan, G., Udupa, M. R., Seshasayee, M., Selvam, P. and Yvon, K., Poly- hedron, 1996, 15, 1453; (c) Krishna Kumar, R., Aravamudan, G., Udupa, M. R., Seshasayee, M. and Hamor, T. A., Polyhedron, 1993, 12, 2201; (d) Schnabel, W., Von Deuten, K. and Klar, G., Phosphorus Sulfur, 1982, 13, 345.

5. Chidambaram, S., Aravamudan, G., Seshasayee, M. and Shibanova, T. A., Simonov, V. I., Poly- hedron, 1988, 7, 1267.

6. (a) Rout, G. C., Seshasayee, M., Aravamudan, G. and Radha, K., J. Crystallogr. Spectrosc. Res., 1984, 14, 193 ; (b) Von Deuten, K., Schnabel, W. and Klar, G., Phosphorus Sulfur, 1980, 9, 93 ; (c) Chidambaram, S., Aravamudan, G., Seshasayee, M., Snow, M. C. and Tiekink, E. R. T., Aust. J. Chem., 1989, 42, 969.

7. Foss, O., Acta Chem. Scand., 1962, 16, 779. 8. (a) Fabiani, C., Spagna, R., Vaciago, A. and

Zambonelli, L., Aeta Crystallo#r., 1971, B27, 1499; (b) Ganesh, V., Seshasayee, M., Chid- ambaram, S., Aravamudan, G., Goubitz, K. and Schenk, H., Acta Crystallogr., 1989, C45, 1506.

Page 8: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

1666 R. K. Kumar et al.

9. Glidewell, C., Inory. Chem. Acta, 1976, 20, 113. 10. Ganesh, V., Seshasayee, M., Kumar, V., Chi-

dambaram, S., Aravamudan, G., Goubitz, K. and Schenk, H., J. Crystalloyr. Spectrosc. Res., 1989, 19, 745.

11. Radha, K., Aravamudan, G., Rajalakshmi, A., Rout, G. C. and Seshasayee, M., Aust. J. Chem., 1986, 39, 847.

12, Pauling, L., The Nature of the Chemical Bond, 3rd edn. Cornell University Press, Ithaca, NY, 1960.

13. Sheldrick, G. M., Acta Crystallogr., 1990, A46, 467.

14. Sheldrick, G. M., SHELXL-93, a program for the refinement of crystal structures. University of Gottingen, 1993.

Table S I. Positional and equivalent isotropic thermal

a t o m

Te(1) Te(2) S(1) S(2) S(3) S(4) s(5) S(6) S(7) s(8) P(1) N(1) N(2) N(3) N(4) C(1) C(2) C(3) C(4) c(5) C(6) C(7) c(8) C(9) C(lO) C(11)

x/a 0.0577( 07 o.oooo(o) -0.0511(1) 0.0293(2) 0.0802(1) 0.1656(2) 0.1347(1) . 0.0076(1) 0.0711(2) 0.1204(1) 0.1568(3) -0.0863(5) 0.1660(5) 0.0724(5) 0.1850(5) -0.0408(6) -0.1454(6) -0.1527(7) -0.0788(9) -0.0925(9) 0.1424(5) 0.1418(6) 0.1799(8) 0.2160(6) 0.1931(9) 0.0733(5) 0.0171(8) 0.oo64(9) 0.1251(8) 0.1409(12) O. 1324(5) 0.2373(6) 0.2652(7) 0.1921(7) 0.2160(3) 0.1819(3) 0.1219(3) 0.1419(3) 0.2219(3) 0.1806( 37 0.1019(3)

C(12) C(13) C(14) C(15) C(16) C(17) C(18) C(19) c(2o) *F(1) *F(2) *F(3) *F(4) "F(5) *F(6)

*Atoms were isotropically refined.

y/b 0.9780(1) 0.9394(!) 1.0202(3) 1.1572(3) 1.0400(3) 1.0748(3) 0.8282(3) 0.8316(3) 0.8065(3) 0.9989(2) 0.5345(3) 1.1903(8) 1.1656(8) 0.6812(8) 0.8449(8) 1.1281(10) 1.1627(12) 1.1863(13) 1.2864(11)

9arameters of non-hydrogen atoms in

z/e V'eq

0.045( 0.048( 0.056( 0.069( 0.058( 0.067( 0.068( 0.071( 0.071( 0.054( 0.113( 0.065( 0.068( 0.075( 0.064( 0.060( 0.095( 0.105( 0.097(

0.1250( 07 0.2500(0) 0.1067(1) 0.1572(2) 0.0350(1) 0.1232(1) 0.1062(2) 0.0846(2) 0.2599(2) 0.2544(1) 0.4030(3) 0.1389(4) 0.O268(5) 0.0669(6) 0.2731(5) 0.1360(5) 0.1216(7) 0.0594(6) 0.1601(7)

o) o) 1) 1) 1) 1) 1) 1) 2) 1) 2) 4) 5) 5) 4) 5) 7) 8) 87

1.2922(14) 1.1018(9) 1.1854(11) 1.1313(14) 1.2279(13) 1.3137(13) 0.7698(10) 0.6364(12) 0.6569(15) 0.6224(13) 0.5639(16) 0.8818(8) 0.9028(11) 0.9179(13) 0.7434(11) 0.6931 (5) 0.4289(5) 0.6351 ( 57 0.5174(5) 0.5634(5) 0.5474(5) 0.4884(5)

0.2190(9) 0.0597(5)

-0.0268(6) -0.0689(8) 0.0473(7) 0.0755(8) 0.0850(5) 0.0477(9) -o.o12o(9) 0.0657(9) 0.1086(13) 0.2632(5) 0.2761(6) 0.2240(8) 0.2859(7) 0.2401(3) 0.4061(3) 0.3903(3) 0.3409(3) 0.3837(3) 0.4627(3) 0.4141(3)

0.134(11) 0.055(4) 0.076(6) 0.112(9) 0.095(8) o.118(9) o.o61(5) 0.116(10) 0.137(12) 0.120(9) 0.245(22) 0.049(4) 0.074(6) 0.105(9) 0.087(7) 0.163(14) 0.196(6) 0.181(6) 0.180(6) 0.250(9) 0.324(13) 0.244(9)

Page 9: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

Two tellurium-dithiocarbamate complexes

Table $2. Positional parameters of hydrogen atoms in 1

a t o m

H(2A) H(2B) H(3A) H(3B) H(3C) Hog) H(4B) H(5A) H(5B) H(5C) H(7A) H(7B) H(8A) n(sa) H(8C) H(9A) H 9B? H(10A) H(10B) H00C ) H(12A) H(12B) n(lag) H(laB) H(laC) H(14A) H(14B) H(15A) H(15B) H(15C) H(17A)

x/a -0.1751 1.1954

z/e 0.1421

-0.1507 1.0958 0.1266 -0.1909 1.1685 0.0460 -0.1474 1.2533 0.0550 -0.1228 1.1531 0.0394 -0.1029 1.3303 0.1403 -0.0382 1.3040 0.1556 -0.0868 1.3545 0.2337 -0.1332 1.2744 0.2229 -0.0681 1.2479 0.2383 0.1452 1.2523 -0.0331 0.1009 1.1684 -0.0289 0.1650 1.1463 -0.1043 0.2208 1.1490 -0.0667 0.1761 1.0645 -0.0625 0.2407 1.2459 0.0174 0.2396 1.1924 0.0725 0.2253 1.3518 0.0882 0.1699 1.3495 0.0501 0.1688 1.2955 0.1057 -0.0152 0.6625 0,0681 0.0181 0.5696 0.0548 -0.0302 0.6273 -0.0216 0.0041 0.7235 -0.0195 0.0378 0.6295 -0.0329 0.1584 0.6635 0.0611 0.1225 0.5826 0.0341 0.1764 0.5277 0.1043 0.1443 0.6035 0.1401 0.1080 0.5217 0.1129 0.2659 0.8733 0.2994

H(17B) 0.2270 0.9627 0.2918 H(18A) 0.2995 0.9572 0.2275 H(18B) 0.2763 0.8582 0.2084 H(18C) 0.2370 0.9485 0.2008 H(19,4,) 0.1541 0.7165 0.2934 H(19B) 0.2164 0.7348 0.3175 H(20A) 0.2200 0.6268 0.2480 H(20B) 0.1914 0.7012 0.2087 H(20C) 0.2542 0.7197 0.2330

1667

Page 10: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

1668 R. K. Kumar et al.

Table $3. Anisotropic thermal parameters of non-hydrogen atoms in 1

atom Un Te(1) 0.044(o) Te(2) 0.050(1) S(1) 0.048(2) S(2) 0.072(2) S(3) 0.061(2) S(4) 0.059(2) S(5) 0.049(2) S(6) 0.051(2) S(7) 0.058(2) S(8) 0.051(2) P(1) 0.140(4) N(1) 0.073(7) N(2) 0.056(6) S(3) 0.066(7) N(4) 0.061(7) C(1) 0.063(8) C(2) 0.062(9) C(3) 0.101(12) C(4) 0.153(16) C(5) 0.159(19) C(6) 0.046(7) C(7) 0.069(9) C(8) 0.122(15) C(9) 0.071(10) C(IO) 0.151(17) C(11) 0.057(7) C(12) 0.088(12) C(13) 0.138(18) C(14) 0.092(12) C(15) 0.245(33) C(16) 0.057(7) C(17) 0.058(8) C(18) 0.075(11) C(19) 0.071(9) C(20) 0.268(32)

U22 0.045(1) 0.046(1) 0.059(2) 0.050(2) 0.070(2) 0.081(3) 0.059(2) 0.054(2) 0.044(2) 0.050(2) 0.052(3) 0.064(8) 0.069(8) 0.048(7) 0.060(8) 0.070(10) 0.081(12) 0.121(15) 0.056(11) 0.083(14) 0.073(9) 0.081(11) 0.119(16) 0.135(17) 0.082(13) 0.058(9) 0.059(11) 0.128(19) 0.093(14) 0.086(17) 0.042(7) 0.092(12) 0.097(14) 0.068(12) 0.057(13)

v . 0.045(0) 0.04"9(1) 0.060(2) 0.085(3) 0.043(2) 0.062(2) 0.095(3) 0.107(3) 0.111(3) 0.061(2) 0.146(5) 0.057(7) 0.080(8) 0.112(10) 0.073(7) 0.047(8) 0.142(16) 0.092(13) 0.082(12) 0.160(21) 0.045(7) 0.078(10) 0.094(13) 0.080(11) 0.120(16) 0.067(9) 0.200(25) 0.146(21) 0.174(20) 0.404(53) 0.049(7) 0.072(9) 0.144(17) 0.122(15) 0.165(23)

o.oo1(o) 0.000(o) -0.006(2) -0.014(2) 0.0o8(2) 0.020(2) -o.oo6(2) -0.021(2) 0.007(2) -0.001(1) -0.010(3) 0.000(6) 0.018(7) -0.007(7) 0.003(6) -0.010(6) -0.007(11) 0.023(.11) -0.002(9) -0.035(14) 0.011(7) 0.038(9) 0.014(12) 0.036(11) -0.016(12) -0.010(7) -0.052(14) -0.068(16) -0.064(15) 0.032(24) 0.000(6) -0.008(9) o.o14(13) 0.001(10) -0.003(14)

f.J/~ 0.000(o) 0.004(1) -o.oo4(1) -0.015(2) -0.004(1) -0.015(2) -0.003(2) -0.013(2) 0.011(2) -o.oo1(2) 0.040(4) -0.012(5) 0.013(6) 0.002(7) -0.004(6) 0.001(6) -0.007(10) -0.047(10) -0.026(11) -0.030(16) 0.008(6) -0.012(8) -0.007(12) -0.016(8) -0.033(13) -0.005(6) -0.010(14) -0.023(16) -0.017(13) -0.233(37) 0.003(6) -0.016(8) -0.004(12) -o.o2o(9) -0.050(22)

U/2 0.002(O) 0.000(o) 0.009(2) 0.007(2) -0.008(2) -0.015(2) 0.006(2) 0.003(2) -0.001(2) 0.000(1) -0.014(3) 0.021(6) 0.002(6) 0.014(6) 0.009(6) 0.016(7) 0.037(8) 0.021(12) 0.040(11) 0.041(14) 0.006(6) -0.008(8) -0.032(13) -0.054(11) -0.011(13) 0.011(6) -0.002(9) 0.008(15) 0.015(11) 0.012(19) 0.011(6) 0.oo5(8) 0.008(10) 0.031(8) -0.001(17)

Page 11: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

Two tellurium-dithiocarbamate complexes 1669

Table $4. Bond distances in (,~) Te(~)- S(1) To(l) - S(2) To0)- S(3) Te(1) - S(4) Te(1) - S(5) Te(1) - S(6)

2.577(3) 2.729(4) 2.435(3) 2.803(4) 2.783(4) 2.561(4)

N(2)- CO) N(3)- C(11) N(3)- C(12) N(3)- C(14) N(4)- C(16) i (4 ) - C(17)

1,522(20) 1.329(18) 1.483(21) 1.454(21) 1.323(16) 1.443(18)

Te(2)- S(7) Te(2)-S(8) S(1)-C(1) S(2)-C(1) S(3)- C(6) s(4)- c(6) S(5)- C(11) S(6)- C(11) S(7)- C(16) S(8)- C(16) N(1)- C(1) i (1) - C(2) N(1)- C(4) S(2)- C(6) S(2)- C(7)

2.486(4) . 2.858(3) 1.702(14) 1.723(13) 1.768(12) 1.695(12) 1.701(13) 1.725(13) 1.754(12) 1.691(12) 1.357(18) 1.458(18) 1.466(19) 1.324(17) 1.456(18)

N(4)- C(19) C(2)- C(3) C(4)- C(5) C(7)- C(8) C(9)- COO ) C(12) - C(13) c(14) - c(15) C(17) - C(18) C(19) - C(20) P(1)- F(1) P(1)- F(2) P(1)- F(3) P(1)- F(4) a(1)- F(5) P(1)- F(6)

1.477(19) 1.576(23) 1,486(28) 1.551(24) 1.491(26) 1.520(32) 1.389(36) 1.447(23) 1.440(18) 1.598(9) 1.657(9) 1.585(10) 1.604(10) 1.578(10) 1.431(10)

Page 12: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

1670

S(5)- Te(1)- S(6) S(4)- Te(1)- S(6) s(4)- Te(1)- S(5) S(3)- Te(1)- S(6) S(3)- Te(1)- S(5) S(3)- Te(1)- S(4) S(2)- Te(1)- S(6) S(2)- Te(1)- S(5) S(2)- Te(1)- S(4) S(2)- T¢(1)- S(3) S(1)- To(l)- S(6) S(1)- Te(1)- S(5) S(1)- T¢(1)- S(4) S(1)- Te(1)- S(3) S(1)- Te(1)- S(2) S(7)- Te(2)- S(8) Te(1)- S(1)- C(1) Te(1)- S(2)- C(1) Te(1)- S(3)- C(6) Te(1)- S(4)- C(6) Te(1)- S(5)- C(11) We(l)- S(6)- c(11) We(2)- S(7)- C(16) Te(2)- S(8)- C(16) C(2)- S(1)- C(4) C(1)- N(1)- C(4) C(1)- N(1)- C(2) C(7)- n(2)- C(9) C(6)- n(2)- C(9) C(6)- N(2)- C(7) C(12)- N(3)- C(14) C(11)- S(3)- C(14) C(11)- S(3)- C(12) C(17)- N(4)- C(19) C(16)- S(4)- C(19) C(16)- N(4)- C(17)

R. K. Kumar et al.

Table $5. Bond angles in 1 (') 66.3(1) 140.8(1) 79.7(1) 91.7(1) 89.5(1) 68.2(1) 139.3(1) 154.4(1) 76.0(1) 88.9(1) 72.2(1) 138.4(1) 136.0(1) 87.6(1) 67.1(1) 66.4(1) 90.1(4) 84.7(5) 91.8(4) 81.5(4) 84.6(4) 91.4(5) 93.5(4) 82.6(4) 117.3(12) 122.0(12) 120.7(11) 118.1(11) 119.4(11) 122.2(11) 116.4(12) 122.3(12) 121.3(12) 116.7(11) 121.4(11) 121.8(11)

S(2)- C(1)- N(1) S(1)- C(1)- N(1) S(1)- C(1)- S(2) N(1)- C(2)- C(3) N(1)- C(4)- C(5) S(4)- C(6)- N(2) S(3)- C(6)- N(2) S(3)- C(6)- S(4) N(2)- C(7)- C(8) N(2)- C(9)- C(10) S(6)- C(11)- N(3) S(5)- C(11)- N(3) S(5)- C(11)- S(6) N(3)- C(12)- C(13) N(3)- C(14)- C(15) S(8)- C(16- N(4) S(7)- C(16- N(4) S(7)- C(16- S(8) N(4)- C(17)- COS ) N(4)- C(19)- C(20) F(5)- P(1)- F(6) F(4)- P(1)- F(6) F(4)- a(1)- F(5) F(3)- P(1)- F(6) F(3)- P(1)- F(5) F(3)- P(1)- F(4) F(2)- P(1)- F(6) F(2)- P(1)- V(5) F(2)- a(1)- F(4) F(2)- P(1)- F(3) F(1)- P(1)- V(6) F(1)- a(1)- F(5) F(1)- P(1)- F(4) F(1)- P(1)- F(3) F(1)- P(1)- F(2)

122.1(10) 119.8(10) 117.9(8) 108.9(12) 112.0(14) 126.3(10) 116.7(9) 117.0(7) 107.5(12) 111.4(14) 117.6(10) 124.8(10) 117.6(7) 111.2(16) 122.4(18) 123.7(9) 118.9(9) 117.4(7) 113.4(12) 110.7(11) 99.9(5) 166.7(6) 86.1(5) 86.0(5) 172.1(6) 87.1(5) 90.6(5) 103.9(5) 99.5(5) 81.2(5) 82.9(5) 86.7(5) 85.6(4) 88.8(5) 168.5(5)

Page 13: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

Two tellurium-dithiocarbamate complexes

Table $6. Positional and equivalent isotropic thermal )arameters of non-hydrogen atoms in 2

atom x/a y/b

Te(1) Te(2) S(l) S(2) S(3) s(4)

s(5) s(6) s(7) s(8) S(9) S(lO) c(1) N(1) C(2)

[C(3) C(4) c(5) C(6) *N(2) *C(7) ,*c(8) *C(9) *COO ) N(3) C(11) C(12) C(13) c(14) C(15)

0.4312(0) 0.4551(0) 0.5487(2) 0,2874(2) 0,3380(2) 0.1644(2) 0,4624(2) 0,6724(2) 0.3903(2) 0.6836(2) 0.3633(2) 0.2042(2) 0.4158(7) 0.4183(6) 0.3071(8) 0.3360(11) 0.5278(8) 0.5000(11) 0.1855(7) 0.0993(8) 0.1347(12) 0.0902(13) -0.OO32(13) -0.0982(17) 0.7279(6) 0.6317(6) 0.6964(9) 0.6958(12) 0.8726(7) 0.9242(8)

0.449o(o) 0.4759(o) 0.6085(1) 0.6209(2) 0.4271(2) 0.3704(2) 0.2486(1) 0,3976(1) 0.6514(1) 0.6150(1) 0.2804(2) 0.4577(2) 0.6802(5) 0.7771(4) 0.8409(6) 0.8878(8) 0.8267(6) 0.8309(8) 0.3723(7) 0.3301(6) 0.3146(8) 0.4075(8) 0.2539(9) 0.3393(12) 0,2129(4) 0.2766(5) 0.1082(6) 0.0382(7) 0.2413(6) 0.2871(7)

z]¢ Ueq 0,3219( -0.1056( 0.3104( 0.2527( 0,475O(1) 0.3781(1) 0.3810(1) 0.3513(1) -0.1299(1) -0.1606(1) -0.0627(2) -0.0740(2) 0.2677(4) 0.2504(4) 0.2154(5) 0.1162(6) 0.2650(6) 0.3538(7) 0.4746(4) 0.5495(4) 0.6349(6) 0.6489(9) 0.5614(12) 0.539,1(12) 0.3688(4) 0.3676(4) 0.3837(5) 0.4773(6) 0.3480(6) 0.25oo(6)

o) 0.045(o) o) 0.052(o) 1) 0.058(1) 1) 0.063(1)

0.064(1) 0.061(1) 0.057(1) 0.061(1) o.060( 0.059( 0.077( 0.066( 0.052( 0.058( 0.068( 0.100( 0.068( 0.101( 0.069( 0.105( 0.109( 0.124( 0.169( 0.165( 0.055( 0.049( 0.069( O.lO4( 0.o68( 0.085(

1) 1) 1) 1) 3) 3) 4) 5) 4) 6) 4) 3) 3) 4) 6) 6) 2) 2) 4) 5) 4) 5)

N(4) C(16) C(17) C(18) C(19) C(20) N(5) C(21) C(22)

0.5785(6) 0.5579(6) 0.4651(8) 0.4157(10) 0.7164(8) 0.7679(10) 0.0923(7) 0.2092(8) -0.0398(9)

0.7916( 0.6961( 0.8611( 0.8694( 0.8355( 0.8814( 0.2800( 0.3305( 0.3242(

4) 5) 6) 7) 6) 8) 5) 6) 8)

-0.1779( -0.1585( -0.1800( -0.0934( -0.1998( -0.2975( -0.0203( -0.0495( -0.0016(

4) 0.057( 4) 0.049( 5) 0.069( 7) 0.090( 5) 0.070( 6) 0.097( 5) 0.076( 5) 0.062( 6) 0.084(

3) 3) 4) 5) 4) 5) 3) 4) 4)

C(23) C(24) c(25) C1 *o(1) *0(2) "o(3) *0(4)

-0.1065(13) 0.0875(14) 0.0830(28) 0.9068(3) 1.0266(10) 0.8932(11) 0.8481(16) 0.8102(20)

0.3747(10) 0.1726(9) 0.1531(16) 0.9840(2) 0.9463(7) 1.0873(9) 0.9378(12) 0.9647(14)

-0.0774(8) -0.0012(10) -0.0744(17) 0.2366(2) 0.2112(7) 0.1989(8) 0.3232(11) 0.1982(13)

o.13o(8) 0.131(8) 0.279(21) 0.090(1) 0.145(3) 0.168(4) 0.234(6) 0.274(8)

1671

Page 14: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

1672 R. K. Kumar et al.

Table $7. Positional parameters of hydrogen in atoms in 2

atom

H(2A) H(2B)

rda 0.2946 0.8932

z/e 0.2376

0.2235 0.8011 0.2356 H(3A) 0.2618 0.9288 0.0957 H(3B) 0.3468 0.8362 0.0940 H(3C) 0.4178 0.9283 0.0960 H(4A) 0.5413 0.8942 0.2203 H(4B) 0.6111 0.7914 0.2590 H(SA) 0.5748 0.8641 0.3602 H(SB) 0.4885 0.7642 0.3984 H(5C) 0.4188 0.8671 0.3597 H(12A) 0.7636 0.0874 0.3451 H(12B) 0.6083 0.1049 0.3693 H(13A) 0.6752 -0.0286 0.4848 H(laB) 0.6283 0.0580 0.5155 H(13C) 0.7834 0.0405 0.4914 H(14A) 0.9241 0.1826 0.3745 H(14B) 0.8861 0.2889 0.3728

1.0187 0.3048 0.2385 0.8743 0.3459 0.2237 0.9123 0.2397 0.2255 0.3902 0.8384 -0.1970 0.4946 0.9269 -0.2244 0.3427 0.9152 -0.0987 0.4887 0.8933 -0.0768 0.3843 0.8048 0.7774 0.7839 0.7159 0.8863

-0.0494 -0.1723 -0.1764

0.8576 0.9092 -0.3092 0.7086 0.9334 -0.3248 0.7701 0.8310 -0.3207

0.2716 0.3721

-0.1006 -0.0260

H(15A) H(15B) H(15C) H(17A) H(17B) H(18A) H(18B) H(18C) H(19A) H(19B) H(20A) S(E0a) H(20C) H(22A) H(E2B) H(EaA) H(23B) H(23C) H(24A)

0.0429 0.0229

-0.1909 0.4008 -0.0591 -0.1235 0.3277 -0.1014 -0.0487 0.4284 -0.1214

0.1421 0.1419 0.0822

0.1669 H(24B) H(25A) H(25B) H(25C)

0.0080 0.0800

0.0226 0.0432 -0.0582

0.1624 0.1819 -0.1183 0.0035 0.1818 -0.0976

Page 15: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

Two tellurium-dithiocarbamate complexes

Table $8. Anisotropic thermal parameters of non-hydrogen atoms in 2 1673

atom V , V~7 V~, U~ U~ 3 I:~ Te(1) 0.036(0) 0.054(0) 0.047(0) -0.023(0) -0.010(0) 0.004(0) Te(2) 0.044(0) 0.061(0) 0.049(0) -0.017(0) -0.009(0) 0.005(0) S(1) 0.052(1) 0.055(1) 0.076(l) -0.028(1) -0.027(1) 0.008(1) S(2) 0.048(1) 0.070(1) 0.081(1) -0.037(1) -0.025(1) 0.013(1) S(3) 0.051(1) 0.098(2) 0.053(1) -0.041(1) -0.009(1) -0.003(1) S(4) 0.044(1) 0.088(1) 0.058(1) -0.036(1) -0.O08(1) -0.007(1) S(5) 0.048(1) 0.057(1) 0.066(1) -0.023(1) -0.010(1) -0.003(1) S(6) 0.044(1) 0.057(1) 0.090(1) -0.032(1) -0.024(1) 0.006(1) S(7) 0.042(1) 0.066(1) 0.071(1) -0.029(1) -0.006(1) 0.004(1) S(8) 0.040(1) 0.068(1) 0.063(1) -0.022(1) -0.008(1) 0.003(1) S(9) 0.067(1) 0.061(1) 0.090(2) -0.020(1) -0.009(1) 0.011(1) S(10) 0.047(1) 0.062(1) 0.086(1) -0.026(1) -0.012(1) 0.004(1) C(1) 0.047(4) 0.059(4) 0.049(4) -0.024(3) -0.007(3) 0.005(3) N(1) 0.055(3) 0.054(3) 0.063(4) -0.025(3) -0.011(3) 0.010(3) c(2) 0.067(5) 0.065(5) 0.074(5) -0.031(4) -0.017(4) 0.025(4) C(3) 0.102(8) 0.101(7) 0.085(7) -0.021(6) -0.031(6) 0.032(6) C(4) 0.063(5) 0.058(4) 0.084(6) -0.028(4) -0.016(4) 0.003(4) C(5) 0.106(8) 0.108(8) 0.116(8) -0.069(7) -0.023(6) 0.001(6) c(6) 0.051(4) 0.100(6) 0.054(4) -0.032(4) 0.004(3) -0.014(4) N(3) 0.054(3) 0.054(3) 0.057(3) -0.020(3) -0.015(3) 0.011(3) C(ll) 0.045(3) 0.050(4) 0.050(4) -0.019(3) -0.010(3) 0.006(3) C(12) 0.080(5) 0.057(4) 0.069(5) -0.025(4) -0.013(4) 0.012(4) C(13) 0.140(10) 0.070(6) 0.078(6) -0.002(5) -0.021(6) 0.001(6) C(14) 0.044(4) 0.079(5) 0.083(6) -0.032(4) -0.022(4) 0.017(4) C(15) 0.055(5) 0.092(6) 0.095(7) -0.028(5) -0.005(4) -0.003(4) S(4) 0.057(3) 0.059(4) 0.056(3) -0.021(3) -0.017(3) -0.002(3) C(16) 0.042(3) 0.061(4) 0.041(3) -0.016(3) -0.008(3) 0.000(3) C(17) 0.071(5) 0.066(5) 0.074(5) -0.029(4) -0.024(4) 0.008(4) C(18) 0.088(6) 0.095(7) 0.099(7) -0.052(6) -0.022(5) 0.027(5) C(19) 0.062(5) 0.071(5) 0.077(5) -0.029(4) -0.010(4) -0.014(4) C(20) 0.090(7) 0.111(8) 0.077(6) -0.025(6) -0.004(5) -0.028(6) N(5) 0.080(5) 0.061(4) 0.076(5) -0.016(4) -0.007(4) -0.002(4) C(21) 0.060(4) 0.058(4) 0.056(4) -0.010(3) -0.007(3) -0.004(4) C(22) 0.070(5) 0.103(7) 0.076(6) -0.036(5) 0.002(4) -0.018(5) C(23) 0.117(10) 0.164(12) 0.115(10) -0.048(9) -0.056(8) 0.002(9) C(24) 0.116(10) 0.103(9) 0.162(13) -0.056(9) 0.015(9) -0.025(7) C(25) 0.450(41) 0.194(20) 0.305(30) -0.182(22)-0.145(28) 0.011(22) Cl 0.076(1) 0.072(1) 0.115(2) -0.040(1) 0.O01(1) 0.016(1)

Page 16: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

1674 R. K. Kumar et al.

Table $9. Bond distances in 2 (~)

Te(1) - S(1) Te(1) - S(2) Te(1) - S(3) Te(1) - S(4) Te(1) - S(5) Te(1) - S(6) Te(2) -S(7) Te(2) - S(9) Te(2) - S(10) S(1) - C(1) S(2) - C(1) S(3) - C(6) S(4) - C(6) S(5) - C( l l ) S(6) - C ( I I )

S(7) - C(16) S(8) - C(16) S(9) - C(21) S(10) - C(21) C(1) - N(1) N(1) - C(2) N(1) - C(4) C(2) - C(3) C(4) - C(5) C(6) - N(2)

2.584(2) 2.772(2) 2.473(2) 2.805(2) 2.711(2) 2.581(2) 2.500(2) 2.807(2) 2.479(2) 1.738(7) 1.699(8) 1.766(9) 1.696(9) 1.720(7) 1.734(8) 1.744(7) 1.692(7) 1.692(8) 1.735(8) 1.326(10) 1.474(10) 1.458(12) 1.510(12) 1.498(16) 1.321(9)

N(2) - C(7) N(2) - C(9) N(2) - COO ) C(7) - C(8) C(9) - COO) N(3) - C(11) N(3) - C(12) N(3) - C(14) C(12) - C(13) c o g ) - {2(15) N(4) - C(16) N(4) - C(17) N(4) - C(19) C(17) - C 0 8 ) C(19) - C(20) N(5) - C(21) N(5) - C(22) N(5) - C(24) C(22) - C(23) C(24) . C(25) C1 - O(1) CI - 0(2) ca - 0(3) C1 - 0(4)

1.481(13) 1.481(17) 2.018(19) 1.500(18) 1.499(20) 1.303(9) 1.486(11) 1.469(9) 1.501(12) 1.511(12) 1.316(10) 1.482(10) 1.474(10) 1.504(15) 1.507(12) 1.320(10) 1.481(12) 1.470(15) 1.470(16) 1.384(37) 1.364(11) 1.393(12) 1.367(15) 1.363(24)

Page 17: Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes;[TeIV {S2CN(C2H5)2}3]2 [TeIV{S2CN(C2H5)2}3](PF6)2

S(5) - Te(1) - S(6)

S(4) - Te(1)- S(6)

S(4) - Tc(1)- S(5)

S(3) - To(l) - S(6) S(3) - To(1)- S(5)

S(3) - To(l) - S(4) S(2) - Te(1) - S(6) S(2) - Te(1)- S(5) S(2) - Te(1)- S(4) S(2)- Te(l)- S(3) S(1) - Te(1)- S(6) S(1) - Te(1) - S(5) S(1) - T o ( l ) - S(4) S(I) - Te(1)- S(3)

S(1) - Tc(1) - S(2) S(9) - To(2) - S(10) S(7) - To(2) - S(10) S(7) - Te(2) - S(9) Te(1)- S(1) - C(1) Te(i) - S(2) - C(1) Te(1) - S(3) - C(6) Te(1) - S(4) - C(6)

Te(1) - S(5) - C(11) To(1) - S(6) - C(l l ) Te(2)- S(7) - C(16) To(2) - S(9) - C(21) To(2) - S(10) - C(21) S(1)- C(1) - S(2) S(2) - C(1) - N(1) S(1) - C(1) - S(1) C(1) - N(1) - C(4) C(I) - N(1) - C(2) C(2) - N(i) - C(4) N(1) - C(2) - C(3) N(1) - C(4) - C(5) S(3)- C(6) - S(4) S(4) - C(6) - N(2) S(3) - C(6) - N(2) C(6) - N(2) - COO )

Two tellurium-dithiocarbamate complexes

Table SI0. Bond angles in 2 (')

67.4(1) 139.8(1) 76.1(1) 94.3(1) 88.4(1) 67.7(1) 139.4(1) 152.9(1) 79.3(1) 92.8(1) 74.4(1) 140.5(I) 134.9(1) 85.0(1) 66.5(1) 67.0(1) 79.3(1) 146.4(1) 90.5(3) 85.2(3) 92.0(2) 82.8(3) 85.1(3) 89.0(2) 93.9(3) 82.7(3) 92.5(3) 117.7(4) 123.6(6) 118.6(6) 123.1(7) 120.8(7) 116.1(6) 111.6(7) 112.7(8) 117.1(4) 124.0(5) 118.7(6) 115.1(7)

C(6) - N(2) - C(9) C(6) - N(2) - C(7) C(9) - N(2) - COO ) C(7) - N(2) - C(10) C(7) - N(2) - C(9) N(2) - C(7) - C(8) N(2) - C(9) - C(10) N(2) - C(10)- C(9) C(12) - N(3) - C(14) C(11)- N(3) - C(14) C(11)- N(3) - C(12) S(6)- C(11)- N(3) S(5) - C(11)- N(3) S(5) - C(11)- S(6) N(3) - C(12) - C(13) N ( 3 ) - C ( 1 4 ) - C ( 1 5 )

C(17)- N(4) - C(19) C(16) - N(4)- C(19) C(16) - N(4)- C(17) S(8) - C(16)- N(4) S(7) - C(16) - N(4) S(7) - C(16)- S(8) N(4)- C(17) - C(18) N(4) - C(19)- C(20) C(22) - N(5) - C(24) C(21)- N(5) - C(24) C(21)- N5) - C(22) S(10) - C(2L) - N(5) S(9) - C(21)- N(5) S(9) - C(21) - S(10) S(5) - C(22) - C(23)

121.4(9) 122.0(6) 47.8(7) 118.6(8) 110.3(9) 104.6(9) 85.2(10) 47.0(7) 115.9(6) 122.9(6) 121.1(7) 119.6(6) 123.9(5) 116.5(4) 111.5(7) 111.4(6) 116.3(6) 121.6(7) 122.2(7) 124.0(6) 117.6(5) 118.4(4) 113.2(7) 111.8(7) 115.6(9) 120.5(9) 123.8(7) 117.2(,6) 125.2(6) 117.6(5) 115.4(9)

N ( 5 ) - C ( 2 4 ) - C ( 2 5 )

O ( 3 ) - C1 - 0 ( 4 )

0 ( 2 ) - C l - 0 ( 4 )

0 ( 2 ) - C1 - 0 ( 3 )

O ( 1 ) - C1 - 0 ( 4 )

O ( 1 ) - C1 - 0 ( 3 )

O ( 1 ) - C1 - 0 ( 2 )

113.1(15) 100.4(11) 94.1(10) 115.6(9) 108.9(10) 115.8(8) 117.5(7)

1675