study of legs' sensorymotor asymmetry using a lower-limb rehabilitation robot

50
Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot : The LegoPress Chouaieb Nemri [email protected] https://www.linkedin.com/in/nemri Department of Electrical and Control Engineering Robotic Systems Laboratory ENSEEIHT EPFL September, 2014 Chouaieb Nemri (ENSEEIHT – EPFL - LSRO) Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot : September, 2014 1 / 34

Upload: chouaieb-nemri

Post on 19-Jul-2015

141 views

Category:

Engineering


1 download

TRANSCRIPT

Page 1: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of leg’s sensorimotor asymmetry using alower-limb rehabilitation robot :

The LegoPress

Chouaieb Nemri

[email protected]

https://www.linkedin.com/in/nemri

Department of Electrical and Control Engineering Robotic Systems LaboratoryENSEEIHT EPFL

September, 2014

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 1 / 34

Page 2: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Outline

1 IntroductionThe LegoPressFlexCOM

2 Study of sensorimotor asymmetryPrevious studiesStudy of lower-limb sensorimotor asymmetry

3 Control design and implementationLeg weight compensationPosition MatchingElastic MatchingEffort Matching

4 ResultsPreliminary observations

5 Conclusion

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 2 / 34

Page 3: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Introduction The LegoPress

Outline

1 IntroductionThe LegoPressFlexCOM

2 Study of sensorimotor asymmetryPrevious studiesStudy of lower-limb sensorimotor asymmetry

3 Control design and implementationLeg weight compensationPosition MatchingElastic MatchingEffort Matching

4 ResultsPreliminary observations

5 Conclusion

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 3 / 34

Page 4: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Introduction The LegoPress

Overview

Simple and cost-effective lower-limb rehabilitation device.

Figure: CAD view of the legopress

Adjustable sitting position - 2 separate motorized axes.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 4 / 34

Page 5: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Introduction The LegoPress

Axis elements

Figure: CAD view of one axis

Figure: schematic view of the axis elements

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 5 / 34

Page 6: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Introduction The LegoPress

Force transducer

Precise force monitoring can be done by means of force sensorspositioned at the pedal level.

Figure: CAD view of the force sensor

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 6 / 34

Page 7: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Introduction FlexCOM

Outline

1 IntroductionThe LegoPressFlexCOM

2 Study of sensorimotor asymmetryPrevious studiesStudy of lower-limb sensorimotor asymmetry

3 Control design and implementationLeg weight compensationPosition MatchingElastic MatchingEffort Matching

4 ResultsPreliminary observations

5 Conclusion

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 7 / 34

Page 8: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Introduction FlexCOM

PC-based motion control solution

PC-based open architecture with minimum time development

Adapted to different type of robots: serial (cartesian or not) orparallel.

Microsoft windows : Standard development software - standard PCIinput/output.

Real time capabilities guaranteed with RTX extension.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 8 / 34

Page 9: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Introduction FlexCOM

PC-based motion control solution

PC-based open architecture with minimum time development

Adapted to different type of robots: serial (cartesian or not) orparallel.

Microsoft windows : Standard development software - standard PCIinput/output.

Real time capabilities guaranteed with RTX extension.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 8 / 34

Page 10: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Introduction FlexCOM

PC-based motion control solution

PC-based open architecture with minimum time development

Adapted to different type of robots: serial (cartesian or not) orparallel.

Microsoft windows : Standard development software - standard PCIinput/output.

Real time capabilities guaranteed with RTX extension.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 8 / 34

Page 11: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Introduction FlexCOM

PC-based motion control solution

PC-based open architecture with minimum time development

Adapted to different type of robots: serial (cartesian or not) orparallel.

Microsoft windows : Standard development software - standard PCIinput/output.

Real time capabilities guaranteed with RTX extension.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 8 / 34

Page 12: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Previous studies

Outline

1 IntroductionThe LegoPressFlexCOM

2 Study of sensorimotor asymmetryPrevious studiesStudy of lower-limb sensorimotor asymmetry

3 Control design and implementationLeg weight compensationPosition MatchingElastic MatchingEffort Matching

4 ResultsPreliminary observations

5 Conclusion

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 9 / 34

Page 13: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Previous studies

Previous studies

Movement, an essential way we have to interact with the world.

Sensorimotor asymmetry has been shown in upper limbs for righthanded people.

Findings are strongly supported by the following dual-linear model

Figure: Dual-linear model of sensori-motor feedback loops of each limb

Quantifiying asymmetries in the lower limbs.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 10 / 34

Page 14: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Previous studies

Previous studies

Movement, an essential way we have to interact with the world.Sensorimotor asymmetry has been shown in upper limbs for righthanded people.

Findings are strongly supported by the following dual-linear model

Figure: Dual-linear model of sensori-motor feedback loops of each limb

Quantifiying asymmetries in the lower limbs.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 10 / 34

Page 15: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Previous studies

Previous studies

Movement, an essential way we have to interact with the world.Sensorimotor asymmetry has been shown in upper limbs for righthanded people.Findings are strongly supported by the following dual-linear model

Figure: Dual-linear model of sensori-motor feedback loops of each limb

Quantifiying asymmetries in the lower limbs.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 10 / 34

Page 16: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Previous studies

Previous studies

Movement, an essential way we have to interact with the world.Sensorimotor asymmetry has been shown in upper limbs for righthanded people.Findings are strongly supported by the following dual-linear model

Figure: Dual-linear model of sensori-motor feedback loops of each limb

Quantifiying asymmetries in the lower limbs.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 10 / 34

Page 17: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Study of lower-limb sensorimotor asymmetry

Outline

1 IntroductionThe LegoPressFlexCOM

2 Study of sensorimotor asymmetryPrevious studiesStudy of lower-limb sensorimotor asymmetry

3 Control design and implementationLeg weight compensationPosition MatchingElastic MatchingEffort Matching

4 ResultsPreliminary observations

5 Conclusion

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 11 / 34

Page 18: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Study of lower-limb sensorimotor asymmetry

Objectives

The study aims to assess and understand lower-limb asymmetriessensorimotor origins.

To this end, an experimental protocol featuring postion and/or effortmatching tasks has been designed.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 12 / 34

Page 19: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Study of lower-limb sensorimotor asymmetry

Objectives

The study aims to assess and understand lower-limb asymmetriessensorimotor origins.

To this end, an experimental protocol featuring postion and/or effortmatching tasks has been designed.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 12 / 34

Page 20: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Study of lower-limb sensorimotor asymmetry

Experimental set up

The LegoPress

Reference position : 90 degree knee flexion

Target position : 120 degree knee flexion

Target force : 20% of the maximum voluntary exertion (MVE)

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 13 / 34

Page 21: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Study of lower-limb sensorimotor asymmetry

Experimental set up

The LegoPress

Reference position : 90 degree knee flexion

Target position : 120 degree knee flexion

Target force : 20% of the maximum voluntary exertion (MVE)

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 13 / 34

Page 22: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Study of lower-limb sensorimotor asymmetry

Experimental set up

The LegoPress

Reference position : 90 degree knee flexion

Target position : 120 degree knee flexion

Target force : 20% of the maximum voluntary exertion (MVE)

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 13 / 34

Page 23: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Study of lower-limb sensorimotor asymmetry

Experimental set up

The LegoPress

Reference position : 90 degree knee flexion

Target position : 120 degree knee flexion

Target force : 20% of the maximum voluntary exertion (MVE)

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 13 / 34

Page 24: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Study of lower-limb sensorimotor asymmetry

Experimental tasks and conditions

Position and/or effort reference is performed by the reference leg andthence, participants are asked to perform matching with the same oropposite leg.

Different Matching conditions

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 14 / 34

Page 25: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Study of lower-limb sensorimotor asymmetry

Experimental tasks and conditions

Position and/or effort reference is performed by the reference leg andthence, participants are asked to perform matching with the same oropposite leg.

Different Matching conditions

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 14 / 34

Page 26: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Study of sensorimotor asymmetry Study of lower-limb sensorimotor asymmetry

Experimental tasks and conditions

18 possible combinations

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 15 / 34

Page 27: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Leg weight compensation

Outline

1 IntroductionThe LegoPressFlexCOM

2 Study of sensorimotor asymmetryPrevious studiesStudy of lower-limb sensorimotor asymmetry

3 Control design and implementationLeg weight compensationPosition MatchingElastic MatchingEffort Matching

4 ResultsPreliminary observations

5 Conclusion

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 16 / 34

Page 28: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Leg weight compensation

Leg weight compensation

The horizontal effort is measured every 20 mm along our experimentsuseful portion of the axis range (10 mm to 290 mm).

4th Polynomial regression has been used to identify the model

Figure: 2nd degree polynomial regression is insufficient

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 17 / 34

Page 29: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Leg weight compensation

Leg weight compensation

The horizontal effort is measured every 20 mm along our experimentsuseful portion of the axis range (10 mm to 290 mm).

4th Polynomial regression has been used to identify the model

Figure: 2nd degree polynomial regression is insufficient

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 17 / 34

Page 30: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Position Matching

Outline

1 IntroductionThe LegoPressFlexCOM

2 Study of sensorimotor asymmetryPrevious studiesStudy of lower-limb sensorimotor asymmetry

3 Control design and implementationLeg weight compensationPosition MatchingElastic MatchingEffort Matching

4 ResultsPreliminary observations

5 Conclusion

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 18 / 34

Page 31: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Position Matching

Position matchingAdmittance control

Admittance control : Pedals move proportionally to the activelyapplied force magnitude.

Figure: Block diagram of the admittance controller

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 19 / 34

Page 32: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Position Matching

Position matchingAdmittance control

A deadzone has been introduced to overcome model’s imperfections(threshold = 10% of passive forces)

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 20 / 34

Page 33: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Position Matching

Position matchingAdmittance control

The controller laws can be descibed as follows:

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 21 / 34

Page 34: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Position Matching

Position matching algorithmAdmittance control

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 22 / 34

Page 35: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Elastic Matching

Outline

1 IntroductionThe LegoPressFlexCOM

2 Study of sensorimotor asymmetryPrevious studiesStudy of lower-limb sensorimotor asymmetry

3 Control design and implementationLeg weight compensationPosition MatchingElastic MatchingEffort Matching

4 ResultsPreliminary observations

5 Conclusion

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 23 / 34

Page 36: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Elastic Matching

Choice of control paradigm

Proportional position controller

Unaccurate restoring force

Admittance based spring behaviour

Unstable behaviour for low stiffnesses

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 24 / 34

Page 37: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Elastic Matching

Impedance based spring

Block diagram of the controller

The controller equations are the following

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 25 / 34

Page 38: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Elastic Matching

Elastic matching algorithm

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 26 / 34

Page 39: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Effort Matching

Outline

1 IntroductionThe LegoPressFlexCOM

2 Study of sensorimotor asymmetryPrevious studiesStudy of lower-limb sensorimotor asymmetry

3 Control design and implementationLeg weight compensationPosition MatchingElastic MatchingEffort Matching

4 ResultsPreliminary observations

5 Conclusion

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 27 / 34

Page 40: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Effort Matching

Effort matching

During effort matching tasks, the pedals are simply position-controlled

The pedals are fixed in the 120 degree knee extension position.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 28 / 34

Page 41: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Effort Matching

Effort matching

During effort matching tasks, the pedals are simply position-controlled

The pedals are fixed in the 120 degree knee extension position.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 28 / 34

Page 42: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Control design and implementation Effort Matching

Effort matching algorithm

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 29 / 34

Page 43: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Results Preliminary observations

Outline

1 IntroductionThe LegoPressFlexCOM

2 Study of sensorimotor asymmetryPrevious studiesStudy of lower-limb sensorimotor asymmetry

3 Control design and implementationLeg weight compensationPosition MatchingElastic MatchingEffort Matching

4 ResultsPreliminary observations

5 Conclusion

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 30 / 34

Page 44: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Results Preliminary observations

Preliminary observations

Data has not been fully processed

In ipsilateral condition, position matching is more accurate with theleft leg.

No overshoot (resp. undershoot) trends when the right (resp. left)limb is matching the opposite limb’s reference.

Analysed data is not sufficient enough to make us draw soundconclusions.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 31 / 34

Page 45: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Results Preliminary observations

Preliminary observations

Data has not been fully processed

In ipsilateral condition, position matching is more accurate with theleft leg.

No overshoot (resp. undershoot) trends when the right (resp. left)limb is matching the opposite limb’s reference.

Analysed data is not sufficient enough to make us draw soundconclusions.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 31 / 34

Page 46: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Results Preliminary observations

Preliminary observations

Data has not been fully processed

In ipsilateral condition, position matching is more accurate with theleft leg.

No overshoot (resp. undershoot) trends when the right (resp. left)limb is matching the opposite limb’s reference.

Analysed data is not sufficient enough to make us draw soundconclusions.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 31 / 34

Page 47: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Results Preliminary observations

Preliminary observations

Data has not been fully processed

In ipsilateral condition, position matching is more accurate with theleft leg.

No overshoot (resp. undershoot) trends when the right (resp. left)limb is matching the opposite limb’s reference.

Analysed data is not sufficient enough to make us draw soundconclusions.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 31 / 34

Page 48: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Conclusion

Conclusion

An experimental protocol featuring position and/or effort matchinghas been designed in order to assess sensorimotor lower-limbasymmetry.

We run the experiments with 6 right-legged and one left-legged youngunimpaired participants.

During position tasks, the matching pedal is admittance controlled.While during elastic matching, the controller behaves as animpedance.

Future work, will focus on processing and thoroughly analysingthecollected data.

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 32 / 34

Page 49: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Appendix References

References I

J. Olivier. M. Jeannaret. M. Bouri. and H. BleulerThe LegoPress : A rehabilitation assessment and performance device -Mechanical Design and Control.LSRO -EPFL adfa, p. 1, 2011. Springer-Verlag Berlin Heidelberg 2011

M. Bouri. and R. ClavelA windows PC-based robot controller - An open architecture.ISR, Tokyo, Japan, November 29 - December 01, 2005

D. .E.Adamo. and B.J. MartinPosition sense asymmetry.Exp Brain Res DOI 10.1007/s00221-008-1560-0

D. .E.Adamo. S.Scotland and B.J. Martinasymmetry in grasp force matching and sense of effort.Exp Brain Res (2012) 217:273-285 DOI 10.1007/s00221-011-2991-6

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 33 / 34

Page 50: Study of Legs' sensorymotor asymmetry using a lower-limb rehabilitation Robot

Appendix References

Acknowledgements

Questions?

Chouaieb Nemri (ENSEEIHT – EPFL - LSRO)Study of leg’s sensorimotor asymmetry using a lower-limb rehabilitation robot :September, 2014 34 / 34