surface engineering part 1(1)

Upload: prasanth-m-cool

Post on 04-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/21/2019 Surface Engineering Part 1(1)

    1/71

    Surface Engineering Part 1Surface Engineering Part 1

    Dr Zhu LiuDr Zhu Liu

    Corrosion and Protection CentreCorrosion and Protection Centre

    School of MaterialsSchool of Materials

    The University of ManchesterThe University of Manchester

    MATS 64532: Surface Engineering and Materials DesignMATS 64532: Surface Engineering and Materials Design

  • 7/21/2019 Surface Engineering Part 1(1)

    2/71

    Lecture ArrangementLecture Arrangement

    L1 Surface Engineering I Introduction to SE

    Hot-dipping Electroplating Chemical plating Thermal spray Overlay coating

    Cold spray Diffusion coating

    L3 Surface Engineering III

    Introduction to LSE Heat-treatment Surface re-melting Surface alloying Cladding Shock-peening

    L2 Surface Engineering IIhysical vapour deposition Chemical vapour deposition Ion implantation Sol-gel coating

    L4 Surface Engineering I

    Surface te!turing Surface modification of

    polymers Surface finishing

  • 7/21/2019 Surface Engineering Part 1(1)

    3/71

    Definiti!n !f Surface EngineeringDefiniti!n !f Surface Engineering

    1" Treatment of the surface and near-surface regions of

    a material to allo# the surface to perform functions

    that are distinct from those functions demanded from

    the $ulk of the material %defined $y &S' hand$ook(

    2" The design of a surface and a su$strate together as a

    system) to give a cost effective performance of #hich

    neither is capa$le alone %defined $y CEST(

  • 7/21/2019 Surface Engineering Part 1(1)

    4/71

    Surface EngineeringSurface Engineering

    Surface "r!#ertiesSurface "r!#erties

    I!roved corrosion resistanceI!roved corrosion resistance

    I!roved "ear resistanceI!roved "ear resistance

    I!roved theral insulationI!roved theral insulation

    I!roved high#te!erature o$idation resistanceI!roved high#te!erature o$idation resistance

    I!roved adhesion %for !olyers&I!roved adhesion %for !olyers&

    I!roved "etta'ility %'oth !olyers and etals&I!roved "etta'ility %'oth !olyers and etals&

    Ec!n!mic $enefitsEc!n!mic $enefits

  • 7/21/2019 Surface Engineering Part 1(1)

    5/71

    %lassificati!n !f Surface Engineering

    %&anging surface

    metallurg'

    %&anging surface

    c&emistr'

    Adding

    c!atings

    I!n

    im#lantati!n

    Laser surface

    all!'ing

    Localised surface

    hardening* +lame)

    Induction) Laser and

    Electron-$eam

    ,apid solidification*

    Laser surface melting

    Shot peeningLaser shock peening

    Hot-dip coatingElectroplatingChemical platingDiffusion coatingThermal sprayOverlay coatingCold sprayhysical vapour

    depositionChemical vapour

    depositionSol-gelLaser Cladding

    %&anging surface

    structure

    Laser surface

    te(turing

    )#atterning

    )structuring

  • 7/21/2019 Surface Engineering Part 1(1)

    6/71

    (or a!!lications of corrosion !rotection)(or a!!lications of corrosion !rotection)

    Metallic coatingsMetallic coatings

    *nodic coating*nodic coating

    Cathodic coatingCathodic coating

    +eutral coating+eutral coating

    Ceraic, !olyer coatingsCeraic, !olyer coatings

    %lassificati!n !f %!atings%lassificati!n !f %!atings

  • 7/21/2019 Surface Engineering Part 1(1)

    7/71

    An!dicAn!dic%!atings%!atings

    Coating material is less no'elthan the su$strate to $e protected"

    Cathodic or sacrificial protection

    & $arrier to the environment

    E!amples* inc-coatings on steel .galvanised steel/

    (eatures) at $reaks or pores

    or cut edges the coating

    corrodes preferentially andprovides sacrificial protection

    to the underlying steel

    su$strate"http*00###"gordonengland"co"uk0corrosion"htm

    http://www.gordonengland.co.uk/corrosion.htmhttp://www.gordonengland.co.uk/corrosion.htmhttp://www.gordonengland.co.uk/corrosion.htm
  • 7/21/2019 Surface Engineering Part 1(1)

    8/71

    %at&!dic%at&!dic%!atings%!atings

    Coatings is ore no'leto the su$strate to $e protected

    E!amples* nickel-coatings on steel) copper-coating on steel

    Liitation) the coating

    must provide a complete$arrier to the su$strate from

    the environment1 other#ise)

    at $reaks) pores or cut edges

    the steel #ill corrode)

    causing severe pitting

    $ecause the anodes #ill $e

    small #hile the cathode area

    is much larger"

    http*00###"gordonengland"co"uk0corrosion"htm

    http://www.gordonengland.co.uk/corrosion.htmhttp://www.gordonengland.co.uk/corrosion.htmhttp://www.gordonengland.co.uk/corrosion.htm
  • 7/21/2019 Surface Engineering Part 1(1)

    9/71

    Arrangement !f metals in *al+anic SeriesArrangement !f metals in *al+anic Series

    rotection of car$on steels*rotection of car$on steels*

    An!dic c!atingsAn!dic c!atings

    2n2n&l .e!ceptional cases/&l .e!ceptional cases/

    CdCd

    'g .too reactive/'g .too reactive/

    %at&!dic c!atings%at&!dic c!atings

    TinTin

    3ickel3ickel

    CopperCopper

    Corrosive End %*nodic or less no'le&

    ------------------------------------------------

    Magnesium

    ,inc

    Aluminium%admium

    Ir!n)steel

    Stainless steel -acti+e.

    Tin

    /ic0el

    %!##er

    Stainless steel -#assi+e.

    *!ld

    Protective End %Cathodic or ost no'le&

  • 7/21/2019 Surface Engineering Part 1(1)

    10/71

    !tdi##ed %!atings!tdi##ed %!atings

    Definiti!n* & metallic coating o$tained $y dipping the su$strate

    metal into a molten metal"4 coating #ith lo#er melting temperature

    Stages:

    5/ re-treatment* degreasing) descaling and rinsing

    6/ +lu!ing* #etting

    7/ Dipping*

    8/ ost-treatment* annealing) or rolling) or rapid coling

    T'#ical &!tdi##ing #r!cesses:

    9alvanied steel

    http*00###"youtu$e"com0#atch:v;c6n?hS$s

    http://www.youtube.com/watch?v=c2J07n5hSbshttp://www.youtube.com/watch?v=c2J07n5hSbs
  • 7/21/2019 Surface Engineering Part 1(1)

    11/71

    T'#ical Surface A##earance !f *al+anied SteelT'#ical Surface A##earance !f *al+anied Steel

    Surface appearance* 5==@ 2n A $right) polycrystalline structure #ith

    visi$le crystalline grains of inc) some times several centimetres in

    sie"

  • 7/21/2019 Surface Engineering Part 1(1)

    12/71

    T'#ical Micr!structure !f *al+anied SteelT'#ical Micr!structure !f *al+anied Steel

    utla'er -23 m.* 5==@ 2nMetallurgical !nding* various 2n-+e intermetallics

    ,n7e intermetallics is rittleA limited additional shaping

  • 7/21/2019 Surface Engineering Part 1(1)

    13/71

    t&er ,incased %!atingst&er ,incased %!atings

    To improve f!rmailit' and ductilit'of coatings $y addition of other elements into the molten inc $ath"

    8*alfan8 -,n59Al.:

    Continuous coil-coating) much improved ductility

    Better corrosion resistance than 2n coating

    Similar function of sacrificial protection

    8*al+alume -,n559Al.:

    Continuous coil-coating) much improved ductility

    Even $etter corrosion resistance than 2n-?@&l coatingLimited sacrificial protection

    8*al+anneal8:

    +ull 2n-+e intermetallic layer $y heat-treatment

    Similar function of sacrificial protection

  • 7/21/2019 Surface Engineering Part 1(1)

    14/71

    %!rr!si!n "r!tecti!n !f *al+anied Steels%!rr!si!n "r!tecti!n !f *al+anied Steels

    ,n

    Steel

    ,n #r!+ides:

    "&'sical arrier .corrosion rate of 2n

    is ?-5=@ that of steel/* hen e!posed

    to the atmosphere) inc reacts #ith

    o!ygen to form inc o!ide) #hich further reacts #ith #ater

    molecules in the air to form inc hydro!ide" +inally inc hydro!ide reacts #ith car$on dio!ide in the atmosphere to

    yield a thin) impermea$le) tenacious and uite insolu$le dull

    grey layer of inc car$onate #hich adheres e!tremely #ell to

    the underlying inc) so protecting it from further corrosion"

    %at&!dic #r!tecti!n: 2inc coatings prevent corrosion of the

    protected metal $y forming a physical $arrier) and $y acting as a

    sacrificial anode if this $arrier is damaged"

  • 7/21/2019 Surface Engineering Part 1(1)

    15/71

    9alvanied Steel

    9uard ,ail System

    9alvanied

    steel pipe

    9alvanied

    Steel $ucket

    A##licati!ns !f *al+anied SteelsA##licati!ns !f *al+anied Steels

    Lifetime of galvanied steel* up to ?= years

    E!tended lifetime $y duple! system* up to >? years"

    http://www.galvanizeit.org/resources/files/AGA%20PDFs/Duplex%20Systems.pdfhttp://www.galvanizeit.org/resources/files/AGA%20PDFs/Duplex%20Systems.pdfhttp://www.galvanizeit.org/resources/files/AGA%20PDFs/Duplex%20Systems.pdf
  • 7/21/2019 Surface Engineering Part 1(1)

    16/71

    Electr!de#!siti!n)Electr!#lating

    rinciples A ho# it #orks

    Consist of* anode) cathode)

    aueous-metal solution and

    po#er supplier

    Corrosion process in reverse

    E!ample* 3i plating

    &node* 3i 3i6E

    6e-

    Cathode* 3i6E 6e-3i

    .6HE 6e-H6/

  • 7/21/2019 Surface Engineering Part 1(1)

    17/71

    Surface "re#arati!n and Electr!#latingSurface "re#arati!n and Electr!#lating

    ProcedureDegreasing

    Etching0chemical pre-treatment

    ashing0rinsing

    re-plating or other surface treatmentashing0rinsing

    lating

    ashing0rinsing

    ost-treatments .annealing) polishing) passivating) etc"/

    I!ortance of surface cleanliness) In real #orld) surface

    preparation is more crucial than plating to ensure good

    adhesion and surface uality

  • 7/21/2019 Surface Engineering Part 1(1)

    18/71

    Electr!de#!siti!n)Electr!#lating

    Structure of !lating

    Epita!ial gro#th for a fe#hundred atomic layer

    .clean and o!ide-free surface/

    Coating thic-nessroportional to the current density

    and length of deposition time) leading

    to one of the maFors dra#$acks in

    electroplating A ina$ility of achieving uniform deposition forirregular shaped components

    4 Thro"ing !o"er) a'ility of a !lating solution to !roduce a

    unifor etal distri'ution on an irregular sha!ed o'.ect/

  • 7/21/2019 Surface Engineering Part 1(1)

    19/71

    Electr!de#!siti!n)Electr!#lating

    Ma.or dra"'ac-s

    oor thickness uniformity on comple! components Hydrogen em$rittlement for steels

    3ot applica$le to insulating su$strates

    Possi'le environental concerns "ith !lating 'aths

    *dvantages)Lo# temperature treatment .G 5== C/ A no distortion and

    no metallurgical changesCoatings are dense #ith e!cellent adhesion to the su$strate

    3o technical limitation to coating thickness - thick layers possi$leSelective deposition possi$le $y applying masks&pplica$le to a #ide range of metal su$strates

    Lo# cost

  • 7/21/2019 Surface Engineering Part 1(1)

    20/71

    A##licati!ns !f S#ecific %!ating S'stemsA##licati!ns !f S#ecific %!ating S'stems

    +ic-el !lating* corrosion protection) undercoat forelectroplating chromium for decorative purpose of

    automotive) consumer products and office furniture

    Chroiu !lating) Chromium easily passivated A cannot $e

    used as solu$le anode" Decorative .tarnish-resistant/) hard)#ear-resistance coatings .al#ays need nickel as undercoat/"

    3ote a pro$lem #ith cracks and pores #ithin the chromium

    coating) leading to limited corrosion protection"

    Cadiu and Zinc !lating) Cadmium for marineenvironment) and inc .G m/ for industrial environment"

    Tin !lating* for non-aggressive environment) tin coating

    .="?-5 m/ is reuired) such as tin plated steel cans"

  • 7/21/2019 Surface Engineering Part 1(1)

    21/71

    A##licati!ns !f S#ecific %!ating S'stems

    Micr! and /an!c!m#!site %!atings'etal 'atri! Composite .''C/ A Ceramic particles

    .car$ides) o!ides/ in metal matri! .cermet/

    Sie of ceramic particles* a fe# micron) su$micron) or nano-"

    Ceramic particles suspendingin an electrolyte

    Co-deposit ceramic particlesinto metal matri!

  • 7/21/2019 Surface Engineering Part 1(1)

    22/71

    A##licati!n E(am#les !f Electr!de#!siti!nA##licati!n E(am#les !f Electr!de#!siti!n

    Mild steel c!re and

    electr!#lated ;it& %u

    9old plating

    olished electroplated chrome or multi-layer Environmental concerns

    Chromium Coating for

    Superior 'etalrotection

  • 7/21/2019 Surface Engineering Part 1(1)

    23/71

    %&emical "lating

    Cheical !lating* deposition of metal on su$strate

    #ithout applying e!ternal current"

    T"o fors

    -1. Immersi!n #latingCu6E +e ; +e6E Cu

    -2. Electr!less #lating

    3i6E

    6HO6-

    ; 3i H6 6O6-

    Mec&anisms* Electrochemical in nature) involving

    $oth o!idation and reduction reactions

  • 7/21/2019 Surface Engineering Part 1(1)

    24/71

    Immersi!n "lating

    Immersion plating

    O!idation* 2n 2n6 6e-) anodic) E= ; ="> J

    ,eduction* Cu6 6e-Cu) cathodic) E=; ="78 J

    ------------------------------------------------------------------------------

    Overall reaction* 2n Cu62n6 Cu E= ; 5"5 J

    & simply displacement reaction $et#een an anodic su$strate

    and a more no$le metal ion in solution #ith the deposition

    reaction driven $y local dissolution of the su$strate

    Limited plating thickness .5m/* Displacement processcontinues until almost the entire su$strate is covered #ith

    copper"

  • 7/21/2019 Surface Engineering Part 1(1)

    25/71

    Electr!less "lating

    Electroless plating

    ,eduction* 3i6E 6e-3i E=;-6? mJ

    O!idation* H6O6- H6O H6O7- 6HE 6e- E=; ?= mJ

    ------------------------------------------------------------------------------

    3i6E

    H6O6-

    H6O 3i H6O7-

    6HE

    E=

    ; 6? mJ

    0 Sustaina'le o$idation reaction

    &utocatalytic mechanism

    lating thicker coating layers

  • 7/21/2019 Surface Engineering Part 1(1)

    26/71

    %&emical %!ating)Electr!less #lating%&emical %!ating)Electr!less #lating

    *dvantages)

    Lo# temperature treatment 'ore corrosion resistant than electrodeposited Cr

    Can coat comple! shapes uniformly

    Hard particles can $e incorporated to increase Hv

    T+E can $e incorporated to reduce friction

    Can coat most metals and some insulators

    Disadvantages'ore e!pensive than electroplated Cr

    eattreatment

    is needed t! de+el!# !#timum #r!#erties

  • 7/21/2019 Surface Engineering Part 1(1)

    27/71

    T&ermal S#ra' %!atingsT&ermal S#ra' %!atings

  • 7/21/2019 Surface Engineering Part 1(1)

    28/71

    T&ermal S#ra' %!atingsT&ermal S#ra' %!atings

    A c!mm!n feature !f all t&ermal s#ra' c!atings is t&eir

    lenticular !r lamellar grain structureresulting fr!m t&e

    ra#id s!lidificati!n !f small gl!ules? flattened fr!m

    stri0ing a c!ld surface at &ig& +el!cities

    http*00###"gordonengland"co"uk0

  • 7/21/2019 Surface Engineering Part 1(1)

    29/71

    T&ermal S#ra' %!atings: $!nding

    T&ermal S#ra' %!ating $!nding Mec&anisms:

    1. Mec&anical 0e'ing !r interl!c0ing

    6/ Diffusion $onding or 'etallurgical $onding

    7act!rs affecting !nding and suse@uent uild u# !f

    c!ating:

    5/Cleanliness1 6/Surface area 7/Surface topography or

    profile1 8/Temperature . thermal energy/1 ?/Time .reaction

    rates K cooling rates etc" /1 /Jelocity . kinetic energy /1 >/

    hysical K chemical properties1 /hysical K chemical

    reactions"

  • 7/21/2019 Surface Engineering Part 1(1)

    30/71

    T&ermal S#ra' %!atings

    %!ating structure

    Lamellar !r flattened grains? !(ide inclusi!ns!utlining t&e grains !r #article !undaries

    "!r!sit': 1259

    L!; im#act energ' - unmelted #articles ) l!;

    +el!cit' .

    S&ad!;ing effects - unmelted #articles ) s#ra'angle .

    S&rin0age and stress relie+e effects

  • 7/21/2019 Surface Engineering Part 1(1)

    31/71

    ari!us t&ermal s#ra' c!ating #r!cesses

    L!;energ' #r!cesses:

    %!musti!n ;ire t&ermal s#ra'

    %!musti!n #!;der t&ermal s#ra'

    Arc ;ire t&ermal s#ra'

    ig&energ' #r!cesses:

    "lasma t&ermal s#ra'

    7 t&ermal s#ra'

  • 7/21/2019 Surface Engineering Part 1(1)

    32/71

    %!musti!n T&ermal S#ra' -7lame S#ra'.

    %!ating Material in #!;der? !r ;ire f!rm

    7lame -!('acet'lene !r &'dr!gen m!st c!mm!n.

    7lame +el!cit': 5 m)s and Tem#erature ac&ie+ed B 3 C%

    L!; #erf!rmance c!atings -&ig& #!r!sit'? #!!r !nding.

    http*00###"gordonengland"co"uk0

  • 7/21/2019 Surface Engineering Part 1(1)

    33/71

    ig& el!cit' ('gen 7uel -7. T&ermal S#ra'

    Similar t! c!musti!n t&ermal s#ra'? ut ;it& s#ecial

    design !n t!rc&

    7lame +el!cit' u# t! su#ers!nic +alues

  • 7/21/2019 Surface Engineering Part 1(1)

    34/71

    "lasma S#ra'

    7!rmati!n !f #lasma

    Material in t&e f!rm !f #!;der inected int! a +er' &ig&

    tem#erature #lasma flame ra#idl' &eated and accelerated

    t! a &ig& +el!cit'

    ig& +el!cit' and &ig& tem#erature -u# t! 55 C%.

  • 7/21/2019 Surface Engineering Part 1(1)

    35/71

    %!m#aris!n !f ari!us T&ermal S#ra' "r!cesses

    T&ermal

    #r!cess

    el!cit'

    m)s

    Tem#era

    ture? C%

    Ma(> s#ra'

    rate? 0g)&

    "!r!sit'?

    9

    $!nding

    %!musti!n

    #!;der

    3 22 62 #!!r

    7 6115 31 14 B >5 ;ellad&erent

    "lasma

    s#ra'

    24 55 5 B 2 ;ell

    ad&erent

  • 7/21/2019 Surface Engineering Part 1(1)

    36/71

    A##licati!ns !f T&ermal S#ra'ed Al %!atings

    T&ermal s#ra' metallic c!atings? ;it& and ;it&!ut sealersT&ermal s#ra' metallic c!atings? ;it& and ;it&!ut sealersand t!#c!ats? as a means t! #re+ent c!rr!si!n !f steeland t!#c!ats? as a means t! #re+ent c!rr!si!n !f steel

    surfaces>surfaces>

    T'#es !f metallic c!atings included are #ure inc? #ureT'#es !f metallic c!atings included are #ure inc? #ure

    aluminum? and inc)aluminum all!'? F59 inc)159aluminum? and inc)aluminum all!'? F59 inc)159aluminum ' ;eig&t>aluminum ' ;eig&t>

    A##licati!nsA##licati!ns

    ig& tem#erature resistantig& tem#erature resistant

    E(cellent resistance t! #!lluted and marine en+ir!nmentsE(cellent resistance t! #!lluted and marine en+ir!nments

    7!rms !(ide la'er7!rms !(ide la'er

    Geduces c!rr!si!nGeduces c!rr!si!n

    E l f T& l S % ti

  • 7/21/2019 Surface Engineering Part 1(1)

    37/71

    E(am#les !f T&ermal S#ra' %!atings

    E(am#le 1:Metal Matri$ Co!osite %MMC& Coatings

    ''C coatings) comprised of a hard ceramic phase

    em$edded in a metallic matri!) are increasingly $eing

    applied for many industrial components in the petrochemical

    industry) po#er generation and offshore applications toprovide cost effective protection against #ear and corrosion"

    Ty!ical e$a!les)

    C CoCrC 3iCrBSi

    Cr6C7 3iCr

    Ty!ical coating techniue) HJO+

    E l f T& l S % ti

  • 7/21/2019 Surface Engineering Part 1(1)

    38/71

    E(am#les !f T&ermal S#ra' %!atings

    3anoparticles cannot $e sprayed directly1

    ,econstitution of 3s into spherical micro-sied granules

    3ano-C0Co feedstock po#der

    Conventional C0Co feedstock po#der

    Coating !ro!erties)

    Hardness of n-C0Co

    coating is higher than that ofthe conventional one"

    Corrosion resistance of n-

    C0Co coating is higher than

    that of the conventional one"

    Potential !ro'les)

    De-car$uriation of Cdue to higher surface to

    volume ratio"

  • 7/21/2019 Surface Engineering Part 1(1)

    39/71

    E(am#les !f T&ermal S#ra' %!atings

    E(am#le 2:E(am#le 2:Plasa s!rayed theral 'arrier coatingsPlasa s!rayed theral 'arrier coatings

    Coating material* M6O7-2rO6 .56=-6?=

    m/) plus metallic $ond-coat .?=-56= m/

    Coating characteristics*orosity .interconnected/) microcracks

    and layered-structure

    High-temperature corrosion $ehaviour*

    enetration of corrosive gas) fuel and

    liuid through the inter-connected pores

    to get contact #ith metallic su$strate A

    o!idation A spallation of coatings

  • 7/21/2019 Surface Engineering Part 1(1)

    40/71

    A##licati!ns !f T&ermal S#ra' %!atings

    HJO+ spraying Tungsten Car$ide 0 Co$alt Chromium Coating

    .C05=Co8Cr/ onto ,oll for the aper 'anufacturing Industry

    &tt#:));;;>'!utue>c!m);atc&=+H0T"$m&s3M

    &tt#:));;;>'!utue>c!m);atc&=+H,g0SJF&J4

    http://www.youtube.com/watch?v=k-T_PBmhs3Mhttp://www.youtube.com/watch?v=ZgkSY8hYbH4http://www.youtube.com/watch?v=ZgkSY8hYbH4http://www.youtube.com/watch?v=k-T_PBmhs3M
  • 7/21/2019 Surface Engineering Part 1(1)

    41/71

    A##licati!n E(am#les !f Surface EngineeringA##licati!n E(am#les !f Surface Engineering

    2as tur'ine 'lades2as tur'ine 'lades

    Environment* High-temperature) corrosive"

    Coatings* Ceramic coatings as thermal $arrier

    Bond coat* 'Cr&lM alloy

    http://doc.tms.org/servlet/ProductCatalog?container=JOM+2005+January
  • 7/21/2019 Surface Engineering Part 1(1)

    42/71

    T'#ical A##licati!ns !f T&ermal S#ra' %!atings

    "lasma s#ra': %eramic? metal?

    caride c!atings t! s!l+e

    industrial #r!lems and ;ear?

    arasi!n? c!rr!si!n? t&ermal

    arriers>

    7: Ser+ing all industriesre@uiring e(treme ;ear resistant?

    dense caride and metal c!atings

    l % i

  • 7/21/2019 Surface Engineering Part 1(1)

    43/71

    +erla' %!atings+erla' %!atings

    Melting!f a la'er !f material !n t&e sustrate t!

    f!rm a c!ating

    eating s!urce: ;elding t!rc&? arc? #lasma?

    electr!neam>

    $!nding: metallurgical fusi!n

    Main a##licati!ns:

    ardfacing: engine +al+e seats

    %!rr!si!n #r!tecti!n

    Ge#airing !f damaged c!m#!nents

  • 7/21/2019 Surface Engineering Part 1(1)

    44/71

    %!m#ared ;it& t&ermal s#ra' c!atings

    %!m#aris!n +erla' c!atings T&ermal s#ra'

    T&ic0ness 26 mm /!rmall' B 1

    mm/umer !f

    la'ers%an e multi

    la'ers/!rmal single

    la'er

    $!nding 7usi!n Mec&anical

    interl!c0ing

    Micr!structure S!lidificati!n Laminar and#anca0e li0e

    % ld S -Ki ti S .

  • 7/21/2019 Surface Engineering Part 1(1)

    45/71

    %!ld S#ra' -Kinetic S#ra'.

    "!;der sie: 1 5"!;der sie: 1 5 mm

    "!;der #article +el!cit':"!;der #article +el!cit': 45 1 m)s -su#ers!nic.45 1 m)s -su#ers!nic.

    "!;der im#inging !n t&e sustrate in s!lid f!rm at"!;der im#inging !n t&e sustrate in s!lid f!rm at

    tem#erature ;ell el!; melting tem#eraturetem#erature ;ell el!; melting tem#erature

    !; %!ld s#ra' %!ating $uilds

  • 7/21/2019 Surface Engineering Part 1(1)

    46/71

    !; %!lds#ra' %!ating $uilds

    Stage 5* Su$strate cratering and first

    layer $uilt up of particles .initialcratering) deformation of su$strate)

    spat formation) fracturing of surface

    o!ides on metal particles and

    su$strates and first particle layer

    formation

    Stage 6* article deformation and

    realignment .multilayer coating

    $uild-up/

    Stage 7* 'etallic $ond formation

    $et#een particle0particle and void

    reduction

    Stage 8* +urther densification and

    #ork hardening of the coatingJan Steenkiste) T"H") et al) Surface and Coatings

    Technology 5?8 .6==6/ 67>-6?6"

  • 7/21/2019 Surface Engineering Part 1(1)

    47/71

    Im#!rtant "arameters !f %!ld S#ra' "r!cess

    A critical +alue !f #!;der #article +el!cit' -c.

    Determining fact!rs f!r #!;der #article +el!cit':

    gas tem#erature

    #article sie

    m!lecular ;eig&t !f gas

    -L!;er gas m!lecular

    ;eig&t? t&e faster t&e#!;der #article +el!cit'.

  • 7/21/2019 Surface Engineering Part 1(1)

    48/71

    Micr!structural %&aracteristics !f

    %!lds#ra' %!atings

    T!# la'er:

    #!r!usmicr!structure

    Inner la'er:

    densermicr!structure

    Tam#ing effect

    Ti on steel su$strate

    Jan Steenkiste) T"H") et al) Surface and Coatings Technology 5?8 .6==6/ 67>-6?6"

  • 7/21/2019 Surface Engineering Part 1(1)

    49/71

    Diffusi!n %!atings

    'etals and alloys are used at high-temperature environment"

    Protection echanis* rotective elements lead to

    formation of chromia) alumina and silica scales respectively)

    for o!idation and corrosion protection"

    Process) & protective element .or elements/) like%r? Al !rSi) is deposited on the surface of the $ase metal) and diffused

    into the $ase metal at high temperature

    Diffusion coatings !rocesses)

    &luminiing1

    Chromiing1

    &$ove-the-pack or out-of-pack chemical vapour deposition

    Aluminising

  • 7/21/2019 Surface Engineering Part 1(1)

    50/71

    Aluminising

    "r!cess* carried out $y a pack cementation process"

    "ac0* &l or &l alloy po#der)

    halide salt .activator/) e"g" 3H8Cl) to form metal halide

    #ith high vapor pressure

    inert filler .alumina/Tem#erature re@uired* a$ove ?= to 55==C for several hours

    ack

    Su$strate to $e

    coated

    Aluminising

  • 7/21/2019 Surface Engineering Part 1(1)

    51/71

    Aluminising

    %&emical reacti!ns and diffusi!n*

    on heating* activator reacts #ith the metallic component of the

    pack to form metal halides) e"g"

    3H8Cl N 3H7 HCl

    HCl &l N &lCl! H6

    &lCl!has high vapour pressure #hich diffuse through the pack)

    to form &l deposit on the su$strate) then diffuse into the

    su$strate to form +e-&l .or 3i-&l/ intermetallics

    T'#ical micr!structures !f aluminised car!n steels: layers

    of -+e6&l?) P-+e&l and0or +e7&l along the depth"

    Aluminising

  • 7/21/2019 Surface Engineering Part 1(1)

    52/71

    Aluminising

    Acti+it' !f aluminising #r!cess depends on* the amount

    and type of &l source alloy) the amount and type of

    halide activator) the amount of inert o!ide and process

    temperature"

    7!r aluminising !f /i ase all!'s:

    ig&acti+it' aluminising* high concentration ofaluminium-rich vapour at the surface of the part

    and coatings gro# mainly $y in#ard diffusion of

    aluminium

    L!;acti+it' aluminising* the coatings are formedmainly $y out#ard diffusion of nickel1 the

    formation of higher aluminide phases is suppressed"

    L!;acti+it' aluminiing

  • 7/21/2019 Surface Engineering Part 1(1)

    53/71

    L!;acti+it' aluminiing

    The pack contains aluminium alloy po#der " The concentration of aluminium-rich vapor is lo#" The coatings gro# mainly ' !ut;ard diffusi!n !f nic0el" The processing temperature is 5===-55?=C) i"e" the high end" 'icrostructure* 3i&l) no post-coating heat treatment reuired The coatings have coarse-grained columnar microstructures

    #ith limited ductility" The coatings thickness is less than high-activity coating

    thickness"

    T&e effect !f sustrate materials !n aluminiing: e>g>

    1./i

    2./i%r -+ariati!n !f %r c!ntent.

    L!;acti+it' aluminiing

  • 7/21/2019 Surface Engineering Part 1(1)

    54/71

    L!;acti+it' aluminiing

    Aluminising !n #ure /i sustrate

    Originalinterface Kirkendall

    porosity

    Nidiusion

    Inclusions

    5/ Coating gro#s out#ard

    6/ Original surface

    7/ 3i diffuses out#ard faster

    than &l diffuses in#ard Aformation of Qirkendall

    porosity at the interface"

    8/ +ormation of inclusions $y

    trapping pack particles in

    the coating"

    L!;acti+it' aluminiing

  • 7/21/2019 Surface Engineering Part 1(1)

    55/71

    L!;acti+it' aluminiing

    Aluminising !n /i%r sustrate

    Originalinterface Kirkendall

    porosity

    Nidiusion

    Inclusions

    ,egion $elo# the original

    surface*

    5/ Depletion of 3i

    6/ Enrichment of Cr

    +or 3i-5=Cr alloy*

    Cr is still in solid solution

    +or 3i-6=Cr alloy*

    Cr precipitates out of the solid

    solution to form RCr .reduce

    ductility/"

    ig&acti+it' aluminiing

  • 7/21/2019 Surface Engineering Part 1(1)

    56/71

    ig& acti+it' aluminiing The pack contains pure aluminium po#der" The concentration of aluminium-rich vapour is high"

    The coatings gro# mainly ' in;ard diffusi!n !f aluminium" The processing temperature is >== - ==C" The coatings is then heat-treated) typically 8h at 5=?=-55==C)

    to convert $rittle aluminium-rich phases) such as -3i&l7and -

    3i6&l

    7) to P-3i&l"

    High-activity aluminiing is more common than lo#-activity

    aluminiing"

    %!m#aris!n et;een l!; and &ig&

  • 7/21/2019 Surface Engineering Part 1(1)

    57/71

    # g

    acti+it' aluminiing

    %!m#aris!n !f t&e f!ll!;ing as#ects:

    5" Original surface

    6" Diffusion direction .3i) &l/

    7" 'icrostructures* Qirkendall porosity) em$edded pack particles)

    8" 'echanical properties

    Aluminising /i%r su#erall!'

    f!r gas turine engines

    %&r!mising

  • 7/21/2019 Surface Engineering Part 1(1)

    58/71

    g

    "r!cess* carried out $y a pack cementation process"

    "ac0* Cr po#der) ammonium chloride and inert alumina filler

    Micr!structures:

    L!;car!n steels: t&e c&r!mium de#!sits !n t&e surface t! f!rm a s!lid

    s!luti!n all!' !f ferritic ir!nc&r!mium

    Medium&ig& car!n steels: tend t! result in t&e f!rmati!n !f a la'er !f

    c&r!miumir!n caride #re+enting %r diffusi!n #r!cess>

    Tem#erature re@uired* typically to 55?=C for several hours1

    eight@Chr

    omium

    Temperature)

    oC??

    56

    =

    58==

    ==

    = 56

    a/ $/

    Distance into su$strate

    eight @ Chromium

    +e-Cr euili$rium diagram

    R

    te

    A!+et&e#ac0 #r!cesses

  • 7/21/2019 Surface Engineering Part 1(1)

    59/71

    # #

    Su$strate to $e coated is positioned a$ove the pack in a retort

    9as-phase process &luminising or Chromising

    Ad+antages !+er #ac0 #r!cesses:

    a$ility to uniformly coat internal passages and holes

    coating #ithout pack particle entrapment .no direct contact

    #ith the pack/

    $etter mechanical properties in terms of lo#er transition

    temperature .3i&l/

    ut!f#ac0 c&emical +a#!ur de#!siti!n

  • 7/21/2019 Surface Engineering Part 1(1)

    60/71

    # # #

    %&amer* a gas mi!ture of aluminium chloride and hydrogen .&lCl7is

    created e!ternally $y passing HCl or Cl6gas over &l/

    %&emical reacti!ns and diffusi!n*

    HCl 6&l --- 6&lCl7 7H61

    6&lCl7 8&l --- &lCl

    &lCl 3i 7H6 --- 3i&l HCl .g/

    Tem#erature:5=== C for 8 hours

    L!; aluminium acti+it'* microstructure

    is similar to lo#-activity pack aluminising"

    The use of molten aluminium is to increase

    aluminium activity $y forming lo#er

    chlorides of aluminium #hen passing the

    inlet gas mi!ture over liuid aluminium"

  • 7/21/2019 Surface Engineering Part 1(1)

    61/71

    %!m#aris!n !f +a#!ur#&ase aluminising

    ;it& #ac0 cementati!n aluminising

    a#!ur#&ase aluminiing is m!re c!stl'

    In large ret!rts? +ariati!ns in t&e c!ncentrati!ns !f +a#!ur

    #&ase reactants can result in n!nunif!rm c!ating t&ic0ness

    a#!ur#&ase aluminiing is effecti+e f!r c!ating c!m#le(

    s&a#ed #arts? and dust &aards ass!ciated ;it& &andling

    large am!unts !f #!;der are a+!ided>

    T'#ical A##licati!ns !f "ac0 %ementati!n

  • 7/21/2019 Surface Engineering Part 1(1)

    62/71

    'aFority of aero-engine tur$ine

    $lade aerofoils are aluminised to

    improve their resistance to hightemperature o!idation or surface

    preparation prior to deposition of TBC"

    M!dified Diffusi!n %!atings

  • 7/21/2019 Surface Engineering Part 1(1)

    63/71

    M!dified Diffusi!n %!atings

    Adding %rint! aluminide c!atings t! im#r!+e resistance

    t! T'#e II &!t c!rr!si!n? T !(idati!n and ductilit'> Deposition of Cr-enriched layer prior to aluminising and

    then aluminising of chromium coated su$strate

    ack containing &l and Cr po#ders

    Adding Siint! aluminied c!atings t! im#r!+e resistance

    t! T'#e II &!t c!rr!si!n? and &ig& tem#erature !(idati!n>

    Deposition of metallic Si layer prior to aluminising

    Silicon-containing coatings are suscepti$le to $asic flu!ing) i"e" $y 3a6O)

    leading to Type I hot corrosion) $ut have good resistance to sulphidation" In

    addition) it may $e prone to cracking during thermal cycling due to the formation

    of $rittle intermetallics"

    M!dified Diffusi!n %!atings

  • 7/21/2019 Surface Engineering Part 1(1)

    64/71

    M!dified Diffusi!n %!atings

    Adding "tint! aluminised c!atings

    1. t! im#r!+e resistance t! !(idati!n and t'#e I &!tc!rr!si!n ut 2.resistance t! t'#e II &!t c!rr!si!n is

    marginall' etter t&an c!n+enti!nal aluminides> In additi!n?

    3.resistance t! c'clic !(idati!n is #!!r as "t aluminides are

    less ductile t&an !rdinar' aluminides>

    Depositing a layer of t .?-5= Um/) and follo#ed $y

    diffusion heat treatment) and then aluminiing

    Micr!structure: a matri! of nickel aluminide #ith t present

    in solid solution %.3i)t/&l() and as intermetallic phases) .t&l6

    or t6&l7near the outer surface/"VV continue

    M!dified Diffusi!n %!atings

  • 7/21/2019 Surface Engineering Part 1(1)

    65/71

    g

    "r!tecti!n mec&anism* to promote formation of pure alumina scale and reduce scale

    gro#th rate to act as a phase sta$iliser and prevent the detrimentalconvertion from to W on thermal cycling to improve alumina scale adherence) including mechanical

    keying) as a possi$le mechanism due to the formation of anirregular o!ide-alloy interface1 to improve self-healing of the alumina scale after modest

    spalling to suppress interfacial void formation to tie up &l as t-&l compounds) thus lo#ering &l activity) in

    turn) to reduce the driving force for the diffusion of 3i from the

    su$strate into the coating1

    4 During service) t&l6can transform to t&l to cause cracking and void formation"

    7ailure !f Metallic c!atings

  • 7/21/2019 Surface Engineering Part 1(1)

    66/71

    g

    Defects in t&e c!ating !r at t&e c!ating)sustrate interface

    L!ss !f #r!tecti+e elements fr!m t&e c!ating in ser+ice:

    $y spallation of scale"

    $y vaporiation into a gaseous atmosphere) e"g" Cr6O7can

    $e further o!idied a$ove 5===C to $ecome volatile CrO7"

    $y dissolution into molten salt deposits* 'olten salt has

    3a6O reacting #ith &l6O7 O6$ecome 3a&lO7.aluminate/

    7ailure !f Metallic c!atings

  • 7/21/2019 Surface Engineering Part 1(1)

    67/71

    g

    %!atingsustrate interacti!ns in ser+ice -interdiffusi!n.-c!m#!siti!nal difference et;een c!ating and sustrate

    #r!+ides dri+ing f!rce at &ig& tem#erature.>

    5/ +ormation of detrimental phases #ithin the coating) e"g"$rittle intermetallics reduces ductility of the coating"

    6/ Dilution of the coating in the protective elements) e"g" 'o

    and J from alloy su$strate migrate to the coating) leading

    to reduction of resistance to hot corrosion"7/ Qirkendall porosity at the coating0su$strate interface

    reduces the adhesive strength) leading to spallation of the

    coatings"

    7ailure !f Metallic c!atings

  • 7/21/2019 Surface Engineering Part 1(1)

    68/71

    g

    %!atingsustrate interacti!ns in ser+ice -interdiffusi!n.:

    8/ Loss of &l to the su$strate $y interdiffusion1 and Diffusion

    of refractory elements from the superalloy into the coating)

    leading to degradation of o!idation resistance of protective

    aluminide coatings on high temperature superalloy

    components"

    %!ating -2 4 at9. Al

    Su#erall!'-5 1 at9 Al.

    Cr) Ta)) 'o

    Al

    7ailure !f Metallic c!atings

  • 7/21/2019 Surface Engineering Part 1(1)

    69/71

    E(am#le 1: Aluminied /ic0elase su#erall!'s

    A$ 2 &!urs at 1!% in air>

    $% 5 &!urs at 12!% in air

    7ailure mec&anism:

    &l6O7scale tends to spall easily in service1

    Interdiffusion $et#een the coating and the su$strate

    leads to dilution of the coating in aluminium" If &l is

    less than a critical value) it is no longer protective"

    3ote the effect of temperature in service"

    g

    &

    B

    C

    Time

    eightgain

    7ailure !f Metallic c!atings

  • 7/21/2019 Surface Engineering Part 1(1)

    70/71

    E(am#le 2: %&r!mied car!n steels? n!te t&e effect !f %

    L!; car!n steel l!ss !f c&r!mium due t!:

    s#allati!n !f %r23scale? diffusi!n !f c&r!mium

    int! t&e steel sustrate and +!latiliati!n !f %r3

    ig& car!n steel f!rms a l!t !f %r23%6#reci#itates

    during c&r!miing t&ese are an effecti+e s!urce !fc&r!mium? t&ere' increasing t&e time t! rea0a;a'!(idati!n t&at arises fr!m l!ss !f c&r!mium fr!m t&e

    c!ating>

    Im#r!+ing lifetimes !f c!ating)sustrate

  • 7/21/2019 Surface Engineering Part 1(1)

    71/71

    Inc!r#!rating a arrier la'er et;een c!ating

    and sustrate: to reduce the rates of interdiffusion

    $et#een coating and su$strate"

    43i-Hf compound) t-Hf compound used at interface of

    superalloy0aluminide coating

    Inc!r#!rating a reacti+e element? suc& as J !r

    %e? int! t&e c!ating: to improve scale adhesion on

    thermal cycling .needs to understand the effect of

    Diffusion

    $arrier layer

    &luminide coating

    Superalloy

    &lumina scale