substrates for gan technology -...

24
1 ...translating ideas into innovation Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline View from technologists perspective do not expect a lot of crystallography What is GaN good for ? Why are substrates an issue ? Routes to defect reduction Routes to freestanding substrates Bulk GaN crystals Conclusions and outlook

Upload: letu

Post on 16-Mar-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

1

...translating ideas into innovation

Substrates for GaN Technology

Markus WeyersFerdinand-Braun-InstitutBerlin

Outline

View from technologists perspective do not expect a lot of crystallography

• What is GaN good for ?

• Why are substrates an issue ?

• Routes to defect reduction

• Routes to freestanding substrates

• Bulk GaN crystals

• Conclusions and outlook

Page 2: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

2

Why GaN for optoelectronics ?

Emission (and detection) wavelength/color

GaN/GaInN: • direct semiconductor • emission in

near UV – blue – green region

LEDs, blue laser

AlGaN/GaN:• emission/absorption in UV

UV- LEDs“solar blind“ UV detectors

0.2 0.3 0.4 0.5 0.60

1

2

3

4

5

6

7

Si LiAlO2 GeSi

Saphir

6H-SiC

InN

AlN

GaNEg

(eV

)

a (Å)

InP

GaP AlAs

InAs

GaAs

Applications in optoelectronics I

green traffic light

White light from

• light from blue LED mixedwith secondary light from two phosphors

• UV LED for pumping of threephosphors

For

• LCD backlight

• general lighting

• automotive

Page 3: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

3

Applications in optoelectronics IIWhite and blue LEDs for displays

Data storage

BlueRay DiscGaN - Laser @ 405 nm

Why GaN for electronics ?

Potentially best performance for high power at high frequency

0,1 1 10 100 1000

Frequenz (GHz)

0,1

1

10

100

1000

max

imal

e Le

istu

ng (

Wat

t) Si LDMOS

GaAs HBT, HEMT InP HBT, HEMT

SiC

GaN HFET

0,1 1 10 100 1000

Frequenz (GHz)

0,1

1

10

100

1000

max

imal

e Le

istu

ng (

Wat

t) Si LDMOS

GaAs HBT, HEMT InP HBT, HEMT

SiC

GaN HFET

Frequency (GHz)

Max

imum

pow

er (

W)

Page 4: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

4

Material properties

1.34.94.90.461.5Thermal conductivity (W/Kcm)

500500500300200Maximum estimated operation temperature (°C)

76026018071Johnsons Figure of Merit (~VBr² x vsat²)

2.72.02.02.01.0Saturation velocity(107 cm/s)

3.32.42.00.40.3Electric breakdown field (106 V/cm)

1250*500100085001500Electron mobility (cm²/Vs)

3.42 dir.

3.0 ind.

3.26 ind.

1.43 dir.

1.1 ind.

Band Gap (eV)

GaN/AlGaN

6H SiC

4HSiC

GaAsSi

* 2DEG mobility up to 2000 cm²/Vs

High breakdown voltage + high saturation velocity good power performance at high frequencies

AlGaN GaN

spacer

Distribution of 2DEG carriers

GaN HFET (MODFET, HEMT)

Carriers transfered from AlGaN and/orGaN (due to spontaneous and piezoelectric polarization) to channelat interface

Conductivity of channel controlled bygate voltage / field

High breakdown voltage of GaNhigh source-drain voltage possiblehigh power operation

GaN HBT still far from application

Source DrainGate

AlGaN n-doped (or undoped)

GaN 2-DEG

Page 5: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

5

GaN HFET at FBH

Processed wafers on transparent SiC substrate

Packaged high power transistor

Applications in electronics

Power amplifiers for

mobile communication

radio links

radar

Page 6: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

6

Which GaN ?

GaN device technology uses hexagonal wurtzite GaN with c-plane orientation

Other orientations (nonpolar m-plane, a-plane for UV emitters) or polytypes (cubic zincblende) are research topics

c plane

50 nm nucleation layer on sapphire after recrystallization

Growth methods – MOVPE

Metalorganic Vapour Phase Epitaxy

Ga(CH3)3 + NH3 GaN + 3 CH4

Typically at reduced pressure

Multiwafer reactors (49 x 2“)

The method for mass production of LEDs

AIX 2600 HT 11x2“ at FBH

Page 7: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

7

Growth methods – MBE

Molecular Beam Epitaxy

UHV

Ga from Knudsen cells

NH* or N* from plasmacracking of NH3 or N2

Primarily research tool:Surface studiesDifferent polarities

Some device work primarilyfor GaN-HFETs

Growth methods – HVPE

open hotwall reactor N2

NH3

HCl GaCl, HGaN

HCl, H2

N2

700-900 °C 900-1100°C

Ga Substrat

H21

GaCl HClGa 2+→+ HHClGaN HN GaCl 23 ++→+

N21

Ga GaN 2+↔

H23

GaN NHGa 23 +↔+

Hydride vapour phase epitaxy

Used for thick layers: growth rates above 100 µm/h demonstrated

Page 8: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

8

AIX-HVPE at FBH

Vakuum-system

HCl/N2/H2

HCl/N2

NH3/N2/H2

1 2Zone

3 4 5

N2

N2

N2

1 2 3 4 5

Reflectometry (LayTec EpiR) importanttool for control of growth

Horizontal reactor with cross flowgeometry (optimized together withAixtron)

Research tool to understand growth and optimize technology

Optical access

Substrates for GaN

GaAs technology uses GaAs substrates

Si technology uses Si substrates

currently uses

Sapphire (opto)

SiC (SI for electronics, n-type for opto)

some Si

GaN samples with very high prices

GaN technology waits for GaN substrates

tries

AlN

LiAlO2

ZrB2

MgO

others

Page 9: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

9

Substrate choice

Criteria:• lattice coincidence• lattice matching• thermal expansion

coefficent (TEC)• surface chemistry• temperature stability

• conductivitythermalelectrical

• cleavability (laser diodes)

• availability• price

0.2 0.3 0.4 0.5 0.60

1

2

3

4

5

6

7

Si LiAlO2 Ge

SiSaphir

6H-SiC

InN

AlN

GaNEg

(eV

)

a (Å)

InP

GaP AlAs

InAs

GaAs

Sapphire, SiC and Si

HFET (Nitronex)LED research

Dissolves in Ga

HFET (SI)Some LED (n-type)

Nanopipes

Most LEDs

High thermal resistance

cheap (despite stange orientation)

expensive (n-type)prohibitive (SI) (2,500€ for 2“)

cheap, up to 4“

semiconductingSC: for optoSI: for electronics

insulating

-2x10-6-1.1x10-6+1.7x10-6ΔTEC (1/K)

17 reduced by rotation

- 3.5‘- 13.8Δa/a (%)

Si (111)SiC (6H, 4H)α - (0001) Al2O3

Bowing direction for thin layers depending on growth process, tensile and compressive possible

Page 10: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

10

Substrate limitations I

Mismatch of lattice constant and thermal expansion coefficent

• dislocations: limit device performance (and lifetime) since they actas recombination and scattering centers

• bow: problem for device technology - sub-µm lithography difficult due to limited depth of focus- inhomogeneous thermal contact in epitaxy or plasma etching

- polishing of larger areas / full wafer impossible

• cracks: render layers useless for devices

Dislocation density I

0 50 100 150 200 250 3000

2

4

6

8

10

12

Rippenbreite 4 µm Kontaktoptimierung Reduktion der Defektdichte Reduktion der Rippenbreite

von 4µm auf 2µm

OU

TP

UT

PO

WE

R (

mW

)

CURRENT (mA)

sapphire

GaN template withreduced defect

density

Blue (405 nm) laser diodes

Defect reduction by oneorder of magnitude yields

• reduced thresholdcurrent

• higher output power

• (higher reliability)

Ins titut

Festkörpe rphys ik Angewandte

Fraunhofer

IAF Data provided by K. Köhler

Page 11: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

11

Dislocation density II

Luminescence (PL and EL) efficiency drops with increasing defectdensity

Effect most severe for short (UV) and long (green) wavelength

1E6 cm-2

1E9 cm-2

Akita et al; phys. stat. sol. a 201 (2004) 2624

DD

Bow

Severe bowing withincreasing layer thickness

For standard sapphiresubstrates (330 µm thick) minimum radius only – 40 cm!

No polishing possible

Inhomogenous thermal contact in device epi (wavelength shift in LEDs)

Stress partly released bycracks in GaN layer that canpropagate into substrate

GaN on sapphire: bow and interfacial stress versus GaN layer thickness

1 10 10 0 1 000

0

5

1 0

1 5 33 0 µ m , fro m M O VP E 33 0 µ m , H VPE 10 0 µ m , H VPE 33 0 µ m , H VPE -EL OG 10 0 µ m , H VPE -EL OG

-κ (

m-1)

G aN (µ m )

0.0

0 .2

0 .4

0 .6

0 .8

-σsapp h ire

σG aN

inte

rfac

ial s

tres

s (G

Pa)

100 µm sapphire

330 µm sapphire

Page 12: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

12

Cracking I

2“ wafers GaN/sapphire from HVPE without cracks in the surface possible (here: 90 µm, 200 µm also demonstrated)

but

Dependent on starting layer and notnecessarily stable

Cracking after cool-down

or even after weeks of storage

Cracking II

Focus

90 µm thick layer with crack-free surface

Cracks close during growth depending on growth conditions

Increasing crack density towards substrate can move into substrate and cause breakage

Page 13: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

13

Substrate limitations II

Thermal conductivity

0 5 10 15 200.0

0.2

0.4

0.6

0.8

1.0

1.2

Sapphire

SiCV

G -5 ... +2 V

I D A

/mm

VD

0 5 10 15 200.0

0.2

0.4

0.6

0.8

1.0

1.2

R.L. Feb05

Tenfold lower thermal conductivity of sapphire (0.3 W/cmK) in comparison to SiC (4 W/cmK) leads to

• lower maximum current

• stronger current reductionat higher drain voltage / power

Heat dissipation important for power devices

• transistors

• laser diodes

• LEDs !!

Drain current vs. drain voltagefor GaN HFET on sapphire and SiC

Substrate limitations III

Electrical conductivity

LED on insulating sapphire requires two front contacts

not matched with conventionalLED technology

LED on conducting substrate (SiC) nucleation / buffer layer has to be conductive

MODFET needs (semi)insulating substrate and high resistivity nucleation / buffer layer

Page 14: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

14

Epi growers dream

Substrate

• for homoepitaxy no worries with mismatch and delicate nucleation / buffer layer

growth schemes

• with reasonable (for unipolar devices) or low (for bipolar devices) dislocation densities

• available as n-type (opto) or SI (electronics) (p-type would also be nice to have)

• at affordable prices (currently 2” SI:SiC 2.500 €!)

Substrate from classical bulk growth

Si300 mm x 2000 mm

www.msil.ab.psiweb.com

(2001)

GaAs150 mm x 300 mm

www2.hitachi-cable.co.jp

(2001)

GaN10 mm x 15 mm

S. Porowski, MRS IJNS, R4S1, G1.3 (1999)

HPSG ~15 kbar, ~1800 K

Page 15: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

15

Thermodynamic limitations

N2(g)-Ga(l)-GaN(s)- phase diagram and N2 solubility in Ga

growth from melt would require 2800 K and > 45 kbar

S. Porowski, MRS IJNS, R4S1,G1.3 (1999)

High Pressure Solution Growth (HPSG)

Growth at 18 kbar

Crystals with good crystalline properties(defect density < 102 cm-2 claimed)

Used for device demonstration(blue laser by MOVPE)

No breakthrough with respect to sizestagnant at 10 mm x 10 mm x < 0.5 mm since years

Availability in 2“ currently not foreseeable

Group of Sylvester PorowskiInstitute of High Pressure Physics of the Polish Academy of Sciences (IHPP PAS – Unipress) and spin-off Top GaN

Page 16: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

16

Why are GaN substrates not (really) available ?

Classical melt growth not feasible due to high N vapor pressure

HPSG demonstrated, but upscaling still open

Low pressure solution growth (liquid phase epitaxy) suffers from lowsolubility of N

despite use of “solvents“ only rates of the order of 1 µm/h not useful for bulk growth Fh-IISB Erlangen

Ammonothermal method (growth from precursors like Ga hydroxide, Ga nitrate .... and NH3) : only small crystallites Fh-IISB Erlangen

Sublimation growth: small needles (works for AlN)

None of the classical bulk growth methods works (yet??)

12 mm

AlN waferSchowalter et al (Crystal IS; phys. stat. sol. c 7 (2003) 1997

Defect reduction in heteroepitaxy

Careful optimization of nucleation and buffer layer growth on sapphire or SiC

Mid 107 cm-2 dislocation density is possibleStill too high for laser diodes with high output power

Use of optimized substrate miscut: not well studied in literature but no reduction by orders of magnitude to be expected

Page 17: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

17

Defect reduction via layer thickness

Mutual annihilation of dislocationswith increasing thickness

High growth rates needed

Hydride Vapour Phase Epitaxy

Z. Liliental-Weber et al., J. Crystal Growth 246 (2002) 259.

Defect reduction in heteroepitaxy

Careful optimization of nucleation and buffer layer growth on sapphire or SiCMid 107 cm-2 dislocation density is possibleStill too high for laser diodes with high output power

Use of optimized substrate miscut: not well studied in literature

Increase layer thickness Reduces defect densityLeaves problem of bow and cracks

Page 18: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

18

Selective Area Growth (SAG)

Epitaxial Lateral Over Growth (ELOG)Masked: patterned SiN or SIO2Maskless: porous SiN grown in-situ

SubstrateSubstrate

SubstrateSubstrate

Pendeo-Epitaxy (PE)

Reduction of dislocation density by bending and mutual annihilation

ELOG I

Defect reduction in area above mask

CL topogram over cleaved ELOG layer of 30 µm thickness (T. Riemann, Uni Magdeburg)

Tendency for cracks reduced (and dependent on mask design)

Cracks only perpendicular to stripes

Page 19: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

19

ELOG II

Crack formation can be controlled by mask geometry

Cracks parallel to substrate in interface region

Route to spontaneous separation

Bow unchanged to planar growth

40 µm thick GaN on honeycomb mask (SiN)

Defect reduction in heteroepitaxy

Careful optimization of nucleation and buffer layer growth on sapphire or SiCMid 107 cm-2 dislocation density is possibleStill too high for laser diodes with high output power

Use of optimized substrate miscut: not well studied in literature

Increase layer thickness Reduces defect densityLeaves problem of bow and cracks

Patterned growth / selective area growthReduces defect densityCan help with cracks Leaves problem of bow

All approaches do not solveall problems

Heteroepitaxy remains thesecond best solution

Freestanding GaNnecessary

Page 20: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

20

Freestanding GaN – Laser lift-off

R. Molnar et al. J. Crystal Growth 178, 147 (1997)M. Kelly et al. Jpn. J. Appl. Phys. 38, L217 (1999)

Decomposition of GaN at interface

Stress from process + stress from epi

high risk of cracking on 2“ difficult

Used for substrate removal on chip level(Thin GaN for high power LEDs)

improved thermal management

transparent

absorbing

Freestanding GaN – LiAlO2

LiAlO2 substrate decomposes at elevated temperature

Freestanding layer after epi, no further process necessary

Layer quality to be improved

Promising route !!

Cooperation FBH - IKZ

2“ wafer 160 µm thick grown by HVPE

Reiche, Uecker, IKZ Berlin, 2003

Page 21: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

21

Freestanding GaN - ELOG

600 µm thick2“ with very little bow

Honeycomb mask with 5 µm windows and 15 µm spacing

WSiN mask

Decomposition of GaN, no sticking to mask

Separation during growth with little bow

Freestanding layer after epi, no further process necessary

Layer quality better than on LiAlO2

Promising route for high quality seed wafers

FBH, Hennig et al., ICNS 2005

Freestanding GaN – GaAs (ELOG)

K. Motoki et al.Jpn. JAP 40, L140 (2001)III-V-Review Vol.13 (3) (2000)

Sumitomo: HVPE

ELOG on two sides of masked GaAs (111) solves bow problem !

Locally dislocation density < 2x106 cm-2, homogeneity?

Announced for 2001, in 2003 20,000 € per piece, availability ??

Page 22: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

22

Freestanding substrates from heteroepitaxy

Bowing and cracking need to be controlled• solved by Sumitomo by growth on two sides• solved by FBH by ELOG with WSiN mask• optimization of process sequence (T cycles) on LiAlO2

Too thin for defect reduction below 106 cm-2

Nucleation process for each wafer reproducibility ?

No efficient multiwafer machines too expensive ?

Bulk growth probably the only way to get where we need to get

HVPE the only proven method with high growth rate Use epi method for bulk growth

Bulk growth by HVPE

2 – 3 mm long boules in 20 – 50 h5 substrates sawn from one boule

EPD down to 106 cm-2 at end of boule

In 2004 alloted in small quantities (numbered) for 10,000 € per 2“

Not to be used as seed layer !!

Now belongs to Cree, the SiC monopolist

It works but it needs to be mademore efficient (and available)

www.atmi.com

www.cree.com

Vaudo et al; phys. stat. sol. a 194 (2002) 494

Page 23: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

23

Route to larger boules

Use experience with existing reactor and designnew reactor suited for high thickness together with Aixtron

• Vertical no problem with convection

• Laminar flow over wide parameter range

• Reduced parasitic deposition, reactionconcentrated to substrate area

• Good homogeneity at rates above 250 µm/h expected

We are looking forward to the results

N2/H2/Dot.-gas

GaCl-N2/H2

NH3/N2

N2 N2

Outlook

GaN substrates will be manufactured by HVPE

Short term:• Laser diodes will be made on GaN substrates

Medium term:• UV and green LEDs will most likely follow

Long term:• HFETs with small feature size will be manufactured on large diameter

SI:GaN (for research e-beam litho on SiC is o.k.)• All GaN LEDs on GaN substrates ?

Page 24: Substrates for GaN Technology - hu-berlin.decrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_08...Substrates for GaN Technology Markus Weyers Ferdinand-Braun-Institut Berlin Outline

24

Acknowledgement

Workshop organizers for invitation

Eberhard Richter for cooperation in preparing this talk and bringing HVPE forward

for funding project 01BU402

Project partners Aixtron, FCM, Osram, IAF, Uni Ulm for cooperation

Klaus Köhler (IAF) and Michael Heuken (Aixtron) for giving some input for this talk

The audience for your patience