summary of support tube r&d nov. 11, ’04 kek h. yamaoka

20
Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

Upload: geraldine-morrison

Post on 21-Jan-2016

223 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

Summary of Support tube R&D

Nov. 11, ’04

KEK H. Yamaoka

Page 2: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

・ Components at IR region Supported by Tungsten tubes, CFRP tube・ For high luminosity   Ground motion, culture Noise

→ Analyses, Excitation tests

Study Items;

・ Consistency of analyses

・ How much is relative

amplitude?

|P1-P2| < 1nm(Criteria)・ Is necessary CFRP tube?→ How much thickness?

Introduction

4m

P1 P2

Tungsten Tube(t=100)

CFRP tube

Page 3: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

(2) 20t x 100w x 1440L

(4) 20t x 100w x 695L 2.5t x 100w x 200L

(1) 20t x 100w x 695L

(3) 20t x 100w x 695L

Exciting Test

(5) φ80 x 10t x 200L(1/10 scale)

(6) φ80 x 10t (1/10 scale)t=3mm

Input exciting force(Excitation table or Impact hammer)    ↓ Measurement: natural frequencies Mode shape    ↓ Compare to the FEM results

Page 4: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

20t x 100w x 695L 2.5t x 100w x 200L

t=3mm

2: 40Hz

3: 161Hz

1: 26Hz

2: 43Hz

3: 184Hz

1: 30HzMeasurement FEM

1

X

Y

Z

JUL 29 200318:01:57

DISPLACEMENT

STEP=1SUB =5FREQ=259.703DMX =38.732

1

X

Y

Z

JUL 29 200318:01:38

DISPLACEMENT

STEP=1SUB =3FREQ=75.762DMX =44.94

1: 76Hz

2: 256Hz

3: 489Hz

1

X

Y

Z

JUL 29 200318:06:24

DISPLACEMENT

STEP=1SUB =7FREQ=486.8DMX =42.803

1

2

34

56

7

8

910

1112

131415

1617

18

192021

(+Y): [ ] 521 右側 コン フ レ゚ ックス

: 1.0, : 振幅 ト ヴ ェル(g) X,Y,Z 方 向 遠

1

234

5678

9

101112

1314

1516

17

18 19

20

21

(+Y): [ ] 258 右側 コン フ レ゚ ックス

: 1.0, : 振幅 ト ヴ ェル(g) X,Y,Z 方 向 遠

123

456

7891011121314

151617

18

192021

(+Y): [ ] 77.5 右側 コン フ レ゚ ックス

: 1.0, : 振幅 ト ヴ ェル(g) X,Y,Z 方 向 遠

1: 78Hz

2: 258Hz

3: 522Hz

1st ~ 3rd mode: Good agreement with FEM Support structure should be modeled in FEM.

Page 5: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

1 10 100 10001E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

Am

plit

ud

e(n

m)

Frequency(Hz)

1 10 100 10001E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

Am

plit

ud

e(n

m)

Frequency(Hz)

Stiffness: 1:512

2.5mm thick plate

By connecting very weak structure, Deviation can be absorbed. Correlation can be given.Relative amplitude can be estimated.

1st: 99Hz2nd: 548Hz

1st: 106Hz2nd: 548Hz

1st: 88Hz

2nd: 126Hz

Case-1

20mm thick plate

Case-2

Page 6: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

1

X

Y

Z

F0cos(t)=(m ・ a)sin(t)

QC-L: Tungsten(100mm) QC-R: Tungsten(100mm)

CFRP

0 – 1000HzCalculation of relative amplitude

1

X

Y

Z

JUN 23 200409:31:56

ELEMENTS

REAL NUM

U

2m3.85m

7m8m

QC-L QC-R

3mm 5mm 10mm0Hz1Hz3Hz5Hz

CFRP thick.

Difference of 1st mode of resonantfrequency between QC-R and QC-L.

Get relative amplitude (QC-R)-(QC-L)

(Model-A)

(Model-B) F0cos(t)

2m7m8m

P1 P2

Page 7: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

Estimation of Input Acc.

Data: Vertical @ATF(17:00 Feb. 10, 2004)

(ロ グ周波数0.1 1 10

1E- 6

1E- 7

1E- 8

1E- 9

Linear Spectrum

2x10-7m/s2

Input Acc. = 2x10-7m/s2

Mass=90tons/9.8[m/s2]

Self weight

Input data

Page 8: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

1

X

Y

Z

APR 7 200414:19:12

DISPLACEMENT

STEP=1SUB =1FREQ=73.152DMX =1.279

U

1st mode 2nd mode

Same phase Opposite phase

Relative amplitude: QC-R and QC-L

Amplitude: QC-R and QC-L

t100mm t100mmt5mm

In case of 100mm-5mm(CFRP)-100mm, f=0Hz

Relative amplitude between QC-R and QC-L

QC-R QC-RQC-LQC-L

Dif

fere

nc

e(n

m)

1e-4

1

Page 9: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

1

X

Y

Z

JUN 23 200409:31:56

ELEMENTS

REAL NUM

U

QC-L QC-R

1

X

Y

Z

QC-L QC-R

Other calculations

Diff: Relative amplitude between QC-R and QC-L.

Tungsten Tungstenf Mode 3mm 5mm 10mm 100mm 3mm 5mm 10mm 100mm

Freq.(Hz) 75.8 76.0 76.0 49.2 17.583 17.7 17.9 16.3Diff.(nm) 0.098 0.055 0.016 9.09E-05 0.065 0.026 0.008 2.60E-04Freq.(Hz) 77.5 78.6 81.4 113.0 20.2 21.8 25.0 44.4Diff.(nm) 0.213 0.206 0.192 0.080 2.816 2.398 1.763 0.325Freq.(Hz) 75.2 75.3 75.5 49.0 17.0 17.1 17.3 16.0Diff.(nm) 0.129 0.080 0.035 1.10E-03 0.823 0.480 0.234 3.60E-02Freq.(Hz) 77.0 78.2 80.9 112.6 19.8 21.4 24.7 43.3Diff.(nm) 0.174 0.177 0.177 0.081 2.357 2.186 1.696 0.334Freq.(Hz) 73.4 73.7 74.2 48.5 15.6 15.9 16.3 15.3Diff.(nm) 0.173 0.133 0.076 3.26E-03 2.339 1.496 0.752 1.30E-01Freq.(Hz) 76.9 77.8 80.4 111.9 19.5 20.9 24.1 41.0Diff.(nm) 0.094 0.116 0.143 0.082 1.547 1.726 1.532 0.349Freq.(Hz) 71.5 72.0 72.7 48.1 13.9 14.4 15.1 14.4Diff.(nm) 0.204 0.172 0.113 5.62E-03 3.813 2.631 1.396 2.84E-01Freq.(Hz) 76.8 77.6 80.0 111.0 19.3 20.6 23.6 38.4Diff.(nm) 0.056 0.078 0.114 0.084 1.077 1.343 1.343 0.359Freq.(Hz) 75.6 17.4Amp(p-p) 0.224 3.869

CFRP CFRP3-Point fixed(Both end+3.85m) 2-Point fixed(Both end)

1stCanti

1st

2nd5Hz

1st

2nd3Hz

0Hz1st

2nd

1st1Hz

2nd

Page 10: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

Results

1

X

Y

Z

JUN 23 200409:31:56

ELEMENTS

REAL NUM

U

P1 P2

1

X

Y

Z

P1 P2

Natural frequency: 76Hz, relative amp. : 0.1nm <1nmThis is ideal configuration.In case of no CFRP tube(Cantilever): Amplitude=0.2nm <1nm  CFRP tube is not necessary because of less than 1nm.  However, it is difficult to amount on a very stiff base stand. So actual natural frequency must be lower than this value.

Natural frequency: 17Hz, relative amp. : 2 ~ 3nmIn case of no CFRP tube(Cantilever): Amplitude= 4nm

⇒ CFRP tube: - No efficient to reduce amplitude. - Deviation of natural frequency between two tubes can be absorbed.

(Model-A)

(Model-B)

Page 11: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

1

X

Y

Z

APR 7 200414:19:34

DISPLACEMENT

STEP=1SUB =3FREQ=79.927DMX =.986417

U

1

X

Y

Z

APR 7 200414:19:12

DISPLACEMENT

STEP=1SUB =1FREQ=73.152DMX =1.279

U

7m

8m

2m

Right side: 70Hz

LC

RCFRP: Changed!

Left side: 75Hz

L R

L

R

1st mode

2nd mode

70Hz75Hz

1

X

Y

Z

APR 7 200414:09:13

DISPLACEMENT

STEP=1SUB =3FREQ=71.63DMX =1.28

U

1

X

Y

Z

APR 7 200414:08:52

DISPLACEMENT

STEP=1SUB =5FREQ=75.798DMX =1.209

U

1st mode(CFRP: 1mm) 2nd modeLess than this thickness, correlation and opposite phase doesn't appear at 2nd mode.

Optimization of CFRP tube thickness

1st mode 2nd modeCFRP(mm) Freq(Hz) Freq(Hz)

20 73.6 85.210 72.9 80.15 75.5 78.43 72.0 76.51 71.5 75.7

At least, thickness of CFRP: >3mm

Page 12: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

Configuration of support system

・ Both-ends supported structure with CFRP tube connection  → Correlation is given to both-sides tubes in oscillating behavior.   Tungsten tube: 100mm thick, CFRP: 5mm thick Support position: Both ends and 3.85m from I.P.

・ Active vibration isolation system is necessary → Relative amplitude will be above 1nm. CFRP tube is not efficient to reduce amplitude less than 1nm.

・ It is necessary to design the stiff support base as possible → Natural frequency becomes high.  → Amplitude is decreased proportional to frequency.

Conclusion CFRP tube(5mm)

Tungsten masks(100mm)

Page 13: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka
Page 14: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

A

EI

lf ii

2

2 1

2

Stiffness(CFRP tube)

EI: Bending stiffness  E: Young’s modulus  I : Moment of Inertia

64

44IO dd

I

EI

pl

3CFRP tube(t=5mm) E=150GPa I=π ・ (d1

4-d24)/64

=π ・ (8004-7904)/64 =9.9×108mm4

Tungsten(t=100mm) E=415GPa I=π ・ (d1

4-d24)/64

=π ・ (8004-6004)/64 =1.4×1010mm4

Ratio = CFRP:Tungsten = 1 : 39

CFRP Tube→Not efficient to increase natural frequency and decrease amplitude.

・ Natural frequency

・ Deformation

Page 15: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

fF

fXfH

j

iij

FRF(Frequency Response Function)

Xi: Output Acc.Fj: Input force

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

- 100

- 50

0

50

100

Out

put

Acc

.(m/s

2 )

Time(sec.)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10- 5

0

5

10

15

20

25

30

35

40

45

50

Inpu

t Fo

rce(

N)

time(sec.)

10 100 1000

1E- 4

1E- 3

0.01

Fou

rier

Spe

ctru

m(N

)

Frequency(Hz)

10 100 1000

1E- 5

1E- 4

1E- 3

0.01

0.1

1

10

Fou

rier

Spe

ctru

m(m

/s2 )

Frequency(Hz)

Hz0.0 4E3

(

m/s

2̂ログ振幅

1

0.1

1E- 2

10

Hz0.0 4E3

(

m/s

2̂ログ振幅 1

0.1

10

100

Hz0.0 4E3

(

m/s

2̂ログ振幅 1

0.1

10

100

Hz0.0 4E3

(

m/s

2̂ログ振幅 1

0.1

10

100

Hz0.0 4E3

(

m/s

2̂ログ振幅 1

0.1

10

100

Hz0.0 4E3

(

m/s

2̂ログ振幅 1

0.1

10

100

Hz0.0 4E3

(

m/s

2̂ログ振幅 1

0.1

10

100

Hz0.0 4E3

(

m/s

2̂ログ振幅 1

0.1

10

100

Hz0.0 4E3

(

m/s

2̂ログ振幅 1

0.1

10

100

frf- frf- frf-

frf- frf- frf-

frf- frf- frf-

FFT

FFT

FRF

Input

Output

Input

Output

○ Tests(Hammering test)

FRF Table

Page 16: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

10 100 1000

1

10

100

FR

F((

m/s

2 )/N

)

Frequency(Hz)

P1 P2 P3 P4 P5 P6 P7 P8 P9

12

34

56

78

9

(+Y): 56.2 Hz (283右 側

: 1.0, : 振幅 ト ヴ ェル(g) X,Y,Z 方 向 遠

A: 57Hz

○ Results

(Taper flange, 12-M6)

123

45

6

78

9

(+Y): 129 Hz (- 11右 側

: 1.0, : 振幅 ト ヴ ェル(g) X,Y,Z 方 向 遠

B: 129Hz

C: 585Hz

1

2

34

5

6

7

8

9

(+Y): 1.21E3 Hz (196右 側

: 1.0, : 振幅 ト ヴ ェル(g) X,Y,Z 方 向 遠

D: 1216Hz

1

2

3

4

5

6

78

9

(+Y): 1.69E3 Hz (153右 側

: 1.0, : 振幅 ト ヴ ェル(g) X,Y,Z 方 向 遠

E: 1690Hz

1

23

4

56

78

9

(+Y): 2.5E3 Hz (143右 側

: 1.0, : 振幅 ト ヴ ェル(g) X,Y,Z 方 向 遠

F: 2500Hz

A B

C DE F

123456789

G-sensor

Fixed

Page 17: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

*

''

*

2*

'

' FEr

FEr

testr

testr

FEr

testr

rrMAC

MAC(Modal Assurance Criteria)

Modal assurance criteria quantitatively compare all the possible combinations of test and analysis mode shape pairs.

Mode Freq.  Damping(%)  1 30.4Hz    1.68  2 188Hz    0.422 3 419Hz    0.303 4 584Hz    0.113 5 992Hz    8.02E-2

nf

ff

2

21

f2fnf1

2

Damping ratio

0.0 0.0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1.0 1.0

1

2

3

4

5

テスト

5

4

3

2

1

FEM

5th3rd2nd

4th

5th1 st4th3rd2nd1st

FEMTest

MAC=1: Mode shape pairs is exactly match MAC=0: pairs that are completely independent

1st: 31Hz

3rd: 457Hz

5th: 1022Hz

4th: 534Hz

FEM

2nd: 192Hz

Comparison with FEM

Test

3D : Ref [ ] 988 表示 コンフ レ゚ ッ ク ス

: 1.0, :振幅 ト ヴ ェル(g) X,Y,Z :方 向 遠 近

3D : Ref [ ] 32.5 表示 コン フ レ゚ ッ ク ス

: 1.0, :振幅 ト ヴ ェル(g) X,Y,Z :方 向 遠 近

3D : Ref [ ] 186 表示 コンフ レ゚ ッ ク ス

: 1.0, :振幅 ト ヴ ェル(g) X,Y,Z :方 向 遠 近

3D : Ref [ ] 417 表示 コン フ レ゚ ッ ク ス

: 1.0, :振幅 ト ヴ ェル(g) X,Y,Z :方 向 遠 近

1st: 30Hz

3rd: 419Hz

2nd: 188Hz

5th: 992Hz

3D : Ref [ ] 578 表示 コンフ レ゚ ッ ク ス

: 1.0, :振幅 ト ヴ ェル(g) X,Y,Z :方 向 遠 近

4th: 584Hz

Page 18: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

1

X

Y

Z

F0sin(t)=(m ・ a)sin(t)

F0: Input force(F0=ma)X: AmplitudeXst: Static deformationζ: Damping ratio(2%)ωn: Resonant frequencyω: Frequency If =n, X/Xst=25

Harmonic analysis

F0sin(t): Excitation force0 – 1000Hz: Sweep frequency

tFkxxcxm sin0

222 21

1

nnstX

X

F0sin(t)

Page 19: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

Model-1A Model1-B Model-2AModel-

2B

Deformation(mm) 1.6 - 0.09 -

Stress(MPa) 23 - 5 -

Natural frequency(Hz)

(Vertical)

1st mode 17 15 71 152nd Mode 81 38 179 543rd mode 173 105 202 93

Harmonic response(nm) @QC1 8.0 8.0 0.2 6.0

Spectrum analysis(nm)

@QC1

1st mode 6.5 2.0 4.3 2.72nd Mode -1.7 1.1 0.2 0.23rd mode -0.4 0.1 1.9 0.002

(Model-1A) (Model-1B)

(Model-2A) (Model-2B)

Page 20: Summary of Support tube R&D Nov. 11, ’04 KEK H. Yamaoka

現実に考えられる固有振動数のずれについて

Young’s modulus の違い  Aluminum の場合種類によって  6.9GPa – 7.3GPa の範囲がある。 →   fi: 3% different  If 70Hz: 2Hz, 17Hz: 16.5Hz

寸法の誤差 寸法が多少ずれても断面 2 次モーメント( I)に大きな差は生まれない。また、寸法を管理することができることから「寸法の誤差」による固有振動数のずれは小さいと考えられる。

組み立て及び設置誤差によるずれ ネジ締めのトルク管理、寸法測定等で管理できるが完全にはできない。  3%以内の誤差にできるのではないだろうか。(根拠はすこしあいまい)

全体では 5% ぐらいに抑えられるかもしれない。  → どのくらいの誤差に収められるか試験。

A

EI

lf ii

2

2 1

2

64

44IO dd

I