supplemental information unusual changes in … references 1. oosawa, photocatalytic hydrogen...

15
1 Supplemental Information Unusual Changes in Electronic Band Edge Energies of Nanostructured Transparent n-Type Semiconductor Zr-Doped Anatase TiO 2 (Ti 1-x Zr x O 2 ; x < 0.3) Daniel G. Mieritz, Adèle Renaud and Dong-Kyun Seo School of Molecular Sciences, Arizona State University, Tempe, 85287-1604 Table S1. Nominal precursor weights (in grams) used for the synthesis of nanoporous TiO 2 and selected ZTO samples. Precursor TiO 2 10% ZTO 20% ZTO 30% ZTO Ti(O-Bu) 4 6.93 6.24 5.55 4.85 Ethanol 14.47 14.36 13.51 13.14 HNO 3 2.49 2.49 2.49 2.49 ZrCl 4 0 0.48 0.96 1.44 H 2 O 3.20 3.20 3.20 3.20 R 2.00 2.00 2.00 2.00 PEG 2.98 2.98 2.98 2.98 ECH 9.52 10.51 12.62 14.00 F 3.04 3.04 3.04 3.04

Upload: dangque

Post on 01-May-2018

230 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

1

Supplemental Information

Unusual Changes in Electronic Band Edge Energies of Nanostructured

Transparent n-Type Semiconductor Zr-Doped Anatase TiO2 (Ti1-xZrxO2; x <

0.3)

Daniel G. Mieritz, Adèle Renaud and Dong-Kyun Seo

School of Molecular Sciences, Arizona State University,

Tempe, 85287-1604

Table S1. Nominal precursor weights (in grams) used for the synthesis of nanoporous TiO2 and

selected ZTO samples.

Precursor TiO2 10% ZTO 20% ZTO

30% ZTO

Ti(O-Bu)4 6.93 6.24 5.55 4.85

Ethanol 14.47 14.36 13.51 13.14

HNO3 2.49 2.49 2.49 2.49

ZrCl4 0 0.48 0.96 1.44

H2O 3.20 3.20 3.20 3.20

R 2.00 2.00 2.00 2.00

PEG 2.98 2.98 2.98 2.98

ECH 9.52 10.51 12.62 14.00

F 3.04 3.04 3.04 3.04

Page 2: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

2

Table S2. CHN elemental analysis on selected ZTO products.

Sample Wt% C Wt% H Wt% N

0-500 0.117 0.372 0.015

10-500 0.034 0.233 0.004

20-600 0.064 0.245 0.014

30-500 0.1 0.29 0.015

Page 3: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

3

Table S3. Electronegativity (χ) and optical energy gap (Eg, eV) values used in the scissor

relationship to predict the conduction band energies (ECB), and the measured flat band energies

(Ufb), combined with the point of zero zeta potential (PZZP) and pH during the measurement

(pHMeas), used to obtain the corrected flat band energy (Ufb0).

Compound χ[a]

Eg

ECB

Ufb

PZZP pHMeas Ufb0 Ref.

TiO2, anatase 5.812 3.19 -4.22 −4.26 5.45 5.05 −4.24 this study

Zr0.1Ti0.9O2 5.816 3.24 -4.20 −4.10 5.45 5.05 −4.08 this study

Zr0.2Ti0.8O2 5.820 3.29 -4.18 −4.03 5.58 5.05 −4.00 this study

TiO2, anatase 5.812 3.32 -4.15 −4.30 5.80 0.00 −3.96 1

TiO2, anatase 5.812 3.40 -4.11 −4.42 5.45[b]

3.00 −4.28 2

TiO2, anatase 5.812 3.40 -4.11 −4.27 5.45[b]

6.00 −4.30 2

TiO2, anatase 5.812 3.40 -4.11 −4.07 5.45[b]

11.00 −4.40 2

TiO2, anatase 5.812 3.20 -4.21 −3.82 5.80 7.00 −3.89 3

TiO2, anatase 5.812 3.20 -4.21 −3.77 5.80 13.70 −4.24 4

TiO2, anatase 5.812 3.20 -4.21 −4.45 5.80 1.00 −4.17 5

TiO2, anatase 5.812 3.20[b]

-4.21 −4.42 5.45[b]

7.00 −4.51 6

Zr0.05Ti0.95O2 5.814 3.23[c]

-4.20 −4.31 5.45[b]

7.00 −4.40 6

ZrO2 5.854 5.00 -3.35 −2.71 6.70 13.30 −3.10 7

ZrO2 5.854 5.00 -3.35 −2.75 6.70 13.30 −3.14 8

Bi2O3 5.917 2.80 -4.52 −5.20 6.20 0.00 −4.83 9

CdO 5.823 2.20 -4.72 −4.55 11.60 13.30 −4.65 8

CuO 5.812 1.70 -4.96 −5.05 9.50 7.00 −4.90 8

Fe2O3 5.867 2.20 -4.77 −4.65 8.60 9.00 −4.67 8

Nb2O5 6.211 3.40 -4.51 −3.72 6.06 13.30 −4.14 10

PbO 5.416 2.80 -4.02 −4.96 8.29 0.00 −4.47 9

SnO2 6.217 3.50 -4.47 −4.82 4.30 0.00 −4.57 9

Ta2O5 6.262 4.00 -4.26 −3.31 2.90 13.30 −3.93 7

TiO2, rutile 5.812 3.00 -4.31 −3.75 5.80 13.00 −4.18 8

Page 4: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

4

TiO2, rutile 5.812 3.05 -4.29 −4.50 5.80 0.00 −4.16 1

TiO2, rutile 5.812 3.00 -4.31 −3.88 5.80 7.00 −3.95 3

V2O5 6.121 2.80 -4.72 −5.55 6.54 7.00 −5.58 8

WO3 6.567 2.70 -5.22 −4.55 0.43 13.30 −5.31 7

ZnO 5.951 3.20 -4.35 −4.91 8.80 0.00 −4.39 9

BaTiO3 5.244 3.30 -3.59 −3.95 9.00 13.60 −4.22 8

CdFe2O4 5.854 2.30 -4.70 −4.55 7.22 13.30 −4.91 8

FeTiO3 5.689 2.80 -4.29 −3.66 6.30 13.30 −4.07 7

Hg2Nb2O7 6.233 1.80 -5.33 −4.82 6.25 13.30 −5.24 10

KTaO3 5.275 3.50 -3.52 −3.52 8.55 13.30 −3.80 10

PbFe12O19 5.837 2.30 -4.69 −5.75 7.17 13.30 −6.11 11

SrTiO3 5.317 3.40 -3.62 −3.35 8.60 13.00 −3.61 11

[a] All values calculated by the geometric mean of Mulliken electronegativity. Ionization and electron affinity

energies taken from ref. 12. [b]

Measured in this study [c]

Extrapolated from values measured in this study

Page 5: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

5

Figure S1. Model of the electrochemical circuit employed for impedance measurements on

nanoporous ZTO materials.

RS

RCT

Q

Page 6: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

6

Figure S2. Elemental analysis results from optical emission spectra compared to the nominal

elemental compositions for the nanoporous ZTO materials. Results from two individually

prepared ZTO sample sets are shown in red and green.

Page 7: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

7

Figure S3. Powder XRD patterns of nanoporous ZTO samples after calcination at different

temperatures. The patterns shown are (a) TiO2, (b) 10% ZTO, (c) 20% ZTO, and (d) 30% ZTO.

The silicon standard is marked by a vertical black line at 2θ = 28.44°, and the anatase Brag peaks

are indicated by the red vertical lines. Rutile peaks are labeled with ‘R’, and srilankite peaks are

labeled with ‘S’.

Page 8: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

8

Figure S4. N2 sorption isotherms (a) and BJH pore size distributions (b) for the dense samples

TiO2 (red), 10% ZTO (green), 20% ZTO (blue) and 30 % ZTO (purple).

Page 9: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

9

Figure S5. Selected area electron diffraction (SAED) patterns of a) 0-500, b) 10-500, c) 20-600

and d) 30-500. The scale bars in (a) – (c) are 2 nm-1

, and in (d) is 5 nm-1

.

Page 10: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

10

Figure S6. STEM image of 30-500 with corresponding EDS spectra of the different particle

types.

Page 11: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

11

Figure S7. TEM micrographs ((a), scale bars = 20 nm, 5 nm inset) and SAED pattern ((b), scale

bar 2 nm-1

) of ZTO 20-500.

Page 12: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

12

Figure S8. Tauc plots, with curves drawn from transmission data of films of 0-500 (red), 10-500

(green), 20-600 (blue) and 30-500 (purple), with linear regions indicated by solid lines whose x-

intercepts estimate (a) the indirect band gaps and (b) the direct band gaps.

Page 13: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

13

Figure S9. (a) Mott-Schottky plot, obtained at pH 7.48, from films of nanoporous ZTO material

on FTO with increasing Zr doping, and (b) the estimated flat band potentials.

Page 14: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

14

References

1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates

and relationship between physical properties and kinetic properties. New journal of chemistry

1989, 13 (6).

2. Lee, M.-S.; Cheon, I.-C.; Kim, Y.-I., Photoelectrochemical Studies of Nanocrystalline

TiO2 Film Electrodes. Bulletin of the Korean Chemical Society 2003, 24 (8), 1155-1162.

3. Ge, H.; Tian, H.; Zhou, Y.; Wu, S.; Liu, D.; Fu, X.; Song, X.-M.; Shi, X.; Wang, X.; Li,

N., Influence of Surface States on the Evaluation of the Flat Band Potential of TiO2. ACS

Applied Materials & Interfaces 2014, 6 (4), 2401-2406.

4. van de Krol, R.; Goossens, A.; Schoonman, J., Mott‐Schottky Analysis of Nanometer‐

Scale Thin‐Film Anatase TiO2. Journal of The Electrochemical Society 1997, 144 (5), 1723-

1727.

5. Möllers, F.; Tolle, H. J.; Memming, R., On the Origin of the Photocatalytic Deposition of

Noble Metals on TiO2. Journal of The Electrochemical Society 1974, 121 (9), 1160-1167.

6. Imahori, H.; Hayashi, S.; Umeyama, T.; Eu, S.; Oguro, A.; Kang, S.; Matano, Y.;

Shishido, T.; Ngamsinlapasathian, S.; Yoshikawa, S., Comparison of Electrode Structures and

Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added

TiO2 Composite Electrodes. Langmuir 2006, 22 (26), 11405-11411.

7. Butler, M. A.; Ginley, D. S., Prediction of Flatband Potentials at Semiconductor‐

Electrolyte Interfaces from Atomic Electronegativities. Journal of The Electrochemical Society

1978, 125 (2), 228-232.

Page 15: Supplemental Information Unusual Changes in … References 1. Oosawa, Photocatalytic hydrogen evolution and oxygen evolution on ternary titanates and relationship between physical

15

8. Nozik, A. J., Photoelectrochemistry: Applications to Solar Energy Conversion. Annual

Review of Physical Chemistry 1978, 29 (1), 189-222.

9. El Halouani, F.; Deschanvres, A., Interfaces semi-conducteur-electrolyte: Correlations

entre le potentiel de bande plate et les echelles d'electronegativite. Materials Research Bulletin

1982, 17 (8), 1045-1052.

10. Kung, H. H.; Jarrett, H. S.; Sleight, A. W.; Ferretti, A., Semiconducting oxide anodes in

photoassisted electrolysis of water. Journal of Applied Physics 1977, 48 (6), 2463-2469.

11. Butler, M. A.; Ginley, D. S., Correlation of photosensitive electrode properties with

electronegativity. Chemical Physics Letters 1977, 47 (2), 319-321.

12. Lide, D. R. E., CRC Handbook of Chemistry and Physics. 88th ed.; CRC Press:: Boca

Raton, FL, 2007; p 10-156, 10-206.