synthesis and catalytic cracking performance of fe/ti-zsm-5 zeolite from attapulgite mineral

6
Chinese Journal of Catalysis 34 (2013) 1504–1512 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/chnjc Article Synthesis and catalytic cracking performance of Fe/TiZSM5 zeolite from attapulgite mineral Xiaozhao Zhou a , Yan Liu a , Xiangju Meng a , Baojian Shen b , Feng‐Shou Xiao a, * a Department of Chemistry, Zhejiang University, Hangzhou 310028, Zhejiang, China b Faculty of Chemical Engineering, China University of Petroleum, Beijing 102249, China ARTICLE INFO ABSTRACT Article history: Received 30 December 2012 Accepted 28 April 2013 Published 20 August 2013 Fe/Ti‐ZSM‐5 zeolite was synthesized successfully from treated attapulgite (ATP). This mineral con‐ sists of amorphous silica containing Fe and Ti species. X‐ray diffraction patterns, scanning electron microscopy images, and nitrogen sorption isotherms indicate that the sample has a typical MFI structure, high crystallinity, and large specific surface area. Temperature‐programmed desorption of ammonia and H2 temperature‐programmed reduction indicates that the Fe/Ti‐ZSM‐5 zeolite is strongly acidic and has superior redox properties. More importantly, compared with conventional ZSM‐5 zeolite, Fe/Ti‐ZSM‐5 performs well, resulting in an increase in yield of 0.21% propylene and 0.33% total light olefins in the catalytic cracking of Canadian LGO (light gas oil). These results sug‐ gest that the presence of Fe and Ti species in ZSM‐5 zeolite is favorable for enhancing light olefin yields, which is potentially important for oil refining in the future. © 2013, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved. Keywords: Natural attapulgite Iron Titanium ZSM‐5 zeolite Catalytic cracking Light olefins Propylene 1. Introduction Propylene production has attracted much attention because propylene is an important industrial chemical. Currently, most propylene is derived from steam crackers and refinery fluid catalytic cracking (FCC) units [1–4]. Naphtha is the main raw material in the steam crackers for propylene production, but its limited supply constrains this cracking process. The amount of propylene produced by the FCC process has increased with time because of advantages in the high ratio of propylene to ethylene and the low cost of investment and production of the FCC process [5,6]. ZSM‐5 zeolite with three‐dimensional me‐ dium pore sizes (10‐membered rings), excellent thermal and hydrothermal stability, and low activity for hydrogen transfer is one of the most important additives in the FCC process for enhancing propylene yield [7–9]. The introduction of transition elements in ZSM‐5 zeolites results in the formation of highly efficient FCC catalyst addi‐ tives [10–14]. For example, Lu et al. [ 15,16] reported that Fe and Cr et al. in ZSM‐5 zeolite could improve propylene and eth‐ ylene yields in the catalytic cracking of isobutene. Maia et al. [17,18] reported that the introduction of Ni in ZSM‐5 by im‐ pregnation and ion‐exchange methods enhanced the light olefin yield effectively. Li and Hao et al. [19,20] reported that the im‐ pregnation of Fe and Ti into ZSM‐5 zeolite was favorable for increasing propylene and ethylene yields. However, the intro‐ duction of transition elements into ZSM‐5 in these conventional ways is often complex and pure chemicals are required. There‐ fore, it is desirable to prepare ZSM‐5 zeolites that contain tran‐ sition elements from low‐cost raw materials. One‐pot synthesis * Corresponding author. Tel: +86‐571‐88273698; E‐mail: [email protected] This work was supported by the National Natural Science Foundation of China (U1162201). DOI: 10.1016/S1872‐2067(12)60638‐X | http://www.sciencedirect.com/science/journal/18722067 | Chin. J. Catal.,Vol. 34,No. 8, August 2013

Upload: feng-shou

Post on 20-Dec-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

ChineseJournalofCatalysis34(2013)1504–1512 

a v a i l a b l e   a t  www. s c i e n c ed i r e c t . c om  

j o u r n a l   h omep a g e :  www. e l s e v i e r. c om / l o c a t e / c h n j c

Article 

SynthesisandcatalyticcrackingperformanceofFe/Ti‐ZSM‐5zeolitefromattapulgitemineral

XiaozhaoZhoua,YanLiua,XiangjuMenga,BaojianShenb,Feng‐ShouXiaoa,*aDepartmentofChemistry,ZhejiangUniversity,Hangzhou310028,Zhejiang,ChinabFacultyofChemicalEngineering,ChinaUniversityofPetroleum,Beijing102249,China

A R T I C L E I N F O  

A B S T R A C T

Articlehistory:Received30December2012Accepted28April2013Published20August2013

  Fe/Ti‐ZSM‐5zeolitewassynthesizedsuccessfullyfromtreatedattapulgite(ATP).Thismineralcon‐sistsofamorphoussilicacontainingFeandTispecies.X‐raydiffractionpatterns,scanningelectronmicroscopy images, and nitrogen sorption isotherms indicate that the sample has a typical MFIstructure,highcrystallinity,andlargespecificsurfacearea.Temperature‐programmeddesorptionofammoniaandH2 temperature‐programmedreduction indicates thattheFe/Ti‐ZSM‐5zeolite isstronglyacidicandhassuperiorredoxproperties.Moreimportantly,comparedwithconventionalZSM‐5zeolite,Fe/Ti‐ZSM‐5performswell,resultinginanincreaseinyieldof0.21%propyleneand0.33%totallightolefinsinthecatalyticcrackingofCanadianLGO(lightgasoil).Theseresultssug‐gestthatthepresenceofFeandTispeciesinZSM‐5zeoliteisfavorableforenhancinglightolefinyields,whichispotentiallyimportantforoilrefininginthefuture.

©2013,DalianInstituteofChemicalPhysics,ChineseAcademyofSciences.PublishedbyElsevierB.V.Allrightsreserved.

Keywords:NaturalattapulgiteIronTitaniumZSM‐5zeoliteCatalyticcrackingLightolefinsPropylene

 

 

1. Introduction

Propyleneproductionhasattractedmuchattentionbecausepropyleneisanimportantindustrialchemical.Currently,mostpropylene is derived from steam crackers and refinery fluidcatalytic cracking (FCC)units [1–4].Naphtha is themain rawmaterialinthesteamcrackersforpropyleneproduction,butitslimitedsupplyconstrainsthiscrackingprocess.Theamountofpropylene produced by the FCC process has increased withtime because of advantages in the high ratio of propylene toethyleneandthelowcostofinvestmentandproductionoftheFCC process [5,6]. ZSM‐5 zeolite with three‐dimensional me‐dium pore sizes (10‐membered rings), excellent thermal andhydrothermal stability, and lowactivity forhydrogen transferisoneof themost importantadditives in theFCCprocess for

enhancingpropyleneyield[7–9].The introduction of transition elements in ZSM‐5 zeolites

results in the formation of highly efficient FCC catalyst addi‐tives [10–14]. For example, Lu et al. [15,16] reported that FeandCretal.inZSM‐5zeolitecouldimprovepropyleneandeth‐ylene yields in the catalytic cracking of isobutene.Maia et al.[17,18] reported that the introduction of Ni in ZSM‐5 by im‐pregnationandion‐exchangemethodsenhancedthelightolefinyieldeffectively.LiandHaoetal.[19,20]reportedthattheim‐pregnation of Fe and Ti into ZSM‐5 zeolitewas favorable forincreasingpropyleneandethyleneyields.However, the intro‐ductionoftransitionelementsintoZSM‐5intheseconventionalwaysisoftencomplexandpurechemicalsarerequired.There‐fore,itisdesirabletoprepareZSM‐5zeolitesthatcontaintran‐sitionelementsfromlow‐costrawmaterials.One‐potsynthesis

*Correspondingauthor.Tel:+86‐571‐88273698;E‐mail:[email protected] ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(U1162201).DOI:10.1016/S1872‐2067(12)60638‐X|http://www.sciencedirect.com/science/journal/18722067|Chin.J.Catal.,Vol.34,No.8,August2013

XiaozhaoZhouetal./ChineseJournalofCatalysis34(2013)1504–1512

oflow‐costZSM‐5zeoliteispossibleusingtransitionelementsderivedfromnaturalattapulgite(ATP).

ATP,awell‐knownnaturalmineral,isacrystalline‐hydratedmagnesium and aluminum silicate with composition(OH2)4(OH)2M6Si8O204H2O (M = Al, Mg, Fe), having a uniquechain structure, high surface area, and fibrous morphology[21–26].Ithasbeenusedincatalystsupports,nanocomposites,andenvironmental absorbents [27–30].Theamorphous silicainATPcontainingonlyAl,Fe,andTimetalspeciescanbeob‐tainedby acid treatment andoffers an ideal rawmaterial forFe/Ti‐ZSM‐5zeolitesynthesis.

In this work, we present a route for synthesizing theFe/Ti‐ZSM‐5 additive in FCC catalysts using treated ATP assilicaandFe,andTireagentsbyaone‐potmethod.Thecatalyt‐ictestsshowthatFe/Ti‐ZSM‐5exhibitsarelativelyhighyieldofpropylene and ethylene in the catalytic cracking of Canadianlightgasoil(LGO)comparedwithconventionalZSM‐5zeolite.

2. Experimental

2.1. PreparationofFe/Ti‐ZSM‐5

ATP obtained from Xuyi, China had a typical SiO2/MgO/Al2O3/Fe2O3/CaO/K2O/Na2O/TiO2/H2O composition (wt%) of59.83/14.49/8.35/4.20/0.79/0.77/0.22/1.10/10.15.All chem‐icalswerefromShanghaiChemicalReagentCo.andwereusedasreceivedwithoutpurification.

Beforezeolitesynthesis,ATPwaspretreatedwith37%HClsolution.Asatypicalprocess,2.0gofATP,2.7gofconcentratedHCland17mlofwaterwereaddedtoaTeflon‐linedautoclave,followedbyheatingat180°Cfor14h.TheproductwasfilteredandwashedwithdeionizedwateruntilnoCl–wasdetectedandthendriedat120°Cfor4h.

For the typical synthesis of Fe/Ti‐ZSM‐5 zeolite, 0.09 g ofNaAlO2 (AR) and 4.5 g of tetrapropylammonium hydroxide(TPAOH,19.6wt%)weredissolvedin15mlofwater,followedbytheadditionof1.5gofacid‐treatedATP.Afterstirringfor4h,agelwasobtainedandtransferredintoaTeflon‐linedauto‐clave.Aftercrystallizationat180°Cfor12h,theproductwithMFI zeolite structurewas obtained by filtering,washingwithdeionizedwater,anddryingat100°Cfor4h.Thesamplewascalcinedat550°Cfor5htoremovetheorganictemplatesandwasdesignatedFe/Ti‐ZSM‐5.

ConventionalZSM‐5wassynthesizedunderthesamecondi‐tionsasFe/Ti‐ZSM‐5usingequal silica (91.8wt%) to replacethetreatedATP.TheproductwasdesignatedZSM‐5‐C.

Asatypicalprocedurefortheion‐exchangeofsodiumwithammonium,1.0gofzeolitewasaddedinto50mlofammoniumnitrate (AR) solution (1mol/L)at80 °Candstirred for12h.This process was repeated twice. H‐form zeolites were ob‐tainedbycalcinationoftheion‐exchangedNH4‐formzeolitesat500°Cfor4h.

2.2. Characterization

Samplecompositionwasdeterminedbyinductivelycoupledplasma (ICP) with a Perkin‐Elmer plasma 40 emission spec‐

trometer. Scanning electron microscopy (SEM) experimentswere performed on a Hitachi SU‐1510 electron microscope.X‐raypowderdiffraction(XRD)patternsweremeasuredwithaRigakuUltimateVIX‐raydiffractometer(40kV,40mA)usingCu Kα (λ = 0.15406 nm) radiation. The catalyst acidity wasmeasured by the temperature‐programmed desorption ofammonia (NH3‐TPD). The catalyst (0.1 g) was pretreated at400–650 °C inN2 flow for 1 h, followed by the adsorptionofNH3 at 100 °C for 0.5 h. After saturation, the catalyst waspurgedbyN2flowfor0.5htoremovethephysicallyadsorbedammoniaonthesample.NH3desorptionwascarriedoutfrom100to700°Cwithaheatingrateof10°C/min.TheamountofNH3desorbedfromthesamplewasobtainedbycomparingthearea under the curve with a sample containing a knownamountofNH3usingathermalconductivitydetector.Temper‐ature‐programmedreductionofH2(H2‐TPR)analysiswasper‐formedwith a TPDTO1100Series fromThermo Electron Cor‐poration. The N2 sorption isotherms at the liquid nitrogentemperature were measured using a Micromeritics ASAP2010MandTristarsystem.UV‐visiblespectraweremeasuredusingaShimadzuUV‐3100.

2.3. CatalytictestsofLGO

AsatypicalprocedureforLGOcatalystpreparation,thecat‐alystadditive(35wt%ZSM‐5,50wt%kaolinand15wt%alu‐minabinder)wasshapedbyspray‐drying.Then,10wt%cata‐lystadditiveand90wt%USYweremixedtoformtheLGOcat‐alyst.TheLGOcatalystcontainingFe/Ti‐ZSM‐5orZSM‐5‐CwasdenotedCFe/Ti‐ZSM‐5orCZSM‐5‐C.Beforereaction,thecatalystwastreated at 800 °C for 4 h under 100% steaming. The catalystsizedistributionwas38–212μm.

Catalyticcrackingdatawereobtainedonanadvancedcata‐lyst evaluation bench unit (ACE, Kayser Corp) with FCC unitreactionconditionsasfollows:reactiontemperatureat530°C,catalysttooilmassratioof6.0,contacttime90s,andcatalystof9.0g.TheproductsweredetectedbyanonlineGC‐MSwithinstrumental error of 0.01%. The feedstock LGOwas derivedfromCanadaoilsand,aslistedinTable1.

3. Resultsanddiscussion

3.1. CharacterizationresultsofATP

Figure 1 shows XRD patterns of as‐received and ac‐

Table1 PropertiesoffeedstockCanadianlightgasoil(LGO).

Item LGODensity(20°C,g/cm3) 0.8726Viscosity(40°C,Pas) 4.71Carbonresidue(wt%) 0.008Averagemolecularweight(g/mol) 230H(wt%) 12.86C(wt%) 87.11H/C 1.77Saturatedcarbons(wt%) 69.9Aromatics(wt%) 30.1Resinsandasphaltenes(wt%) 0

XiaozhaoZhouetal./ChineseJournalofCatalysis34(2013)1504–1512

id‐treated ATP. Before acid treatment, ATP exhibits a typicalcrystalline structure (8.35, 13.68, 16.31, 19.80, 20.73,21.34, 24.11, 27.47, 34.25, and 35.24). After acid treat‐ment,thesamplecontainsanamorphousphase,indicatingthatthecrystallinestructureisdestroyed.

Figure 2 shows SEM images of the as‐received and ac‐id‐treatedATP.Bothsamplesexhibitsimilarfibermorphologywith approximately 30–50 nm in diameter and 1–2 m inlength.

Table2presentsthechemicalcompositionofATPs.NaturalATP contains SiO2 (59.83%), MgO (14.49%), Al2O3 (8.35%),Fe2O3 (4.2%),and tracesofNa,K,Ca,Mn,andTispecies.Themetal cations are located between unique chains. After acidtreatment,mostof themetalcations in theATPareremoved,with resulting chemical composition of SiO2 (96.4%), Al2O3(0.8%), Fe2O3 (1.3%), andTiO2 (1.5%). These results suggestthat the acid treatment does not influence the sample mor‐phologybutchangesthesampleelementalcompositionsignif‐icantly.

3.2 CharacterizationresultsofFe/Ti‐ZSM‐5

Figure3showsXRDpatternsofFe/Ti‐ZSM‐5crystallizedatvarioustimes.Beforecrystallization,thesampleisamorphous.At2hcrystallizationtime,aseriesofweakpeaksappearintheXRDpatternassociatedwiththeMFIstructure.Withincreasingcrystallization time from4 to 10 h, the XRD peaks at 23.03,23.83, and 24.28 associated with the fast crystallization ofFe/Ti‐ZSM‐5 are enhanced significantly. For a crystallizationtime greater than12h, theFe/Ti‐ZSM‐5 crystallinity changeslittle,suggestingcompletecrystallizationofthesample.

Figure4showSEMimagesof theFe/Ti‐ZSM‐5crystallizedat various times. Samples in the starting gel retain theirnano‐fibermorphologyasnaturalATP(Fig.4(a)).Smallcrystalparticles(0.5–1μm)appear in theproductsasthecrystalliza‐tion time reaches 2 h. These small particles increase in size(1.5–2.0 μm) as the crystallization time is prolonged to 6 h.Finally,thecrystalparticlesaredistributedmainlyaround2.0μmindiameterwithfulldisappearanceofthenano‐fibermor‐phology at a crystallization time of 14 h. Figure 4(i) and (j)show SEM images of the ZSM‐5‐C synthesized from silica.ZSM‐5‐ChassmallercrystalparticlesthanFe/Ti‐ZSM‐5.

Table 2 presents the composition of Fe/Ti‐ZSM‐5 andZSM‐5‐C.BothhaveasimilarSi/Alratioof14.4and13.2.

Figure 5 shows the N2 sorption isotherms of the ZSM‐5samplessynthesized fromthe treatedATP(Fe/Ti‐ZSM‐5)andsilica(ZSM‐5‐C).Bothexhibitasteepincreaseinthecurveatarelativepressureof10–6<p/p0<0.01.Thetexturalparametersof Fe/Ti‐ZSM‐5 and ZSM‐5‐C are provided in Table 3. Thesedata show that the textural parameters of Fe/Ti‐ZSM‐5 areconsistentwithZSM‐5‐Csynthesizedbyconventionalmethods.These results also confirm that it is possible to synthesizeFe/Ti‐ZSM‐5fromtreatedATPbyaone‐potmethod.Compared

Table2 ChemicalcompositionofATPandzeolitesamples.

SampleComposition(wt%)

SiO2 MgO Al2O3 Fe2O3 CaO Na2O+K2O MnO TiO2 H2ONaturalATP 59.83 14.49 8.35 4.20 0.79 0.99 0.094 1.1 10.15Acid‐treatedATP 96.40 — 0.8 1.3 — — — 1.5 —Fe/Ti‐ZSM‐5 93.07 — 5.46 0.58 — — — 0.88 —ZSM‐5‐C 93.93 — 6.07 — — — — — —

5 10 15 20 25 30 35 40

Inte

nsity

Treated ATP

2 /( o )

Natural ATP

Fig.1.XRDpatternsofnaturalandacid‐treatedATP.

Fig.2.SEMimagesofnatural(a)andacid‐treated(b)ATP.

5 10 15 20 25 30 35 40

2/( o )

0 h

2 h

4 h

6 h

8 h

10 h

12 h

Inte

nsity

14 h

Fig.3. XRDpatternsof Fe/Ti‐ZSM‐5 synthesizedatdifferent crystal‐lizationtimes.

XiaozhaoZhouetal./ChineseJournalofCatalysis34(2013)1504–1512

with ZSM‐5‐C, Fe/Ti‐ZSM‐5 has similar Si/Al ratios, surfacearea, and pore volume. The difference between them is thatFe/Ti‐ZSM‐5containslittleFeandTi.

Tothebestofourknowledge,althoughvariouszeoliteshavebeen synthesized from various natural minerals [32–34], noreport exists on the synthesis of high silica zeolite usingATPexcept for thesynthesisofalumina‐richzeoliteA [35].There‐

fore, theone‐potsynthesisofFe/Ti‐ZSM‐5usingATPas feed‐stock couldbe important for industrial applications in the fu‐ture.

Figure 6 shows the UV‐Vis spectra of natural ATP, ac‐id‐treatedATP,andFe/Ti‐ZSM‐5samples.ThenaturalATPhasanabsorptionpeakat250nm,probablybecauseofthemutualinterferenceofpolyatomicspecies(Mg,Al,Fe,Mn,andTi).Af‐teracidtreatment, thenaturalATP losesmostof itsmetalat‐oms,providingalowabsorptionpeakaround250nm.Signifi‐cantly, therearetwostrongabsorptionpeaksat212and240nmforFe/Ti‐ZSM‐5.Generally,thepeakat212nmisrelatedtotheelectronictransitionsoffour‐coordinatedTispecies,whilethepeakat240nmisassociatedwithelectronictransitionsoffour‐coordinated Fe species in the sample. The small peakaround325nmisrelatedtotheexistenceofTiO2crystalsinthe

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

300

Ads

orbe

d vo

lum

e (c

m3 /g

)

Relative pressure (p/p0)

Fe/Ti-ZSM-5

ZSM-5-C

Fig.5.N2sorptionisothermsofZSM‐5.IsothermsforsampleZSM‐5‐Coffsetverticallyby120cm3/g.

Table3 TexturalparametersofZSM‐5samples.

SampleABET(m2/g)

Amicro(m2/g)

Aext(m2/g)

Vtotal(cm3/g)

Vmicro(cm3/g)

Fe/Ti‐ZSM‐5 339 260 79 0.17 0.12ZSM‐5‐C 350 227 123 0.18 0.10

200 300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

Rel

ativ

e ab

sorb

ance

Wavelength (nm)

Treated ATP

Natural ATP

Fe/Ti-ZSM-5

Fig.6.UV‐Visspectraofvarioussamples.

(a) (b)

(e) (f) (g) (h)

(i) (j)

(c) (d)

Fig.4.SEMimagesofFe/Ti‐ZSM‐5(a–h)andZSM‐5‐C(i,j)synthesizedatdifferentcrystallizationtime.(a)0h;(b)2h;(c)4h;(d)6h;(e)8h;(f)10h;(g,i,j)12;(h)14h.

XiaozhaoZhouetal./ChineseJournalofCatalysis34(2013)1504–1512

sample. Figure 7 shows the NH3‐TPD profiles of Fe/Ti‐ZSM‐5 and

ZSM‐5‐Csamples.Generally,thedesorptiontemperaturescen‐tered around 200 and 400 °C are related to the weak andstrong acid sites respectively,while thedesorptionpeak arearepresents the acid amount in the NH3‐TPD test [36]. In thiswork,bothsamplesshowsimilardesorptionpeaksat218and440 °C. However, ZSM‐5‐C has a slightly higher acid amountthan the Fe/Ti‐ZSM‐5 because of its small difference in Si/Alratio.

Figure 8 shows the H2‐TPR profiles of Fe/Ti‐ZSM‐5 andZSM‐5‐Csamples.Normally, theFespeciesonZSM‐5result inpeaksat350and420°CassociatedwiththereductionofFe3+toFe2+andFe2+toFe0respectively,whileTispeciesonZSM‐5yield a peak at 670 °C associated with the reduction of TiO2[19,20].Interestingly,Fe/Ti‐ZSM‐5showsauniquepeakrangefrom400to700°C,whichmayresultfromthedifficultyinthereduction of Fe species in the framework and the interactionbetweenTiO2withsurfacehydroxylgroupsinthesample.

3.3 Catalyticperformance

Table4presentstheproductdistributionincatalyticcrack‐ingofCanadianLGOovercatalystscontainingFe/Ti‐ZSM‐5and

ZSM‐5‐Cadditives.WhenZSM‐5‐Cwasusedasacatalystaddi‐tive,theCZSM‐5‐Ccatalystyielded5.98%propyleneand12.66%totallightolefins.WhenFe/Ti‐ZSM‐5wasusedascatalystaddi‐tive, the CFe/Ti‐ZSM‐5 catalyst yielded 6.16% propylene and12.99%totallightolefins.ConsideringthatZSM‐5‐Chasalarg‐er BET surface area and more abundant acid sites than theFe/Ti‐ZSM‐5, higher yields of light olefins over the CFe/Ti‐ZSM‐5catalyst than thoseover theCZSM‐5‐C catalystshouldberelatedtothecontributionofFeandTispeciesintheFe/Ti‐ZSM‐5.ItispossiblethattheFeandTispeciesinthecatalystimprovethecatalyticredoxproperty,whichishelpfulforβ‐scissiontopro‐duce light olefins. This result is in good agreement with thereportedliterature[11,18–20].

4. Conclusions

Fe/Ti‐ZSM‐5wassynthesizedsuccessfullyfromacid‐treatedATPassilicaandFe,andTi feedstockbytheone‐potmethod.ComparedwithZSM‐5‐C,Fe/Ti‐ZSM‐5hasasimilarcrystallini‐ty,texturalparameters,andacidity.Thecatalystpreparedfromthe Fe/Ti‐ZSM‐5 additive shows a higher yield of propyleneandtotallightolefinsintheLGOcatalyticcrackingtest,whichisrelated to its unique redox property. These features couldbeimportant for theproductionofpropyleneand lightolefins intheFCCprocessinfuture.

References

[1] WallensteinD,KanzB,HaasA.ApplCatalA,2000,192:105[2] CormaA,MeloFV,SauvanaudL,OrtegaF.CatalToday,2005,107:

699[3] denHollanderMA,WissinkM,MakkeeM,MoulijnJA.ApplCatal

A,2002,223:85[4] WallensteinD,HardingRH.ApplCatalA,2001,214:11[5] LeiYX.PetrolPetrochemToday,2007,15(4):38[6] ZhouHZ.ChemicalTechno‐Economics,2004,22(9):28[7] Degnan T F, Chitnis GK, Schipper PH.MicroporousMesoporous

Mater,2000,35:245[8] AdewuyiYG,KlockeD J,Buchanan J S.ApplCatalA, 1995,131:

121[9] BuchananJS.CatalToday,2000,55:207[10] AitaniA,YoshikawaT,InoT.CatalToday,2000,60:111[11] LuoYB,OuyangY,ShuXT,HeMY.StudSurfSciCatal,2007,170:

600

0 100 200 300 400 500 600 700 8000

4

8

12

16

20

TC

D s

igna

l

Temperature (oC)

Fe-Ti/ZSM-5

ZSM-5-C

Fig.7. NH3‐TPDprofilesofFe/Ti‐ZSM‐5andZSM‐5‐Csamples.CurveforsampleZSM‐5‐Coffsetverticallyby10.

100 200 300 400 500 600 700 800 900

H2 c

onsu

mpt

ion

Temperature (oC)

Fe/Ti-ZSM-5

ZSM-5-C

Fig.8. H2‐TPRprofilesofFe/Ti‐ZSM‐5andZSM‐5‐Csamples.

Table4 ProductdistributionincatalyticcrackingofCanadianLGOoverCZSM‐5‐CandCFe/Ti‐ZSM‐5catalysts.

Catalystadditive ZSM‐5‐C Fe/Ti‐ZSM‐5Productdistribution(wt%) Drygas 1.84 1.88LPG 19.85 20.12Gasoline 42.43 42.85LCO 29.71 28.60Bottoms 5.04 5.46Coke 1.12 1.10

Liquidyield(%) 92.01 91.56Ethyleneyield(%) 0.91 0.94Propyleneyield(%) 5.98 6.16C2=+C3=+C4=yield(%) 12.66 12.99

XiaozhaoZhouetal./ChineseJournalofCatalysis34(2013)1504–1512

[12] WangP,ShenBJ,ShenDD,PengT,GaoJS.CatalCommun,2007,8:1452

[13] Komvokis V G, Iliopoulou E F, Vasalos I A, Triantafyllidis K S,MarshallCL.ApplCatalA,2007,325:345

[14] LiXH,LiCY,ZhangJF,YangCH,ShanHH.JNatGasChem,2007,16:92

[15] LuJY,ZhaoZ,XuCM,ZhangP,DuanAJ.CatalCommun,2006,7:199

[16] LuJY,ZhaoZ,XuCM,DuanAJ,ZhangP.CatalLett,2006,109:65[17] MaiaAJ,LouisB,LamYL,PereiraMM.JCatal,2010,269:103[18] MaiaAJ,OliveiraBG,EstevesPM,LouisB,LamYL,PereiraMM.

ApplCatalA,2011,403:58[19] LiXF,ShenBJ,XuCM.ApplCatalA,2010,375:222[20] HaoK,ShenBJ,WangYD,RenJ.JIndEngChem,2012,18:1736[21] XuRR,PangWQ,YuJH,HuoQS,ChenJS.ChemistryofZeolite

andRelatedPorousMaterials.Singapore:Wiley,2007.152[22] NewsamJM.Science,1986,231:1093[23] CundyCS,CoxPA.ChemRev,2003,103:663[24] LiZF,MarlerB,GiesH.ChemMater,2008,20:1896[25] GevertB,ErikssonL,ToerncronaA.JPorousMater,2011,18:723

[26] GaoXH,QinZX,WangBJ,ZhaoXZ,LiJC,ZhaoHJ,LiuHH,ShenBJ.ApplCatalA,2012,413:254

[27] MurrayHH.ApplClaySci,2000,17:207[28] CaoJL,ShaoGS,WangY,LiuYP,YuanZY.CatalCommun,2008,

9:2555 [29] LiuYS,LiuP,SuZX,LiFS,WenFS.ApplSurfSci,2008,255:2020[30] WangWB, Zheng Y,Wang A Q.PolymAdvTechnol, 2008, 19:

1852[31] ShiLM,YaoJF,JiangJL,ZhangLX,XuNP.MicroporousMesopo‐

rousMater,2009,122:294[32] PurnomoCW,SalimC,HinodeH.MicroporousMesoporousMater,

2012,162:6[33] Kovo A S, Hernandez O, Holmes SM. JMaterChem, 2009, 19:

6207[34] ColinaFG, Llorens J.MicroporousMesoporousMater, 2007,100:

302[35] JiangJL,FengLD,GuX,QianYH,GuYX,DuanmuCS.ApplClay

Sci,2012,55:108[36] RenLM,ZhangYB,ZengSJ,ZhuLF,SunQ,ZhangHY,YangCG,

MengXJ,YangXG,XiaoF‐S.ChinJCatal,2012,33:92

GraphicalAbstract

Chin.J.Catal.,2013,34:1504–1512 doi:10.1016/S1872‐2067(12)60638‐X

SynthesisandcatalyticcrackingperformanceofFe/Ti‐ZSM‐5zeolitefromattapulgitemineral

XiaozhaoZhou,YanLiu,XiangjuMeng,BaojianShen,Feng‐ShouXiao*ZhejiangUniversity;ChinaUniversityofPetroleum

Attapulgite clay

Hydrothermal

synthesis

Fe/Ti-ZSM-5

Fe/Ti‐ZSM‐5zeolitewassynthesizedfromtreatedattapulgite(ATP)mineral.ComparedwithconventionalZSM‐5zeolite,Fe/Ti‐ZSM‐5exhibitsrelativelyhighyieldsoflightolefinsinthecatalyticcrackingofCanadianlightgasoil.