synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey...

Download Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex

Post on 06-Jun-2016




1 download

Embed Size (px)


  • Synaptic Targets of Pyramidal NeuronsProviding Intrinsic Horizontal

    Connections in MonkeyPrefrontal Cortex


    AND DAVID A. LEWIS1,2*1Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213

    2Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

    ABSTRACTIn monkey prefrontal cortex, the intrinsic axon collaterals of supragranular pyramidal

    neurons extend horizontally for considerable distances through the gray matter and give riseto stripe-like clusters of axon terminals (Levitt et al. [1993] J. Comp. Neurol. 338:360376).Because understanding the functional role of these connections requires knowledge of theirsynaptic targets, we made injections of biotinylated dextran amine (BDA) into layer 3 ofmacaque prefrontal area 9 and examined the labeled intrinsic axon collaterals by electronmicroscopy. Labeled axon terminals formed exclusively asymmetric synapses, and 95.6% ofthe postsynaptic structures were dendritic spines, presumably belonging to other pyramidalneurons. The remaining postsynaptic structures were dendritic shafts, many of which had themorphological characteristics of local circuit neurons. The prefrontal injections also labeledassociational projections that traveled through the white matter to terminate in other areas ofprefrontal cortex. All of the synapses formed by these associational axons were asymmetric,and 91.9% were onto dendritic spines. The similarities in synaptic targets of the prefrontalintrinsic and associational axon terminals suggested that these projections might arise fromthe same neurons, an interpretation confirmed in dual label, retrograde tracing studies.

    To determine the specificity of the synaptic targets of these prefrontal connections, twoadditional comparisons were made. In the posterior parietal cortex (area 7a), 94.2% of thesynapses furnished by BDA-labeled intrinsic collaterals of supragranular pyramidal neuronswere also with dendritic spines. In contrast, only 75.6% of unlabeled asymmetric synapses inthe prefrontal cortex were onto dendritic spines. These comparisons suggest that the axons ofsupragranular pyramidal neurons in primate association cortices are preferentially directedto specific targets.

    Finally, after injections of BDA, a small number of retrogradely labeled pyramidalneurons were observed within the anterogradely labeled clusters of intrinsic axon terminals.At the ultrastructural level, synapses between anterogradely labeled axon terminals andretrogradely labeled dendritic spines were identified. These findings suggest that reciprocal,monosynaptic connections may exist between pyramidal neurons located in different stripe-like clusters, providing a potential anatomical substrate for reverberating excitatory circuitswithin the primate association cortices. J. Comp. Neurol. 390:211224, 1998. r 1998 Wiley-Liss, Inc.

    Indexing terms: axon collateral; asymmetric synapse; posterior parietal cortex; local circuit neuron

    In the primate brain, the prefrontal cortex (PFC) sub-serves a number of higher-order cognitive functions, includ-ing those involving working memory (Goldman-Rakic,1987; Baddeley, 1992) and the temporal integration ofinformation (Fuster, 1985). Disturbances of these abilitiesin disease states, such as schizophrenia and Alzheimers

    Grant sponsor: USPHS; Grant numbers:AG05133, MH51234, and MH45156;Grant sponsor: NIMH Independent Scientist Award; Grant number: MH00519.

    *Correspondence to: David A. Lewis, Western Psychiatric Institute andClinic, University of Pittsburgh, Biomedical Science Tower, W1651, 3811OHara Street, Pittsburgh, PA 15213.E-mail:

    Received 13 May 1997; Revised 28 July 1997; Accepted 8 August 1997


    r 1998 WILEY-LISS, INC.

  • disease, have been associated with abnormalities in pyra-midal neurons, especially those located in supragranularlayers 2 and 3 (Hof et al., 1990; Glantz and Lewis, 1995).The involvement of these excitatory neurons in the patho-physiology of cognitive disorders may be related, at least inpart, to the fact that the majority of their extrinsic axonalprojections are directed to other cortical association re-gions (Schwartz and Goldman-Rakic, 1984; Barbas andPandya, 1989). In addition, the intrinsic axon collaterals ofsupragranular pyramidal neurons in monkey PFC spreadhorizontally for considerable distances and give rise todiscrete, stripe-like clusters of axon terminals that spanlayers 13 (Levitt et al., 1993). Retrograde labeling studies(Kritzer and Goldman-Rakic, 1995; Pucak et al., 1996)have demonstrated that the neurons that contribute axoncollaterals to this intrinsic circuitry are also arranged in astripe-like fashion. These clusters of retrogradely labeledneurons are coregistered with anterogradely labeled axonterminals arising from the same injection site (Pucak etal., 1996), suggesting that reciprocal intrinsic connectionslink spatially segregated clusters of supragranular pyrami-dal cells into neuronal networks (Goldman-Rakic, 1995;Lewis and Anderson, 1995).

    These networks of supragranular pyramidal neurons inmonkey PFC have been suggested to provide a means forcoordinating the activity of neuronal populations thatshare the same response properties (Levitt et al., 1993;Goldman-Rakic, 1995), analogous to the apparent role ofthe intrinsic horizontal connections in sensory cortices(Lund et al., 1993). For example, in the primary visualcortex, horizontally oriented axon collaterals predomi-nantly interconnect orientation domains of similar prefer-ences, as well as zones of similar ocular dominance (Tso etal., 1986; Gilbert and Wiesel, 1989; Malach et al., 1993;Yoshioka et al., 1996). In addition, the sustained activity ofspecific populations of prefrontal pyramidal neurons dur-ing the delay period of delayed response tasks (Fuster etal., 1982; Funahashi et al., 1989) may depend, at least inpart, on reciprocal intrinsic connections (Lewis and Ander-son, 1995; Pucak et al., 1996). That is, these connectionshave been suggested to provide the anatomical substratefor a reverberating excitatory circuit that maintains thefiring of prefrontal neurons in the absence of externalstimulation, a critical feature of working memory (Funaha-shi et al., 1989; Goldman-Rakic, 1995). However, furthertesting of this hypothesis requires knowledge of the synap-tic targets of these intrinsic axon collaterals.

    In other species, the intrinsic axon collaterals of differ-ent subpopulations of pyramidal neurons preferentiallyform synaptic contacts with certain types of structures(Czeiger and White, 1993). For example, in mouse somato-sensory cortex, over 80% of the intrinsic axon collateralsarising from callosally projecting neurons target dendriticspines (Elhanany and White, 1990), whereas dendriticshafts are the postsynaptic targets of over 90% of theintrinsic axon collaterals of corticothalamic neurons (Whiteand Keller, 1987). However, the postsynaptic targets of theintrinsic axon collaterals of supragranular pyramidal neu-rons in primate PFC are not known. Consequently, in thisstudy, we placed injections of the tracer biotinylateddextran amine (BDA) into the superficial layers of monkeyPFC to identify the structures that receive synaptic inputfrom the intrinsic axon collaterals of supragranular pyra-midal neurons. In addition, the relative specificity of thesetargets was assessed through comparisons with the neural

    elements that receive synaptic input from other types ofcortical excitatory terminals, both within the PFC and inanother higher-order association region, the posterior pari-etal cortex.

    MATERIALS AND METHODSInjections of biotinylated dextran amine

    Surgical procedures. Four male, adult cynomolgusmonkeys (Macaca fascicularis) were used in this study. Allanimals were treated according to the guidelines outlinedin the National Institutes of Health Guide for the Care andUse of Laboratory Animals. After injections of ketaminehydrochloride (25 mg/kg), dexamethasone phosphate (0.5mg/kg), and atropine sulfate (0.05 mg/kg), an endotrachealtube was inserted, and the animal was placed in a stereo-taxic apparatus. Anesthesia was maintained with 1%halothane in 28% O2/air. Guided by stereotaxic coordinates(Szabo and Cowan, 1984), a craniectomy was performedover either the dorsal prefrontal or the posterior parietalcortex. By using a 5.0-l Hamilton syringe (26-gaugeneedle), one injection (0.3 l) of 10% BDA (10,000 molecu-lar weight; Molecular Probes, Inc., Eugene, OR) in 0.01 Mphosphate buffer, pH 7.3, was placed into either dorsalarea 9 or area 7a (Fig. 1A). For each animal, one injectionwas made at a depth of approximately 1.0-mm below thepial surface. After tracer injections, the scalp was closed,and the animals were treated with an antibiotic (chloram-phenicol, 15 mg/kg) and an analgesic (hydromorphone,0.02 mg/kg).

    Tissue preparation. After a survival time of 8 to12days, monkeys were deeply anesthetized with ketaminehydrochloride (25 mg/kg) and pentobarbital sodium (30mg/kg) and then perfused transcardially with cold 4%paraformaldehyde in phosphate buffer (Pucak et al., 1996).The brain was removed, and coronal blocks (4-mm-thick)were immersed in 0.12 M phosphate buffer, pH 7.3,containing 4% paraformaldehyde and 0.2% glutaralde-hyde, for 2 hours. Tissue blocks were then washed in 0.1 Mphosphate buffer, pH 7.3, and sectioned on a Vibratome at50 m.

    Histochemistry. The histochemical procedures usedto visualize BDA were adapted from those previouslydescribed (Pucak et al., 1996; Woo et al., 1997). Briefly,tissue sections were incubated in 0.05 M phosphate-buffered saline (PBS) containing 4.5% normal humanserum (NHuS), 0.04% Triton X-100, and 0.05 mg/ml bovineserum albumin (BSA) and then p