Transcript

ChineseJournalofCatalysis34(2013)1504–1512 

a v a i l a b l e   a t  www. s c i e n c ed i r e c t . c om  

j o u r n a l   h omep a g e :  www. e l s e v i e r. c om / l o c a t e / c h n j c

Article 

SynthesisandcatalyticcrackingperformanceofFe/Ti‐ZSM‐5zeolitefromattapulgitemineral

XiaozhaoZhoua,YanLiua,XiangjuMenga,BaojianShenb,Feng‐ShouXiaoa,*aDepartmentofChemistry,ZhejiangUniversity,Hangzhou310028,Zhejiang,ChinabFacultyofChemicalEngineering,ChinaUniversityofPetroleum,Beijing102249,China

A R T I C L E I N F O  

A B S T R A C T

Articlehistory:Received30December2012Accepted28April2013Published20August2013

  Fe/Ti‐ZSM‐5zeolitewassynthesizedsuccessfullyfromtreatedattapulgite(ATP).Thismineralcon‐sistsofamorphoussilicacontainingFeandTispecies.X‐raydiffractionpatterns,scanningelectronmicroscopy images, and nitrogen sorption isotherms indicate that the sample has a typical MFIstructure,highcrystallinity,andlargespecificsurfacearea.Temperature‐programmeddesorptionofammoniaandH2 temperature‐programmedreduction indicates thattheFe/Ti‐ZSM‐5zeolite isstronglyacidicandhassuperiorredoxproperties.Moreimportantly,comparedwithconventionalZSM‐5zeolite,Fe/Ti‐ZSM‐5performswell,resultinginanincreaseinyieldof0.21%propyleneand0.33%totallightolefinsinthecatalyticcrackingofCanadianLGO(lightgasoil).Theseresultssug‐gestthatthepresenceofFeandTispeciesinZSM‐5zeoliteisfavorableforenhancinglightolefinyields,whichispotentiallyimportantforoilrefininginthefuture.

©2013,DalianInstituteofChemicalPhysics,ChineseAcademyofSciences.PublishedbyElsevierB.V.Allrightsreserved.

Keywords:NaturalattapulgiteIronTitaniumZSM‐5zeoliteCatalyticcrackingLightolefinsPropylene

 

 

1. Introduction

Propyleneproductionhasattractedmuchattentionbecausepropyleneisanimportantindustrialchemical.Currently,mostpropylene is derived from steam crackers and refinery fluidcatalytic cracking (FCC)units [1–4].Naphtha is themain rawmaterialinthesteamcrackersforpropyleneproduction,butitslimitedsupplyconstrainsthiscrackingprocess.Theamountofpropylene produced by the FCC process has increased withtime because of advantages in the high ratio of propylene toethyleneandthelowcostofinvestmentandproductionoftheFCC process [5,6]. ZSM‐5 zeolite with three‐dimensional me‐dium pore sizes (10‐membered rings), excellent thermal andhydrothermal stability, and lowactivity forhydrogen transferisoneof themost importantadditives in theFCCprocess for

enhancingpropyleneyield[7–9].The introduction of transition elements in ZSM‐5 zeolites

results in the formation of highly efficient FCC catalyst addi‐tives [10–14]. For example, Lu et al. [15,16] reported that FeandCretal.inZSM‐5zeolitecouldimprovepropyleneandeth‐ylene yields in the catalytic cracking of isobutene.Maia et al.[17,18] reported that the introduction of Ni in ZSM‐5 by im‐pregnationandion‐exchangemethodsenhancedthelightolefinyieldeffectively.LiandHaoetal.[19,20]reportedthattheim‐pregnation of Fe and Ti into ZSM‐5 zeolitewas favorable forincreasingpropyleneandethyleneyields.However, the intro‐ductionoftransitionelementsintoZSM‐5intheseconventionalwaysisoftencomplexandpurechemicalsarerequired.There‐fore,itisdesirabletoprepareZSM‐5zeolitesthatcontaintran‐sitionelementsfromlow‐costrawmaterials.One‐potsynthesis

*Correspondingauthor.Tel:+86‐571‐88273698;E‐mail:[email protected] ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(U1162201).DOI:10.1016/S1872‐2067(12)60638‐X|http://www.sciencedirect.com/science/journal/18722067|Chin.J.Catal.,Vol.34,No.8,August2013

XiaozhaoZhouetal./ChineseJournalofCatalysis34(2013)1504–1512

oflow‐costZSM‐5zeoliteispossibleusingtransitionelementsderivedfromnaturalattapulgite(ATP).

ATP,awell‐knownnaturalmineral,isacrystalline‐hydratedmagnesium and aluminum silicate with composition(OH2)4(OH)2M6Si8O204H2O (M = Al, Mg, Fe), having a uniquechain structure, high surface area, and fibrous morphology[21–26].Ithasbeenusedincatalystsupports,nanocomposites,andenvironmental absorbents [27–30].Theamorphous silicainATPcontainingonlyAl,Fe,andTimetalspeciescanbeob‐tainedby acid treatment andoffers an ideal rawmaterial forFe/Ti‐ZSM‐5zeolitesynthesis.

In this work, we present a route for synthesizing theFe/Ti‐ZSM‐5 additive in FCC catalysts using treated ATP assilicaandFe,andTireagentsbyaone‐potmethod.Thecatalyt‐ictestsshowthatFe/Ti‐ZSM‐5exhibitsarelativelyhighyieldofpropylene and ethylene in the catalytic cracking of Canadianlightgasoil(LGO)comparedwithconventionalZSM‐5zeolite.

2. Experimental

2.1. PreparationofFe/Ti‐ZSM‐5

ATP obtained from Xuyi, China had a typical SiO2/MgO/Al2O3/Fe2O3/CaO/K2O/Na2O/TiO2/H2O composition (wt%) of59.83/14.49/8.35/4.20/0.79/0.77/0.22/1.10/10.15.All chem‐icalswerefromShanghaiChemicalReagentCo.andwereusedasreceivedwithoutpurification.

Beforezeolitesynthesis,ATPwaspretreatedwith37%HClsolution.Asatypicalprocess,2.0gofATP,2.7gofconcentratedHCland17mlofwaterwereaddedtoaTeflon‐linedautoclave,followedbyheatingat180°Cfor14h.TheproductwasfilteredandwashedwithdeionizedwateruntilnoCl–wasdetectedandthendriedat120°Cfor4h.

For the typical synthesis of Fe/Ti‐ZSM‐5 zeolite, 0.09 g ofNaAlO2 (AR) and 4.5 g of tetrapropylammonium hydroxide(TPAOH,19.6wt%)weredissolvedin15mlofwater,followedbytheadditionof1.5gofacid‐treatedATP.Afterstirringfor4h,agelwasobtainedandtransferredintoaTeflon‐linedauto‐clave.Aftercrystallizationat180°Cfor12h,theproductwithMFI zeolite structurewas obtained by filtering,washingwithdeionizedwater,anddryingat100°Cfor4h.Thesamplewascalcinedat550°Cfor5htoremovetheorganictemplatesandwasdesignatedFe/Ti‐ZSM‐5.

ConventionalZSM‐5wassynthesizedunderthesamecondi‐tionsasFe/Ti‐ZSM‐5usingequal silica (91.8wt%) to replacethetreatedATP.TheproductwasdesignatedZSM‐5‐C.

Asatypicalprocedurefortheion‐exchangeofsodiumwithammonium,1.0gofzeolitewasaddedinto50mlofammoniumnitrate (AR) solution (1mol/L)at80 °Candstirred for12h.This process was repeated twice. H‐form zeolites were ob‐tainedbycalcinationoftheion‐exchangedNH4‐formzeolitesat500°Cfor4h.

2.2. Characterization

Samplecompositionwasdeterminedbyinductivelycoupledplasma (ICP) with a Perkin‐Elmer plasma 40 emission spec‐

trometer. Scanning electron microscopy (SEM) experimentswere performed on a Hitachi SU‐1510 electron microscope.X‐raypowderdiffraction(XRD)patternsweremeasuredwithaRigakuUltimateVIX‐raydiffractometer(40kV,40mA)usingCu Kα (λ = 0.15406 nm) radiation. The catalyst acidity wasmeasured by the temperature‐programmed desorption ofammonia (NH3‐TPD). The catalyst (0.1 g) was pretreated at400–650 °C inN2 flow for 1 h, followed by the adsorptionofNH3 at 100 °C for 0.5 h. After saturation, the catalyst waspurgedbyN2flowfor0.5htoremovethephysicallyadsorbedammoniaonthesample.NH3desorptionwascarriedoutfrom100to700°Cwithaheatingrateof10°C/min.TheamountofNH3desorbedfromthesamplewasobtainedbycomparingthearea under the curve with a sample containing a knownamountofNH3usingathermalconductivitydetector.Temper‐ature‐programmedreductionofH2(H2‐TPR)analysiswasper‐formedwith a TPDTO1100Series fromThermo Electron Cor‐poration. The N2 sorption isotherms at the liquid nitrogentemperature were measured using a Micromeritics ASAP2010MandTristarsystem.UV‐visiblespectraweremeasuredusingaShimadzuUV‐3100.

2.3. CatalytictestsofLGO

AsatypicalprocedureforLGOcatalystpreparation,thecat‐alystadditive(35wt%ZSM‐5,50wt%kaolinand15wt%alu‐minabinder)wasshapedbyspray‐drying.Then,10wt%cata‐lystadditiveand90wt%USYweremixedtoformtheLGOcat‐alyst.TheLGOcatalystcontainingFe/Ti‐ZSM‐5orZSM‐5‐CwasdenotedCFe/Ti‐ZSM‐5orCZSM‐5‐C.Beforereaction,thecatalystwastreated at 800 °C for 4 h under 100% steaming. The catalystsizedistributionwas38–212μm.

Catalyticcrackingdatawereobtainedonanadvancedcata‐lyst evaluation bench unit (ACE, Kayser Corp) with FCC unitreactionconditionsasfollows:reactiontemperatureat530°C,catalysttooilmassratioof6.0,contacttime90s,andcatalystof9.0g.TheproductsweredetectedbyanonlineGC‐MSwithinstrumental error of 0.01%. The feedstock LGOwas derivedfromCanadaoilsand,aslistedinTable1.

3. Resultsanddiscussion

3.1. CharacterizationresultsofATP

Figure 1 shows XRD patterns of as‐received and ac‐

Table1 PropertiesoffeedstockCanadianlightgasoil(LGO).

Item LGODensity(20°C,g/cm3) 0.8726Viscosity(40°C,Pas) 4.71Carbonresidue(wt%) 0.008Averagemolecularweight(g/mol) 230H(wt%) 12.86C(wt%) 87.11H/C 1.77Saturatedcarbons(wt%) 69.9Aromatics(wt%) 30.1Resinsandasphaltenes(wt%) 0

XiaozhaoZhouetal./ChineseJournalofCatalysis34(2013)1504–1512

id‐treated ATP. Before acid treatment, ATP exhibits a typicalcrystalline structure (8.35, 13.68, 16.31, 19.80, 20.73,21.34, 24.11, 27.47, 34.25, and 35.24). After acid treat‐ment,thesamplecontainsanamorphousphase,indicatingthatthecrystallinestructureisdestroyed.

Figure 2 shows SEM images of the as‐received and ac‐id‐treatedATP.Bothsamplesexhibitsimilarfibermorphologywith approximately 30–50 nm in diameter and 1–2 m inlength.

Table2presentsthechemicalcompositionofATPs.NaturalATP contains SiO2 (59.83%), MgO (14.49%), Al2O3 (8.35%),Fe2O3 (4.2%),and tracesofNa,K,Ca,Mn,andTispecies.Themetal cations are located between unique chains. After acidtreatment,mostof themetalcations in theATPareremoved,with resulting chemical composition of SiO2 (96.4%), Al2O3(0.8%), Fe2O3 (1.3%), andTiO2 (1.5%). These results suggestthat the acid treatment does not influence the sample mor‐phologybutchangesthesampleelementalcompositionsignif‐icantly.

3.2 CharacterizationresultsofFe/Ti‐ZSM‐5

Figure3showsXRDpatternsofFe/Ti‐ZSM‐5crystallizedatvarioustimes.Beforecrystallization,thesampleisamorphous.At2hcrystallizationtime,aseriesofweakpeaksappearintheXRDpatternassociatedwiththeMFIstructure.Withincreasingcrystallization time from4 to 10 h, the XRD peaks at 23.03,23.83, and 24.28 associated with the fast crystallization ofFe/Ti‐ZSM‐5 are enhanced significantly. For a crystallizationtime greater than12h, theFe/Ti‐ZSM‐5 crystallinity changeslittle,suggestingcompletecrystallizationofthesample.

Figure4showSEMimagesof theFe/Ti‐ZSM‐5crystallizedat various times. Samples in the starting gel retain theirnano‐fibermorphologyasnaturalATP(Fig.4(a)).Smallcrystalparticles(0.5–1μm)appear in theproductsasthecrystalliza‐tion time reaches 2 h. These small particles increase in size(1.5–2.0 μm) as the crystallization time is prolonged to 6 h.Finally,thecrystalparticlesaredistributedmainlyaround2.0μmindiameterwithfulldisappearanceofthenano‐fibermor‐phology at a crystallization time of 14 h. Figure 4(i) and (j)show SEM images of the ZSM‐5‐C synthesized from silica.ZSM‐5‐ChassmallercrystalparticlesthanFe/Ti‐ZSM‐5.

Table 2 presents the composition of Fe/Ti‐ZSM‐5 andZSM‐5‐C.BothhaveasimilarSi/Alratioof14.4and13.2.

Figure 5 shows the N2 sorption isotherms of the ZSM‐5samplessynthesized fromthe treatedATP(Fe/Ti‐ZSM‐5)andsilica(ZSM‐5‐C).Bothexhibitasteepincreaseinthecurveatarelativepressureof10–6<p/p0<0.01.Thetexturalparametersof Fe/Ti‐ZSM‐5 and ZSM‐5‐C are provided in Table 3. Thesedata show that the textural parameters of Fe/Ti‐ZSM‐5 areconsistentwithZSM‐5‐Csynthesizedbyconventionalmethods.These results also confirm that it is possible to synthesizeFe/Ti‐ZSM‐5fromtreatedATPbyaone‐potmethod.Compared

Table2 ChemicalcompositionofATPandzeolitesamples.

SampleComposition(wt%)

SiO2 MgO Al2O3 Fe2O3 CaO Na2O+K2O MnO TiO2 H2ONaturalATP 59.83 14.49 8.35 4.20 0.79 0.99 0.094 1.1 10.15Acid‐treatedATP 96.40 — 0.8 1.3 — — — 1.5 —Fe/Ti‐ZSM‐5 93.07 — 5.46 0.58 — — — 0.88 —ZSM‐5‐C 93.93 — 6.07 — — — — — —

5 10 15 20 25 30 35 40

Inte

nsity

Treated ATP

2 /( o )

Natural ATP

Fig.1.XRDpatternsofnaturalandacid‐treatedATP.

Fig.2.SEMimagesofnatural(a)andacid‐treated(b)ATP.

5 10 15 20 25 30 35 40

2/( o )

0 h

2 h

4 h

6 h

8 h

10 h

12 h

Inte

nsity

14 h

Fig.3. XRDpatternsof Fe/Ti‐ZSM‐5 synthesizedatdifferent crystal‐lizationtimes.

XiaozhaoZhouetal./ChineseJournalofCatalysis34(2013)1504–1512

with ZSM‐5‐C, Fe/Ti‐ZSM‐5 has similar Si/Al ratios, surfacearea, and pore volume. The difference between them is thatFe/Ti‐ZSM‐5containslittleFeandTi.

Tothebestofourknowledge,althoughvariouszeoliteshavebeen synthesized from various natural minerals [32–34], noreport exists on the synthesis of high silica zeolite usingATPexcept for thesynthesisofalumina‐richzeoliteA [35].There‐

fore, theone‐potsynthesisofFe/Ti‐ZSM‐5usingATPas feed‐stock couldbe important for industrial applications in the fu‐ture.

Figure 6 shows the UV‐Vis spectra of natural ATP, ac‐id‐treatedATP,andFe/Ti‐ZSM‐5samples.ThenaturalATPhasanabsorptionpeakat250nm,probablybecauseofthemutualinterferenceofpolyatomicspecies(Mg,Al,Fe,Mn,andTi).Af‐teracidtreatment, thenaturalATP losesmostof itsmetalat‐oms,providingalowabsorptionpeakaround250nm.Signifi‐cantly, therearetwostrongabsorptionpeaksat212and240nmforFe/Ti‐ZSM‐5.Generally,thepeakat212nmisrelatedtotheelectronictransitionsoffour‐coordinatedTispecies,whilethepeakat240nmisassociatedwithelectronictransitionsoffour‐coordinated Fe species in the sample. The small peakaround325nmisrelatedtotheexistenceofTiO2crystalsinthe

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

300

Ads

orbe

d vo

lum

e (c

m3 /g

)

Relative pressure (p/p0)

Fe/Ti-ZSM-5

ZSM-5-C

Fig.5.N2sorptionisothermsofZSM‐5.IsothermsforsampleZSM‐5‐Coffsetverticallyby120cm3/g.

Table3 TexturalparametersofZSM‐5samples.

SampleABET(m2/g)

Amicro(m2/g)

Aext(m2/g)

Vtotal(cm3/g)

Vmicro(cm3/g)

Fe/Ti‐ZSM‐5 339 260 79 0.17 0.12ZSM‐5‐C 350 227 123 0.18 0.10

200 300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

Rel

ativ

e ab

sorb

ance

Wavelength (nm)

Treated ATP

Natural ATP

Fe/Ti-ZSM-5

Fig.6.UV‐Visspectraofvarioussamples.

(a) (b)

(e) (f) (g) (h)

(i) (j)

(c) (d)

Fig.4.SEMimagesofFe/Ti‐ZSM‐5(a–h)andZSM‐5‐C(i,j)synthesizedatdifferentcrystallizationtime.(a)0h;(b)2h;(c)4h;(d)6h;(e)8h;(f)10h;(g,i,j)12;(h)14h.

XiaozhaoZhouetal./ChineseJournalofCatalysis34(2013)1504–1512

sample. Figure 7 shows the NH3‐TPD profiles of Fe/Ti‐ZSM‐5 and

ZSM‐5‐Csamples.Generally,thedesorptiontemperaturescen‐tered around 200 and 400 °C are related to the weak andstrong acid sites respectively,while thedesorptionpeak arearepresents the acid amount in the NH3‐TPD test [36]. In thiswork,bothsamplesshowsimilardesorptionpeaksat218and440 °C. However, ZSM‐5‐C has a slightly higher acid amountthan the Fe/Ti‐ZSM‐5 because of its small difference in Si/Alratio.

Figure 8 shows the H2‐TPR profiles of Fe/Ti‐ZSM‐5 andZSM‐5‐Csamples.Normally, theFespeciesonZSM‐5result inpeaksat350and420°CassociatedwiththereductionofFe3+toFe2+andFe2+toFe0respectively,whileTispeciesonZSM‐5yield a peak at 670 °C associated with the reduction of TiO2[19,20].Interestingly,Fe/Ti‐ZSM‐5showsauniquepeakrangefrom400to700°C,whichmayresultfromthedifficultyinthereduction of Fe species in the framework and the interactionbetweenTiO2withsurfacehydroxylgroupsinthesample.

3.3 Catalyticperformance

Table4presentstheproductdistributionincatalyticcrack‐ingofCanadianLGOovercatalystscontainingFe/Ti‐ZSM‐5and

ZSM‐5‐Cadditives.WhenZSM‐5‐Cwasusedasacatalystaddi‐tive,theCZSM‐5‐Ccatalystyielded5.98%propyleneand12.66%totallightolefins.WhenFe/Ti‐ZSM‐5wasusedascatalystaddi‐tive, the CFe/Ti‐ZSM‐5 catalyst yielded 6.16% propylene and12.99%totallightolefins.ConsideringthatZSM‐5‐Chasalarg‐er BET surface area and more abundant acid sites than theFe/Ti‐ZSM‐5, higher yields of light olefins over the CFe/Ti‐ZSM‐5catalyst than thoseover theCZSM‐5‐C catalystshouldberelatedtothecontributionofFeandTispeciesintheFe/Ti‐ZSM‐5.ItispossiblethattheFeandTispeciesinthecatalystimprovethecatalyticredoxproperty,whichishelpfulforβ‐scissiontopro‐duce light olefins. This result is in good agreement with thereportedliterature[11,18–20].

4. Conclusions

Fe/Ti‐ZSM‐5wassynthesizedsuccessfullyfromacid‐treatedATPassilicaandFe,andTi feedstockbytheone‐potmethod.ComparedwithZSM‐5‐C,Fe/Ti‐ZSM‐5hasasimilarcrystallini‐ty,texturalparameters,andacidity.Thecatalystpreparedfromthe Fe/Ti‐ZSM‐5 additive shows a higher yield of propyleneandtotallightolefinsintheLGOcatalyticcrackingtest,whichisrelated to its unique redox property. These features couldbeimportant for theproductionofpropyleneand lightolefins intheFCCprocessinfuture.

References

[1] WallensteinD,KanzB,HaasA.ApplCatalA,2000,192:105[2] CormaA,MeloFV,SauvanaudL,OrtegaF.CatalToday,2005,107:

699[3] denHollanderMA,WissinkM,MakkeeM,MoulijnJA.ApplCatal

A,2002,223:85[4] WallensteinD,HardingRH.ApplCatalA,2001,214:11[5] LeiYX.PetrolPetrochemToday,2007,15(4):38[6] ZhouHZ.ChemicalTechno‐Economics,2004,22(9):28[7] Degnan T F, Chitnis GK, Schipper PH.MicroporousMesoporous

Mater,2000,35:245[8] AdewuyiYG,KlockeD J,Buchanan J S.ApplCatalA, 1995,131:

121[9] BuchananJS.CatalToday,2000,55:207[10] AitaniA,YoshikawaT,InoT.CatalToday,2000,60:111[11] LuoYB,OuyangY,ShuXT,HeMY.StudSurfSciCatal,2007,170:

600

0 100 200 300 400 500 600 700 8000

4

8

12

16

20

TC

D s

igna

l

Temperature (oC)

Fe-Ti/ZSM-5

ZSM-5-C

Fig.7. NH3‐TPDprofilesofFe/Ti‐ZSM‐5andZSM‐5‐Csamples.CurveforsampleZSM‐5‐Coffsetverticallyby10.

100 200 300 400 500 600 700 800 900

H2 c

onsu

mpt

ion

Temperature (oC)

Fe/Ti-ZSM-5

ZSM-5-C

Fig.8. H2‐TPRprofilesofFe/Ti‐ZSM‐5andZSM‐5‐Csamples.

Table4 ProductdistributionincatalyticcrackingofCanadianLGOoverCZSM‐5‐CandCFe/Ti‐ZSM‐5catalysts.

Catalystadditive ZSM‐5‐C Fe/Ti‐ZSM‐5Productdistribution(wt%) Drygas 1.84 1.88LPG 19.85 20.12Gasoline 42.43 42.85LCO 29.71 28.60Bottoms 5.04 5.46Coke 1.12 1.10

Liquidyield(%) 92.01 91.56Ethyleneyield(%) 0.91 0.94Propyleneyield(%) 5.98 6.16C2=+C3=+C4=yield(%) 12.66 12.99

XiaozhaoZhouetal./ChineseJournalofCatalysis34(2013)1504–1512

[12] WangP,ShenBJ,ShenDD,PengT,GaoJS.CatalCommun,2007,8:1452

[13] Komvokis V G, Iliopoulou E F, Vasalos I A, Triantafyllidis K S,MarshallCL.ApplCatalA,2007,325:345

[14] LiXH,LiCY,ZhangJF,YangCH,ShanHH.JNatGasChem,2007,16:92

[15] LuJY,ZhaoZ,XuCM,ZhangP,DuanAJ.CatalCommun,2006,7:199

[16] LuJY,ZhaoZ,XuCM,DuanAJ,ZhangP.CatalLett,2006,109:65[17] MaiaAJ,LouisB,LamYL,PereiraMM.JCatal,2010,269:103[18] MaiaAJ,OliveiraBG,EstevesPM,LouisB,LamYL,PereiraMM.

ApplCatalA,2011,403:58[19] LiXF,ShenBJ,XuCM.ApplCatalA,2010,375:222[20] HaoK,ShenBJ,WangYD,RenJ.JIndEngChem,2012,18:1736[21] XuRR,PangWQ,YuJH,HuoQS,ChenJS.ChemistryofZeolite

andRelatedPorousMaterials.Singapore:Wiley,2007.152[22] NewsamJM.Science,1986,231:1093[23] CundyCS,CoxPA.ChemRev,2003,103:663[24] LiZF,MarlerB,GiesH.ChemMater,2008,20:1896[25] GevertB,ErikssonL,ToerncronaA.JPorousMater,2011,18:723

[26] GaoXH,QinZX,WangBJ,ZhaoXZ,LiJC,ZhaoHJ,LiuHH,ShenBJ.ApplCatalA,2012,413:254

[27] MurrayHH.ApplClaySci,2000,17:207[28] CaoJL,ShaoGS,WangY,LiuYP,YuanZY.CatalCommun,2008,

9:2555 [29] LiuYS,LiuP,SuZX,LiFS,WenFS.ApplSurfSci,2008,255:2020[30] WangWB, Zheng Y,Wang A Q.PolymAdvTechnol, 2008, 19:

1852[31] ShiLM,YaoJF,JiangJL,ZhangLX,XuNP.MicroporousMesopo‐

rousMater,2009,122:294[32] PurnomoCW,SalimC,HinodeH.MicroporousMesoporousMater,

2012,162:6[33] Kovo A S, Hernandez O, Holmes SM. JMaterChem, 2009, 19:

6207[34] ColinaFG, Llorens J.MicroporousMesoporousMater, 2007,100:

302[35] JiangJL,FengLD,GuX,QianYH,GuYX,DuanmuCS.ApplClay

Sci,2012,55:108[36] RenLM,ZhangYB,ZengSJ,ZhuLF,SunQ,ZhangHY,YangCG,

MengXJ,YangXG,XiaoF‐S.ChinJCatal,2012,33:92

GraphicalAbstract

Chin.J.Catal.,2013,34:1504–1512 doi:10.1016/S1872‐2067(12)60638‐X

SynthesisandcatalyticcrackingperformanceofFe/Ti‐ZSM‐5zeolitefromattapulgitemineral

XiaozhaoZhou,YanLiu,XiangjuMeng,BaojianShen,Feng‐ShouXiao*ZhejiangUniversity;ChinaUniversityofPetroleum

Attapulgite clay

Hydrothermal

synthesis

Fe/Ti-ZSM-5

Fe/Ti‐ZSM‐5zeolitewassynthesizedfromtreatedattapulgite(ATP)mineral.ComparedwithconventionalZSM‐5zeolite,Fe/Ti‐ZSM‐5exhibitsrelativelyhighyieldsoflightolefinsinthecatalyticcrackingofCanadianlightgasoil.


Top Related