structure and electrostatic properties of the...

40
electronic reprint ISSN: 2053-2296 journals.iucr.org/c Structure and electrostatic properties of the pyrimethamine–3,5-dihydroxybenzoic acid cocrystal in water solvent studied using transferred electron-density parameters Muhammad Umer Faroque, Sajida Noureen, Shafaat Hussain Mirza, Muhammad Nawaz Tahir and Maqsood Ahmed Acta Cryst. (2019). C75, 46–53 IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE Copyright c International Union of Crystallography Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr. For further information see http://journals.iucr.org/services/authorrights.html Acta Cryst. (2019). C75, 46–53 Faroque et al. · Pyrimethamine–3,5-dihydroxybenzoic acid cocrystal

Upload: others

Post on 13-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

electronic reprint

ISSN: 2053-2296

journals.iucr.org/c

Structure and electrostatic properties of thepyrimethamine–3,5-dihydroxybenzoic acid cocrystal in watersolvent studied using transferred electron-density parameters

Muhammad Umer Faroque, Sajida Noureen, Shafaat Hussain Mirza,Muhammad Nawaz Tahir and Maqsood Ahmed

Acta Cryst. (2019). C75, 46–53

IUCr JournalsCRYSTALLOGRAPHY JOURNALS ONLINE

Copyright c© International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided thatthis cover page is retained. Republication of this article or its storage in electronic databases other than asspecified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Acta Cryst. (2019). C75, 46–53 Faroque et al. · Pyrimethamine–3,5-dihydroxybenzoic acid cocrystal

Page 2: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

research papers

46 https://doi.org/10.1107/S2053229618017060 Acta Cryst. (2019). C75, 46–53

Received 29 September 2018

Accepted 30 November 2018

Edited by G. P. A. Yap, University of Delaware,

USA

Keywords: 3,5-dihydroxybenzoic acid;

ELMAM2; pyrimethamine; MoPro; antimalarial

drug; crystal structure; cocrystal.

CCDC references: 1882716; 1882715;

1882714

Supporting information: this article has

supporting information at journals.iucr.org/c

Structure and electrostatic properties of the pyri-methamine–3,5-dihydroxybenzoic acid cocrystal inwater solvent studied using transferred electron-density parameters

Muhammad Umer Faroque,a Sajida Noureen,a Shafaat Hussain Mirza,b

Muhammad Nawaz Tahirb and Maqsood Ahmeda*

aMaterials Chemistry Laboratory, Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100,

Pakistan, and bDepartment of Physics, University of Sargodha, Pakistan. *Correspondence e-mail:

[email protected]

Pyrimethamine is an antimalarial drug. The cocrystal salt form of pyrimeth-

amine with 3,5-dihydroxybenzoic acid in water solvent has been synthesized,

namely 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 3,5-dihydroxy-

benzoate hemihydrate, C12H14ClN4+�C7H5O4

��0.5H2O. X-ray diffraction data

were collected at room temperature. Refinement of the crystal structure was

carried out using the classical Independent Atom Model (IAM), while the

electrostatic properties were studied by transferring electron-density para-

meters from an electron-density database. The Cl atom was refined

anharmonically. The results of both refinement methods were compared.

Topological analyses were carried out using Bader’s theory of Atoms in

Molecules (AIM). The three-dimensional Hirshfeld surface analysis and the

two-dimensional fingerprint maps of individual molecules revealed that the

crystal structures are dominated by H� � �O/O� � �H and H� � �H contacts. Other

close contacts are also present, including weak C� � �H/H� � �C contacts. Charge

transfer between the pyrimethamine and 3,5-dihydroxybenzoic acid molecules

results in a molecular assembly based on strong intermolecular hydrogen bonds.

This is further validated by the calculation of the electrostatic potential based on

transferred electron-density parameters. The current work proves the signifi-

cance of the transferability principle in studying the electron-density-derived

properties of molecules in cases where high-resolution diffraction data at low

temperature are not available.

1. Introduction

Physicochemical properties, such as mechanical properties,

dissolution rate/solubility and stability, play a crucial rule in

drug discovery, as well as in improving the formulation of

existing drugs. The lack of one or more of these properties

presents a serious problem in drug development (Qiu et al.,

2009). To enhance property performance, drug candidates are

subjected to polymorph screening and salt formation (Bastin

et al., 2000; Morissette et al., 2004; Serajuddin, 2007). However,

the salt formation and polymorph approaches are somewhat

limited in scope (Vishweshwar et al., 2006; Jones et al., 2006;

Trask et al., 2006). Specifically, salt formation can only be

performed on pharmaceutical agents (PAs) that are consid-

ered to be constituted of fully ionizable functional groups.

Many studies have now demonstrated that the cocrystalliza-

tion of PAs can afford solids that boost physicochemical

properties, such as solubility/dissolution rate (Nehm et al.,

2006; Remenar et al., 2003), bioavailability (McNamara et al.,

2006), hygroscopicity (Trask et al., 2005, 2006) and mechanical

ISSN 2053-2296

# 2019 International Union of Crystallography

electronic reprint

Page 3: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

properties (Sun & Hou, 2008; Karki et al., 2009), so that they

are superior to those of the parent PA. Braga and co-workers

have used ionic salts as coformers for pharmaceutical

cocrystallizations and the products so obtained are called ionic

cocrystals (Braga et al., 2010, 2011). Cocrystallization reac-

tions are often accompanied by the transfer of protons from

one component to the other, resulting in salt formation, with

the salts frequently having higher solubility in polar solvents.

The formation of cocrystals is due to noncovalent interactions,

such as �–� interactions, ionic interactions, van der Waals

interactions and hydrogen bonding. Noncovalent interactions

are of great biological interest because of the fact that

biomolecules are held together by weak interactions. These

interactions are dynamic in nature and are responsible for

most of the processes occurring in living systems (Desiraju,

2001). Among noncovalent interactions, hydrogen bonding

plays the most important role in chemistry, biology and

materials science (Prins et al., 2001). Identifying hydrogen-

bonded motifs or supramolecular synthons is clearly very

important in crystal engineering (Desiraju, 2001; Aakeroy,

1997). The binding mechanism of a molecule to an active site

depends upon the strength of the intermolecular interactions,

the charges on the participating atoms in the intermolecular

interactions, the dipole moment and the charge–density

distribution. The topology of the intermolecular interactions,

understanding the electrostatic properties and knowledge of

the physicochemical properties may allow researchers to

redesign a drug in order to reduce side effects (Lewis &

Dufresne, 2008; Hurwitz, 1989).

The standard procedure to determine the electron-density

distribution in a molecule is through multipolar refinement

using high resolution (d’ 0.5 A) X-ray diffraction data, which

can be easily determined in a laboraratory thanks to the

technological advancement in home laboratory sources.

However, there is a limitation that not every crystal diffracts

to high resolution. Moreover, not every laboratory is equipped

with a cryocooling facility. This bottleneck can be overcome by

using the ‘transferability principle’ (Brock et al., 1991).

Various parameters from an electron-density database can be

transferred on the basis of the similarity of atom types to

overcome low-resolution data. Several databases have been

constructed, such as the Invariom database (Dittrich,

Hubschle et al., 2006), UBDB (Dominiak et al., 2007),

ELMAM (Zarychta et al., 2007) and its improved version

ELMAM2 (Domagała et al., 2012). Several studies have

exploited the aspherical atom databases in routine crystal-

lographic modelling (Jelsch et al., 1998, 2005; Dittrich et al.,

2005, 2007, 2008, 2009; Dittrich, Strumpel et al., 2006; Volkov

et al., 2007; Zarychta et al., 2007; Bak et al., 2009; Faroque et al.,

2016, 2018; Shahid et al., 2018) and have successfully shown

that the application of the method results in a notably

improved molecular geometry, superior refinement statistics, a

better description of the thermal motion and an improvement

of phases. Furthermore, on the basis of transferred electron-

density parameters, a number of electron-density-derived

properties, like electrostatic potential, dipole moment and the

topological properties of covalent and noncovalent inter-

actions, can be closely estimated quantitatively. It has also

research papers

Acta Cryst. (2019). C75, 46–53 Faroque et al. � Pyrimethamine–3,5-dihydroxybenzoic acid cocrystal 47

Table 1Experimental details.

ELMAM2 (MoPro) IAM (MoPro) IAM (SHELX)

Crystal dataChemical formula 2C12H14ClN4

+�2C7H5O4��H2O

Mr 823.64Crystal system, space group Monoclinic, C2/cTemperature (K) 297a, b, c (A) 14.9367 (7), 15.7910 (7), 33.5896 (1)� (�) 100.123 (2)V (A3) 7799.3 (5)Z 8Radiation type Mo K�� (mm�1) 0.23Crystal size (mm) 0.38 � 0.30 � 0.18

Data collectionDiffractometer Bruker Kappa APEXII CCD detectorAbsorption correction Multi-scan (SADABS; Krause et al., 2015)Tmin, Tmax 0.917, 0.959No. of measured, independent and

observed reflections [I > 2�(I)]46169, 7995, 5812

Rint 0.044(sin �/�)max (A�1) 0.625

RefinementR[F 2 > 2�(F 2)], wR(F 2), S 0.043, 0.110, 0.94 0.052, 0.128, 1.08 0.051, 0.141, 1.01No. of reflections 7995No. of parameters 534 534 532H-atom treatment H atoms treated by a mixture of independent and constrained refinement�max, �min (e A�3) 0.31, �0.32 0.32, �0.34 0.40, �0.49

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SIR92 (Altomare et al., 1993), SHELXL2018 (Sheldrick, 2015) and MoPro (Jelsch et al., 2005).

electronic reprint

Page 4: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

been shown in the above-cited literature that the results are

comparable to the experimental ones. This allows modelling of

the charge–density distribution of molecules in the crystal

environment. Furthermore, intermolecular charge transfer can

be approximately quantified.

In this study, we report the structure of the cocrystal of

pyrimethamine with 3,5-dihydroxybenzoic acid in water

solvent, (I), and an estimation of its electrostatic properties

using a transferred multipolar atom model from the

ELMAM2 database using the transferability principle. Due to

the non-availibility of a low-temperature facility, we only had

room-temperature data for this important cocrystal. We were

interested in studying the electrostatic properties and in

studying quantitatively the intermolecular interactions. We

therefore made use of the transferability principle.

2. Experimental

2.1. Synthesis and crystallization

All materials were purchased from commercial suppliers

and were used without further purification. Equimolar qu-

antities of both pyrimethamine and 3,5-dihydroxybenzoic acid

were mixed in a round-bottomed flask and refluxed for 3–4 h

in water. Rod-like colourless crystals of (I) were obtained

after a few days.

2.2. Structure solution and refinement

2.2.1. SHELX IAM refinement. Crystal data, data collection

and structure refinement details are summarized in Table 1.

The riding model was used for H atoms bonded to C atoms. H

atoms attached to heteroatoms were refined freely.

2.2.2. MoPro IAM refinement. The model was subsequently

imported into MoPro software (Jelsch et al., 2005). The C—H

bond lengths were constrained to standard values of neutron

distances from the International Tables of Crystallography

(Allen & Bruno, 2010), while H atoms attached to hetero-

atoms were refined freely. A full-matrix least-squares refine-

ment using the independent atom model (IAM) was

performed according to all the intensity data. A SHELX-type

weighting scheme was adopted {w = 1/[�2(Fo2) + (aP)2 + bP],

where P = (Fo2 + 2Fc

2)/3, with a = 0.056 and b = 5.17}, in order

to have a goodness-of-fit close to unity. Finally, the displace-

ment parameters of all the non-H atoms were refined. The

anisotropic displacement parameters for the H atoms were

constrained to calculated values from the SHADE server

(Madsen, 2006). A strong nonbonding peak was left close to

the Cl atom. Therefore, this atom was modelled using an

anharmonic thermal motion description up to the third order

of the Gram–Charlier expansion. This treatment improved the

residual maps (Fig. S1 in the supporting information), despite

the fact that the resolution of the data is not very high (Herbst-

Irmer et al., 2013). The residual electron-density maps after

the IAM refinement are shown in the supporting information

(Fig. S2). Due to anharmonic refinement, the final R factor

improved from 0.056 to 0.052, the weighted R factor from 0.08

to 0.077 and the goodness-of-fit from 1.356 to 1.286. The

minimum and maximum electron-density peaks also improved

from �0.68 to �0.34 e A�3 and from 0.49 to 0.32 e A�3,

respectively (Table 1).

2.2.3. MoPro ELMAM2 refinement. The electron-density

multipolar parameters of the Hansen & Coppens (1978)

model were transferred from the ELMAM2 library (Doma-

gała et al., 2012) using the built-in option in the MoPro soft-

ware (Jelsch et al., 2005). The whole asymmetric unit was

neutralized electrically after the transfer with a net charge of

zero. The electron-density parameters were kept fixed during

the ELMAM2 refinement and only the scale factor, position

and displacement parameters were refined until convergence.

The positions of the H atoms were treated in the same manner

as discussed in the previous section. The anisotropic displa-

cement parameters for the H atoms were kept constrained to

estimated values, as explained previously, while the anhar-

monic treatment for the Cl atom was retained. The same

weighting scheme as mentioned in the previous sections was

applied. The ELMAM2 refinement revealed a noticeable

improvement in the refinement statistics; the crystallographic

R factor R[F2 > 2�(F 2)] was 0.043, the weighted R factor

wR(F 2) was 0.11 and the goodness-of-fit S was 0.94. The

maximum and minimum electron-density peaks decreased to

0.31 and �0.32 e A�3, respectively. Crystal data, data collec-

tion and structure refinement details for the ELMAM2

refinement are summarized in Table 1. Residual maps after

IAM and ELMAM2 refinements are given in Fig. S2 (see

supporting information). Electron-density peaks reside on the

bond in IAM, whereas these peaks diminished significantly in

the ELMAM2 model. This shows the superiority of the

transferred model (ELMAM2) over the classical independent

atom model (IAM).

3. Residual maps and structure description

Two pyrimethaminium cations, two dihydroxybenzoate anions

and a water molecule are present in the asymmetric unit of the

cocrystal assembly (Fig. 1). Since the data were collected at

room temperature, the ELMAM2 model also shows the effect

of noise. This model might be improved if the data were

collected at lower temperature. This water-solvated cocrystal

assembly exists as a charge-transfer salt in which an acidic

proton from each 3,5-dihydroxybenzoic acid molecule in the

asymmetric unit has been transferred to the most basic N

atoms (N2 and N6). The dihedral angle calculated between the

planes of the pyrimidine and 4-chlorobenzene rings is

�60.78 (17)� and the C8—C7—C1—C2 torsion angle

measured between the 4-chlorobenzene and pyrimidine rings

is 112.9 (2)�, which is almost in agreement with the pyri-

methamine–2,4-dihydroxybenzoic aid cocrystal in methanol

research papers

48 Faroque et al. � Pyrimethamine–3,5-dihydroxybenzoic acid cocrystal Acta Cryst. (2019). C75, 46–53

electronic reprint

Page 5: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

solvent (Faroque et al., 2018). Thus, the 4-chlorobenzene

group is not coplanar with the pyrimidine group. The supra-

molecular assembly of the water-solvated cocrystal is stabi-

lized by hydrogen bonding; a list of selected hydrogen-bond

geometries from the ELMAM2 model is given in Table 2,

while a complete list can be found in Table S1 of the

supporting information. The water molecule plays a key role

in the stabilization of the cocrystal assembly and acts as both a

donor and an acceptor in the formation of hydrogen bonds. It

forms O9—H9A� � �O5viii and O9—H9B� � �O1ii (symmetry

codes are as in Table 2) contacts when acting as a donor

species with both dihydroxybenzoate anions, N3—H3A� � �O9iv

and O8—H8� � �O9 contacts with pyrimethaminium and dihy-

droxybenzoate, respectively, when acting as an acceptor

(Fig. 2). Different supramolecular synthons operate in

different solvents affecting the physicochemical properties of

active pharmaceutical ingredients (APIs). Pyrimethaminium,

acting as a donor, interacts with the dihydroxybenzoate

acceptor via N2—H2A� � �O5viii and N4—H4B� � �O6viii hydro-

gen bonds. It forms a supramolecular M2 synthon (see Fig. 2)

with the graph-set notation R22(6). On the other side of the

pyrimethaminium cation, it forms an M1 synthon with the

dihydroxybenzoate anion via N6—H6A� � �O2ii and N8—

H8B� � �O1ii interactions possessing the graph-set notation

R22(6).

3.1. Hirshfeld suface analysis and fingerprint plots

The Hirshfeld surface (McKinnon et al., 2004; Spackman &

Byrom, 1997) is used to explore the intermolecular inter-

actions of the molecules in a crystal. Hirshfeld surface analysis

was carried out not only for the purpose of studying the nature

of the intermolecular contacts, but also for determining their

quantitative contributions to the supramolecular assembly of

solvatomorphs. The Hirshfeld surface and fingerprint plots for

(I) were generated using CrystalExplorer17 (Turner et al.,

2017). Fig. 3 shows the Hirshfeld surface of both mapped with

dnorm and its hydrogen-bonding interactions with neigh-

bouring molecules. Several red spots are indicated on the

Hirshfeld surface dnorm property. The O7—H7� � �O2ii

(symmetry codes are as given in Table 2) and N8—H8B� � �O2ii

hydrogen bonds are labelled as red spots (a). N3—H3B� � �O1i

and O9—H9B� � �O1ii are labelled as red spots (b). A deep-red

spot labelled (c) O3—H3C� � �O6vii is also strong evidence for a

hydrogen bond. N8—H8A� � �N1viii/N4—H4A� � �N5iv and

N4—H4B� � �O6viii/N2—H2A� � �O5viii hydrogen-bond contacts

indicating red spots are labelled as (d) and (g), respectively.

Red spots labelled (e) and (f) are indicative of water-molecule

interactions (hydrogen bonding where water acts as both

donor and acceptor) and are the main support for the water-

solvated cocrystal assembly. Fig. 4 illustrates the breakdown of

the 2D fingerprint plots (FPs) of the HSs. Individual FPs of

individual molecules incorporated in the crystal were

analysed. With these analyses, the division of contributions is

possible for different interactions, including H� � �H, O� � �H,

C� � �H, Cl� � �H and N� � �H, which commonly overlap in the full

FPs. (a) shows FPs of one dihydroxybenzoate anion in which

O� � �H interactions (42.5% area) have the greatest participa-

tion in the crystal structure relative to the other contacts. The

most visible sharp pair of spikes in the FPs are characteristic of

O� � �H contacts. H� � �H and C� � �H interactions (30.7 and

18.6% area, respectively) also have a dominant participation.

A small percentage of other interactions, such as H� � �Cl

(3.3%) are found. (b) is the illustration of the FPs of the

second dihydroxybenzoate anion, in which O� � �H interactions

(40.5% area), indicated by a sharp pair of spikes, have the

greatest participation in the crystal structure relative to the

other contacts. H� � �H and C� � �H interactions (29.8 and 14.8%

area, respectively) are also dominant. Other interactions are

research papers

Acta Cryst. (2019). C75, 46–53 Faroque et al. � Pyrimethamine–3,5-dihydroxybenzoic acid cocrystal 49

Figure 1A displacement ellipsoid diagram based on the ELMAM2 model drawnat the 50% probability level, showing the atom-numbering scheme.

Table 2Selected hydrogen-bond geometry (A, �) from the ELMAM2 (MoPro)model.

D—H� � �A D—H H� � �A D� � �A D—H� � �AN3—H3B� � �O1i 1.04 (4) 2.08 (4) 2.850 (3) 129 (2)N6—H6A� � �O2ii 1.08 (4) 1.67 (4) 2.741 (3) 170 (1)N6—H6A� � �C25ii 1.08 (4) 2.55 (4) 3.513 (3) 148 (2)N8—H8B� � �O1ii 1.07 (4) 1.73 (4) 2.793 (3) 170 (1)N8—H8B� � �O2ii 1.07 (4) 2.54 (4) 3.336 (3) 130 (2)N8—H8B� � �C25ii 1.07 (4) 2.33 (4) 3.348 (3) 158 (1)C24—H24C� � �O2ii 1.10 2.60 3.502 (4) 144O7—H7� � �O2ii 0.94 (4) 1.85 (4) 2.792 (3) 174 (1)O7—H7� � �C25ii 0.94 (4) 2.63 (4) 3.510 (3) 157 (1)O9—H9B� � �O1ii 1.02 (4) 1.87 (4) 2.885 (3) 179 (1)C18—H18� � �C30iii 1.08 2.59 3.512 (4) 143C18—H18� � �C31iii 1.08 2.77 3.461 (4) 122N3—H3A� � �O9iv 0.99 (4) 1.96 (4) 2.924 (3) 166 (1)N4—H4A� � �N5iv 0.97 (4) 2.11 (4) 3.086 (3) 175 (1)C38—H38� � �N5iv 1.10 2.50 3.390 (3) 141C2—H2� � �N4v 1.08 2.60 3.550 (4) 146O4—H4� � �Cl1vi 0.98 (16) 2.86 (15) 3.555 (3) 129 (9)O3—H3C� � �O6vii 0.98 (4) 1.68 (4) 2.652 (3) 172 (1)N2—H2A� � �O5viii 1.03 (4) 1.65 (4) 2.684 (3) 178 (1)N4—H4B� � �O6viii 1.01 (4) 1.84 (4) 2.824 (3) 164 (1)N8—H8A� � �N1viii 1.01 (4) 2.07 (4) 3.069 (3) 169 (1)O9—H9A� � �O5viii 0.93 (4) 1.94 (4) 2.828 (3) 161 (1)O8—H8� � �O9 0.99 (4) 1.76 (4) 2.744 (3) 171 (1)

Symmetry codes: (i) x� 12; y� 1

2; z; (ii) x� 1; y; z; (iii) x� 12; yþ 1

2; z; (iv) �xþ 12; y� 1

2,�z þ 12; (v) �xþ 1; y;�zþ 1

2; (vi) �xþ 32;�yþ 1

2;�z; (vii) xþ 12; yþ 1

2; z; (viii)�x þ 1

2; yþ 12;�zþ 1

2.

electronic reprint

Page 6: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

also found but in low percentages, such as N� � �H in 2.3%. (c)

shows the FPs of one perimethamine molecule, which consist

of H� � �H and C� � �H interactions (39.3 and 13.8% area,

respectively). Although the contribution of the N� � �H inter-

actions is 9.2%, its sharp pair of spikes indicates strong

interactions, whereas Cl� � �H interactions contribute 12.5%.

H� � �O interactions, with a single sharp spike, have a contri-

bution of 13.6%. (d) indicates the different type of FPs of the

second pyrimethamine molecule. In this, the major contribu-

tions are from H� � �H (34.3% area) and H� � �Cl (21.8% area)

interactions. The contributions of C� � �H and O� � �H inter-

actions are 16.5 and 13.7%, respectively. Just like in the first

pyrimethamine molecule, this also has 7.8% N� � �H inter-

actions. (e) illustrates the FPs of the water molecule playing a

key role in the stabilization of the crystal structure. In this, the

contributions of O� � �H and H� � �H interactions are 53.5 and

44.8%, respectively.

3.2. Electrostatic potential and dipole moment

The electrostatic potential generated by the solvatomorph

extracted from the crystal has been calculated from the elec-

tron-density distribution of the ELMAM2 model. Fig. 5 shows

a view of the 3D electron-density surface (contour level

0.05 e A�3) coloured according to the electrostatic potential.

A global view of the asymmetric unit shows a clear separation

of the charges, with the negative potential localized mainly on

the carboxylate groups, probably due to the loss of the proton

to the pyrimethamine molecule. The dihydroxybenzoate

anions have a negative electrostatic potential. Atoms O1 and

O2, as well as O5 and O6, projected towards the viewer on two

different dihydroxybenzoate anions, have a negative charge

research papers

50 Faroque et al. � Pyrimethamine–3,5-dihydroxybenzoic acid cocrystal Acta Cryst. (2019). C75, 46–53

Figure 2A view of the molecular packing, showing the different structural motifs.

Figure 3A Hirshfeld surface with the dnorm property, showing the sites ofinteracting molecules around the reference molecule.

electronic reprint

Page 7: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

concentration, as is evident from the red colour. Atom O9 of

the water molecule and hydroxy atom O7 also have negative

potential. The negative electrostatic regions can be potential

binding sites for hydrogen bonds and for attack by electro-

philic species. This difference in charge distribution also

results in a high dipole moment of the individual molecules

and the overall polar nature of the asymmetric unit. Fig. 6

shows the dipole moment calculated for the individual cofor-

mers using MoProViewer (Guillot, 2011), with the origin at the

coordinate centre, and is the sum of all the dipolar contribu-

tions. The dihydroxybenzoate anion has a high dipole moment

(13.98 D) in the crystal assembly, while the dipole moment of

the pyrimethaminium cation is 9.32 D. The water molecule has

a dipole moment of 1.68 D in the assembly. The overall

calculated dipole moment of the asymmetric unit is found to

have a very high value of 41.23 D. The direction of the dipole

moment vector gives information about the direction of

charge propagation in the crystal.

3.3. Topology of intermolecular interactions

Topological analysis of the intermolecular interactions was

carried out based on Bader’s theory of Atoms in Molecules

(AIM) (Bader, 1990) using the VMoPro (Jelsch et al., 2005)

research papers

Acta Cryst. (2019). C75, 46–53 Faroque et al. � Pyrimethamine–3,5-dihydroxybenzoic acid cocrystal 51

Figure 4Fingerprint plots of pyrimethaminium, 3,5-dihydroxybenzoate and water molecules as described in the text.

Figure 5A three-dimensional electron-density surface coloured according to theelectrostatic potential calculated separately for the individual molecules.

electronic reprint

Page 8: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

software. The interactions are listed in the supporting infor-

mation. Quantitative analysis of the intra- and intermolecular

interactions was performed in terms of the topology of the

electron density. The critical point search on the listed

hydrogen bonds in Table S1 (see supporting information) gave

(3,�1) critical points for these noncovalent bonds. The

corresponding topological properties and the total electro-

static interaction energies of these intermolecular interactions

were calculated. Further analysis of the kinetic energy density,

potential energy density and total electronic energy density

(Espinosa et al., 1998) at the BCP of the hydrogen bonds gives

the strength of the bonds. The Laplacian values for all the

interactions are positive, thus establishing their closed-shell

nature. The electron-density peaks at the critical points (CPs)

for classical hydrogen bonds have been found to be quite

elevated (0.12–0.33 e A�3). They are also marked by their very

short interatomic distances. The most noticeable of these is the

N2—H2A� � �O5viii hydrogen bond (the symmetry codes are as

in Table 2). The very short distance of 1.65 (4) A and the value

of the electron density of 0.3365 e A�3 indicate that its char-

acter is close to covalent (Grabowski et al., 2006). Moreover,

according to Cramer & Kraka (1984), the corresponding

negative value (Vcp = �123.35) meets the criteria to be called a

partially covalent interaction. Such a strong interaction has

been reported in the literature; see, for eaxmple, Du et al.

(2016). The O3—H3C� � �O6viii hydrogen bond is somewhat

weak compared to the interaction mentioned above. Similarly,

the H6A� � �O2ii and H8B� � �O1ii interactions also meet the

same criteria and are partially covalent. The presence of these

interactions justifies the cocrystallization reaction between the

contributing moieties. The kinetic and potential energy

densities are also very significant for other interactions. The

interaction involving the Cl atom is relatively weak since it

involves a C atom as donor.

4. Conclusions and perspectives

We have successfully synthesized the cocrystal of pyrimetha-

mine with 3,5-dihydroxybenzoic acid in water. The cocrystal

structure was refined using the classical Independent Atom

Model (IAM) and the multipolar atom model by transferring

the electron-density parameters from the ELMAM2 database.

The application of this method leads to an improved mol-

ecular geometry (atomic positions), especially for the H atoms,

for which we have noticed a slight (’0.01 A) elongation in

their distances with the heteroatoms and the description of the

thermal motion. Library transfer, owing to an improved

atomic model, results in better figures of merit, such as a lower

crystallographic R factor and weighted R factors. The structure

is stabilized by strong electrostatic attraction between the

charged ionic species due to the shifting of a proton from 3,5-

dihydroxybenzoic acid to pyrimethamine. This charge transfer

results in a number of classical hydrogen bonds and other

interactions. It has also been shown that certain electron-

density-derived properties, such as electrostatic potential and

dipole moment, can be calculated on the basis of transferred

parameters. The transferability principle helps for a better

analysis of the crystal structure as it results in an improved

model and better refinement statistics for ordinary data

collected at room temperature.

Acknowledgements

The authors are grateful to the University of Sargodha for the

provision of the X-ray diffraction facility. We greatly

acknowledge the anonymous referees for their valuable

comments and suggestions for the improvement of this article.

References

Aakeroy, C. B. (1997). Acta Cryst. B53, 569–586.Allen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380–386.Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993).J. Appl. Cryst. 26, 343–350.

Bader, R. F. W. (1990). In Atoms in Molecules: A Quantum Theory.Oxford University Press.

Bak, J. M., Dominiak, P. M., Wilson, C. C. & Wozniak, K. (2009). ActaCryst. A65, 490–500.

Bastin, R. J., Bowker, M. J. & Slater, B. (2000). Org. Process Res. Dev.4, 427–435.

Braga, D., Dichiarante, E., Palladino, G., Grepioni, F., Chierotti,M. R., Gobetto, R. & Pellegrino, L. (2010). CrystEngComm, 12,3534–3536.

Braga, D., Grepioni, F., Lampronti, G. I., Maini, L. & Turrina, A.(2011). Cryst. Growth Des. 11, 5621–5627.

Brock, C. P., Dunitz, J. D. & Hirshfeld, F. L. (1991). Acta Cryst. B47,789–797.

Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.

Cramer, D. & Kraka, E. (1984). Croat. Chem. Acta, 57, 1259–1281.Desiraju, G. R. (2001). Nature, 412, 397–400.Dittrich, B., Hubschle, C. B., Holstein, J. J. & Fabbiani, F. P. A. (2009).J. Appl. Cryst. 42, 1110–1121.

Dittrich, B., Hubschle, C. B., Luger, P. & Spackman, M. A. (2006).Acta Cryst. D62, 1325–1335.

Dittrich, B., Hubschle, C. B., Messerschmidt, M., Kalinowski, R.,Girnt, D. & Luger, P. (2005). Acta Cryst. A61, 314–320.

Dittrich, B., McKinnon, J. J. & Warren, J. E. (2008). Acta Cryst. B64,750–759.

Dittrich, B., Munshi, P. & Spackman, M. A. (2007). Acta Cryst. B63,505–509.

Dittrich, B., Strumpel, M., Schafer, M., Spackman, M. A. &Koritsanszky, T. (2006). Acta Cryst. A62, 217–223.

Domagała, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C.(2012). Acta Cryst. A68, 337–351.

research papers

52 Faroque et al. � Pyrimethamine–3,5-dihydroxybenzoic acid cocrystal Acta Cryst. (2019). C75, 46–53

Figure 6A view of the molecular packing, showing the strength and direction ofthe dipole moments of the three contributing molecules of cocrystal (I),computed on the basis of transferred electron-density parameters.

electronic reprint

Page 9: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

Dominiak, P. M., Volkov, A., Li, X., Messerschmidt, M. & Coppens, P.(2007). J. Chem. Theory Comput. 3, 232–247.

Du, J. J., Varadi, L., Williams, P. A., Groundwater, P. W., Overgaard, J.,James, A., Platts, J. A. & Hibbs, D. E. (2016).RSCAdv. 6, 81578–81590.

Espinosa, E., Molins, E. & Lecomte, C. (1998). Chem. Phys. Lett. 285,170–173.

Faroque, M. U., Noureen, S., Ahmed, M. & Tahir, M. N. (2018). ActaCryst. C74, 100–107.

Faroque, M. U., Yousuf, S., Zafar, S., Choudhary, M. I. & Ahmed, M.(2016). Acta Cryst. C72, 398–404.

Grabowski, S. J., Sokalski, W. A., Dyguda, E. & Leszczynski, J. (2006).J. Phys. Chem. B, 110, 6444–6446.

Guillot, B. (2011). Acta Cryst. A67, C511–C512.Hansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909–921.Herbst-Irmer, R., Henn, J., Holstein, J. J., Hubschle, C. B., Dittrich, B.,

Stern, D., Kratzert, D. & Stalke, D. (2013). J. Phys. Chem.A, 117, 633–641.Hurwitz, E. S. (1989). Epidemiol. Rev. 11, 249-253.Jelsch, C., Guillot, B., Lagoutte, A. & Lecomte, C. (2005). J. Appl.Cryst. 38, 38–54.

Jelsch, C., Pichon-Pesme, V., Lecomte, C. & Aubry, A. (1998). ActaCryst. D54, 1306–1318.

Jones, W., Motherwell, W. D. S. & Trask, A. V. (2006). MRS Bull. 31,875–879.

Karki, S., Friscic, T., Fabian, L., Laity, P. R., Day, G. M. & Jones, W.(2009). Adv. Mater. 21, 3905–3909.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J.Appl. Cryst. 48, 3–10.

Lewis, K. G. & Dufresne, R. G. (2008). Dermatol. Surg. 34, 160–165.Madsen, A. Ø. (2006). J. Appl. Cryst. 39, 757–758.McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). ActaCryst. B60, 627–668.

McNamara, D. P., Childs, S. L., Giordano, J., Iarriccio, A., Cassidy, J.,Shet, M. S., Mannion, R., O’Donnell, E. & Park, A. (2006). Pharm.Res. 23, 1888–1897.

Morissette, S. L., Almarsson, O., Peterson, M. L., Remenar, J. F.,Read, M. J., Lemmo, A. V., Ellis, S., Cima, M. J. & Gardner, C. R.(2004). Adv. Drug Deliv. Rev. 56, 275–300.

Nehm, S. J., Rodrıguez-Spong, B. & Rodrıguez-Hornedo, N. (2006).Cryst. Growth Des. 6, 592–600.

Prins, L. J., Reinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem.Int. Ed. 40, 2382–2426.

Qiu, Y., Chen, Y., Zhang, G. G. Z., Liu, L. & Porter, W. (2009). InDeveloping Solid Oral Dosage Forms: Pharmaceutical Theory &Practice, 1st ed. New York: Elsevier.

Remenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B.,MacPhee, J. M., Guzman, H. R. & Almarsson, O. (2003). J. Am.Chem. Soc. 125, 8456–8457.

Serajuddin, A. T. M. (2007). Adv. Drug Deliv. Rev. 89, 603–616.Shahid, A., Aziz, A., Noureen, S., Ahmed, M., Yousuf, S. &

Choudhary, M. I. (2018). Acta Cryst. C74, 534–541.Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–

220.Sun, C. C. & Hou, H. (2008). Cryst. Growth Des. 8, 1575–1579.Trask, A. V., Motherwell, W. D. S. & Jones, W. (2005). Cryst. GrowthDes. 5, 1013–1021.

Trask, A. V., Motherwell, W. D. S. & Jones, W. (2006). Int. J. Pharm.320, 114–123.

Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J.,Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017).CrystalExplorer17. University of Western Australia. http://hirsh-feldsurface.net.

Vishweshwar, P., McMahon, J. A., Bis, J. A. & Zaworotko, M. J.(2006). J. Pharm. Sci. 95, 499–516.

Volkov, A., Messerschmidt, M. & Coppens, P. (2007). Acta Cryst. D63,160–170.

Zarychta, B., Pichon-Pesme, V., Guillot, B., Lecomte, C. & Jelsch, C.(2007). Acta Cryst. A63, 108–125.

research papers

Acta Cryst. (2019). C75, 46–53 Faroque et al. � Pyrimethamine–3,5-dihydroxybenzoic acid cocrystal 53electronic reprint

Page 10: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-1Acta Cryst. (2019). C75, 46-53

supporting information

Acta Cryst. (2019). C75, 46-53 [https://doi.org/10.1107/S2053229618017060]

Structure and electrostatic properties of the pyrimethamine–3,5-dihydroxy-

benzoic acid cocrystal in water solvent studied using transferred electron-

density parameters

Muhammad Umer Faroque, Sajida Noureen, Shafaat Hussain Mirza, Muhammad Nawaz Tahir

and Maqsood Ahmed

Computing details

Data collection: APEX2 (Bruker, 2012) for ELMAM2_MoPro. Cell refinement: SAINT (Bruker, 2012) for

ELMAM2_MoPro. Data reduction: SAINT (Bruker, 2012) for ELMAM2_MoPro. Program(s) used to solve structure:

SIR92 (Altomare et al., 1993) for ELMAM2_MoPro. Program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015)

and MoPro (Jelsch et al., 2005) for ELMAM2_MoPro; MoPro (Jelsch et al., 2005) for IAM_MoPro; SHELXL2018

(Sheldrick, 2015) for IAM_shelx.

2,4-Diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 3,5-dihydroxybenzoate hemihydrate (ELMAM2_MoPro)

Crystal data

2C12H14ClN4+·2C7H5O4

−·H2OMr = 823.64Monoclinic, C2/cHall symbol: -C 2yca = 14.9367 (7) Åb = 15.7910 (7) Åc = 33.5896 (1) Åβ = 100.123 (2)°V = 7799.3 (5) Å3

Z = 8

F(000) = 3440Dx = 1.403 Mg m−3

Mo Kα radiation, λ = 0.71073 ÅCell parameters from 500 reflectionsθ = 1.9–26.4°µ = 0.23 mm−1

T = 297 KPlate, yellow0.38 × 0.30 × 0.18 mm

Data collection

Bruker Kappa APEXII CCD detector diffractometer

Radiation source: fine-focus sealed tubeGraphite monochromatorω and phi scanAbsorption correction: multi-scan

(SADABS; Krause et al., 2015)Tmin = 0.917, Tmax = 0.959

46169 measured reflections7995 independent reflections5812 reflections with > 2.0σ(I)Rint = 0.044θmax = 26.4°, θmin = 1.9°h = 0→18k = 0→19l = −41→41

electronic reprint

Page 11: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-2Acta Cryst. (2019). C75, 46-53

Refinement

Refinement on F2

Least-squares matrix: fullR[F2 > 2σ(F2)] = 0.043wR(F2) = 0.110S = 0.947995 reflections534 parameters0 restraintsPrimary atom site location: structure-invariant

direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier mapH atoms treated by a mixture of independent

and constrained refinementw = 1/[σ2(Fo

2) + (0.056P)2 + 5.17P] where P = (Fo

2 + 2Fc2)/3

(Δ/σ)max < 0.001Δρmax = 0.31 e Å−3

Δρmin = −0.32 e Å−3

Special details

Refinement. The structure was solved in monoclinic C2/c space group using the SIR92 software (Altomare et al., 1993). An initial Independent Atom Model (IAM) refinement was undertaken using the SHELXL97 software (Sheldrick, 2015). At the end of the SHELX refinement, the crystallographic R factor R[F2 > 2 (F2)] was 0.051, the weighted R factor wR(F2) was 0.1410 and the goodness-of-fit S was 1.02. The minimum and maximum density peaks were - 0.48 and 0.41 e/Å3, respectively (see Table1).Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.48187 (16) 0.11056 (15) 0.02565 (6) 0.09036 (6)N1 0.36339 (13) 0.17006 (12) 0.24955 (6) 0.03346 (8)N2 0.34951 (13) 0.31357 (11) 0.23192 (6) 0.03320 (8)H2A 0.32488 0.37219 0.23829 0.05432N3 0.40638 (15) 0.07426 (12) 0.20621 (6) 0.04168 (9)H3A 0.40594 0.03083 0.22727 0.06132H3B 0.42493 0.05704 0.17883 0.06245N4 0.31611 (15) 0.26785 (12) 0.29231 (6) 0.03967 (9)H4A 0.29526 0.22269 0.30817 0.05406H4B 0.30138 0.32858 0.29813 0.05272C1 0.41206 (17) 0.19625 (15) 0.14390 (7) 0.03508 (9)C2 0.49208 (19) 0.22228 (19) 0.13222 (8) 0.04943 (12)H2 0.54005 0.26277 0.15134 0.06313C3 0.5132 (2) 0.1975 (2) 0.09517 (9) 0.05967 (14)H3 0.57582 0.21825 0.08615 0.06967C4 0.4536 (2) 0.14529 (19) 0.07043 (8) 0.05330 (13)C5 0.3737 (2) 0.1200 (2) 0.08090 (9) 0.05988 (15)H5 0.32374 0.08171 0.06159 0.07177C6 0.3529 (2) 0.14598 (19) 0.11742 (8) 0.05120 (12)H6 0.28900 0.12649 0.12558 0.06379C7 0.39010 (16) 0.21898 (14) 0.18387 (7) 0.03191 (9)C8 0.38621 (15) 0.15369 (14) 0.21368 (7) 0.03147 (9)C9 0.34280 (15) 0.24913 (14) 0.25772 (7) 0.03086 (9)C10 0.37247 (15) 0.29909 (15) 0.19503 (7) 0.03185 (9)C11 0.37599 (19) 0.37710 (16) 0.17001 (8) 0.04295 (11)

electronic reprint

Page 12: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-3Acta Cryst. (2019). C75, 46-53

H11A 0.31283 0.41293 0.16805 0.05831H11B 0.38149 0.35983 0.13905 0.06116C12 0.4551 (2) 0.43440 (19) 0.18694 (10) 0.06136 (13)H12A 0.44427 0.45274 0.21661 0.06391H12B 0.45053 0.48825 0.16701 0.06645H12C 0.51576 0.39715 0.18770 0.06584Cl2 0.62105 (16) 0.63235 (17) 0.00880 (7) 0.10732 (6)N5 0.26037 (14) 0.62488 (12) 0.16073 (6) 0.03670 (8)N6 0.18858 (14) 0.51684 (12) 0.11851 (6) 0.03686 (8)H6A 0.13662 0.46822 0.11405 0.05840N7 0.39352 (16) 0.68097 (15) 0.14995 (7) 0.05078 (10)H7A 0.39351 0.71260 0.17564 0.06325H7B 0.45025 0.68454 0.13420 0.06566N8 0.13271 (15) 0.56014 (13) 0.17484 (6) 0.04209 (9)H8A 0.14219 0.59302 0.20111 0.05350H8B 0.07867 0.51481 0.16773 0.05289C13 0.39404 (17) 0.58765 (16) 0.07735 (7) 0.03949 (10)C14 0.4589 (2) 0.5261 (2) 0.07565 (9) 0.05970 (14)H14 0.45487 0.46684 0.09144 0.06698C15 0.5287 (2) 0.5395 (2) 0.05401 (11) 0.07230 (16)H15 0.58057 0.49239 0.05235 0.07342C16 0.5331 (2) 0.6150 (2) 0.03428 (9) 0.06019 (15)C17 0.4699 (2) 0.6767 (2) 0.03529 (10) 0.06230 (14)H17 0.47124 0.73630 0.01948 0.08155C18 0.4006 (2) 0.66267 (19) 0.05695 (9) 0.05404 (12)H18 0.34896 0.71037 0.05804 0.07380C19 0.32173 (17) 0.57725 (15) 0.10197 (7) 0.03645 (10)C20 0.32474 (17) 0.62806 (15) 0.13793 (7) 0.03667 (10)C21 0.19489 (16) 0.56767 (14) 0.15153 (7) 0.03402 (9)C22 0.25065 (17) 0.52257 (15) 0.09309 (7) 0.03703 (10)C23 0.23089 (19) 0.46795 (18) 0.05614 (8) 0.04925 (12)H23A 0.27827 0.48543 0.03619 0.07056H23B 0.16234 0.48245 0.04029 0.06805C24 0.2384 (3) 0.3736 (2) 0.06396 (10) 0.07003 (17)H24A 0.30856 0.35943 0.07581 0.07153H24B 0.21186 0.33997 0.03654 0.07423H24C 0.20004 0.35895 0.08738 0.06862O1 0.98719 (12) 0.44645 (12) 0.16417 (5) 0.04895 (8)O2 1.05648 (12) 0.39556 (11) 0.11631 (6) 0.04557 (7)O3 0.65409 (14) 0.39203 (16) 0.11053 (7) 0.07097 (10)O4 0.80128 (17) 0.34601 (18) −0.00051 (6) 0.08315 (13)C25 0.98582 (17) 0.41457 (15) 0.12997 (8) 0.03722 (10)C26 0.89508 (17) 0.39942 (15) 0.10379 (7) 0.03653 (9)C27 0.81712 (17) 0.40415 (16) 0.12068 (8) 0.04062 (10)H27 0.81965 0.41919 0.15232 0.06753C28 0.73287 (19) 0.38882 (18) 0.09616 (9) 0.04989 (12)C29 0.7278 (2) 0.3696 (2) 0.05536 (9) 0.06004 (14)H29 0.66291 0.35708 0.03622 0.07580

electronic reprint

Page 13: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-4Acta Cryst. (2019). C75, 46-53

C30 0.8069 (2) 0.3661 (2) 0.03933 (8) 0.05531 (14)C31 0.8915 (2) 0.38112 (17) 0.06322 (8) 0.04733 (12)H31 0.95142 0.37863 0.04922 0.07849H3C 0.66327 0.41367 0.13827 0.06252H4 0.86169 0.32071 0.00096 0.08110O5 0.21247 (12) −0.03253 (10) 0.25263 (5) 0.04438 (7)O6 0.19114 (13) −0.05914 (11) 0.18724 (5) 0.04743 (8)O7 0.10577 (17) 0.22506 (12) 0.12434 (5) 0.06738 (12)O8 0.10351 (12) 0.25995 (10) 0.26608 (5) 0.04235 (7)C32 0.18855 (16) −0.01058 (15) 0.21617 (8) 0.03545 (9)C33 0.15624 (15) 0.07888 (14) 0.20796 (7) 0.03158 (8)C34 0.14386 (17) 0.11108 (15) 0.16894 (7) 0.03585 (9)H34 0.15346 0.07190 0.14356 0.06119C35 0.11873 (18) 0.19529 (16) 0.16261 (7) 0.03954 (10)C36 0.10499 (17) 0.24667 (15) 0.19486 (7) 0.03740 (10)H36 0.08793 0.31297 0.19002 0.05254C37 0.11612 (16) 0.21256 (15) 0.23363 (7) 0.03317 (9)C38 0.14166 (16) 0.12848 (15) 0.24027 (7) 0.03588 (9)H38 0.15071 0.10286 0.27063 0.05527H7 0.08953 0.28282 0.12368 0.05427H8 0.09617 0.31969 0.25723 0.04715O9 0.10160 (12) 0.42624 (11) 0.24221 (5) 0.04358 (7)H9A 0.16047 0.43587 0.23802 0.05234H9B 0.06148 0.43407 0.21470 0.05143

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.1206 (8) 0.1112 (8) 0.0506 (5) −0.0068 (6) 0.0463 (5) −0.0171 (5)N1 0.0450 (12) 0.0245 (10) 0.0343 (11) 0.0023 (8) 0.0164 (9) 0.0034 (8)N2 0.0437 (12) 0.0238 (10) 0.0337 (11) 0.0023 (8) 0.0112 (9) 0.0021 (8)H2A 0.07102 0.04491 0.04989 0.00170 0.01847 −0.00554N3 0.0592 (14) 0.0263 (11) 0.0443 (12) 0.0055 (9) 0.0224 (10) 0.0019 (9)H3A 0.07324 0.05015 0.06403 0.00406 0.02162 −0.00110H3B 0.07595 0.05617 0.05977 0.00206 0.02448 −0.01180N4 0.0548 (13) 0.0306 (11) 0.0385 (11) 0.0026 (9) 0.0218 (10) 0.0004 (9)H4A 0.06415 0.05158 0.04826 0.00576 0.01482 0.00488H4B 0.06343 0.04684 0.04951 0.00557 0.01436 −0.00362C1 0.0397 (14) 0.0367 (13) 0.0309 (12) −0.0010 (10) 0.0119 (10) 0.0020 (10)C2 0.0439 (16) 0.0662 (18) 0.0406 (15) −0.0108 (13) 0.0140 (12) −0.0032 (13)H2 0.07113 0.06548 0.05589 −0.00949 0.01974 −0.01673C3 0.0542 (18) 0.085 (2) 0.0461 (17) −0.0074 (16) 0.0274 (14) −0.0015 (16)H3 0.07453 0.07918 0.06161 −0.01044 0.02936 −0.01677C4 0.068 (2) 0.0604 (18) 0.0357 (15) 0.0013 (15) 0.0212 (14) −0.0015 (13)C5 0.072 (2) 0.070 (2) 0.0412 (16) −0.0177 (16) 0.0201 (15) −0.0144 (14)H5 0.07933 0.07743 0.06125 −0.01252 0.01981 −0.02673C6 0.0541 (17) 0.0615 (18) 0.0417 (15) −0.0193 (14) 0.0187 (13) −0.0127 (13)H6 0.06948 0.06632 0.05960 −0.00876 0.02244 −0.01442

electronic reprint

Page 14: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-5Acta Cryst. (2019). C75, 46-53

C7 0.0411 (13) 0.0264 (12) 0.0302 (12) −0.0001 (10) 0.0119 (10) 0.0048 (10)C8 0.0388 (13) 0.0237 (12) 0.0348 (13) 0.0019 (9) 0.0145 (10) 0.0019 (10)C9 0.0365 (12) 0.0245 (12) 0.0336 (12) 0.0001 (9) 0.0115 (10) 0.0024 (10)C10 0.0350 (13) 0.0288 (12) 0.0318 (12) −0.0006 (9) 0.0062 (10) 0.0034 (10)C11 0.0556 (16) 0.0344 (14) 0.0397 (14) 0.0055 (12) 0.0110 (12) 0.0128 (11)H11A 0.06210 0.05435 0.06104 0.00046 0.01793 −0.00164H11B 0.07849 0.06244 0.04652 −0.00714 0.02195 −0.00842C12 0.071 (2) 0.0454 (17) 0.070 (2) −0.0151 (15) 0.0206 (16) 0.0151 (15)H12A 0.07309 0.07072 0.05227 −0.00975 0.02300 −0.01478H12B 0.07741 0.05923 0.06354 −0.00900 0.01467 0.00720H12C 0.06221 0.06131 0.07653 0.00334 0.01916 −0.01168Cl2 0.0951 (8) 0.1358 (10) 0.1125 (8) −0.0263 (7) 0.0773 (7) −0.0269 (7)N5 0.0453 (12) 0.0322 (11) 0.0358 (11) −0.0053 (9) 0.0159 (9) −0.0064 (9)N6 0.0418 (12) 0.0347 (11) 0.0361 (11) −0.0057 (9) 0.0125 (9) −0.0077 (9)H6A 0.06789 0.05861 0.05124 −0.01484 0.01746 −0.00095N7 0.0514 (14) 0.0524 (14) 0.0519 (14) −0.0181 (11) 0.0184 (11) −0.0180 (11)H7A 0.06352 0.05757 0.07289 −0.00860 0.02365 −0.00443H7B 0.06258 0.06537 0.07522 −0.00874 0.02918 0.00296N8 0.0494 (13) 0.0428 (12) 0.0382 (12) −0.0086 (10) 0.0191 (10) −0.0078 (9)H8A 0.06267 0.04748 0.05212 −0.00913 0.01497 −0.00418H8B 0.06114 0.04719 0.05148 −0.01317 0.01302 0.00016C13 0.0446 (15) 0.0416 (14) 0.0355 (13) 0.0005 (11) 0.0158 (11) −0.0016 (11)C14 0.069 (2) 0.0559 (18) 0.0631 (19) 0.0160 (15) 0.0350 (16) 0.0056 (15)H14 0.07769 0.06580 0.06296 −0.00401 0.02750 0.00686C15 0.066 (2) 0.083 (3) 0.077 (2) 0.0199 (18) 0.0403 (18) −0.0064 (19)H15 0.07698 0.07944 0.07082 0.00154 0.03227 0.00409C16 0.0562 (19) 0.079 (2) 0.0526 (18) −0.0102 (17) 0.0294 (15) −0.0111 (16)C17 0.068 (2) 0.063 (2) 0.0644 (19) −0.0080 (16) 0.0350 (16) 0.0073 (16)H17 0.07939 0.08461 0.08837 −0.00404 0.03605 0.02886C18 0.0519 (17) 0.0535 (18) 0.0623 (18) 0.0043 (13) 0.0254 (14) 0.0125 (14)H18 0.07092 0.07364 0.08307 −0.00021 0.03074 0.01972C19 0.0424 (14) 0.0356 (13) 0.0345 (13) −0.0038 (11) 0.0156 (11) −0.0062 (10)C20 0.0425 (14) 0.0349 (13) 0.0349 (13) −0.0044 (11) 0.0131 (11) −0.0047 (10)C21 0.0418 (14) 0.0305 (12) 0.0318 (12) −0.0003 (10) 0.0123 (10) −0.0038 (10)C22 0.0413 (14) 0.0382 (14) 0.0335 (13) −0.0025 (11) 0.0120 (11) −0.0058 (11)C23 0.0558 (17) 0.0536 (17) 0.0403 (15) −0.0064 (13) 0.0140 (13) −0.0155 (13)H23A 0.08046 0.08163 0.05595 −0.01081 0.02951 0.00552H23B 0.07071 0.07791 0.05587 −0.00533 0.01209 0.00544C24 0.101 (3) 0.057 (2) 0.059 (2) −0.0139 (18) 0.0343 (18) −0.0231 (16)H24A 0.06948 0.07529 0.07046 −0.00380 0.01408 0.00024H24B 0.09762 0.07939 0.04544 −0.00942 0.01185 −0.00842H24C 0.08706 0.07002 0.05609 −0.00580 0.03271 0.00240O1 0.0400 (11) 0.0630 (12) 0.0437 (10) −0.0025 (9) 0.0068 (8) −0.0201 (9)O2 0.0427 (10) 0.0416 (10) 0.0559 (11) −0.0032 (8) 0.0184 (9) −0.0108 (8)O3 0.0423 (12) 0.1086 (18) 0.0608 (13) −0.0062 (11) 0.0056 (10) −0.0159 (12)O4 0.0838 (16) 0.124 (2) 0.0396 (12) 0.0112 (15) 0.0047 (11) −0.0202 (13)C25 0.0363 (14) 0.0366 (13) 0.0398 (14) −0.0011 (10) 0.0098 (11) −0.0091 (11)C26 0.0410 (14) 0.0341 (12) 0.0347 (13) −0.0026 (10) 0.0072 (11) −0.0044 (10)

electronic reprint

Page 15: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-6Acta Cryst. (2019). C75, 46-53

C27 0.0389 (15) 0.0462 (14) 0.0371 (14) −0.0033 (11) 0.0073 (11) −0.0058 (11)H27 0.07318 0.07582 0.05959 −0.00280 0.02821 −0.01407C28 0.0432 (16) 0.0619 (17) 0.0434 (16) −0.0013 (13) 0.0046 (13) −0.0061 (13)C29 0.0557 (19) 0.073 (2) 0.0465 (17) 0.0013 (15) −0.0047 (14) −0.0112 (15)H29 0.07547 0.09638 0.06027 −0.00748 0.02493 −0.01120C30 0.063 (2) 0.0668 (19) 0.0343 (15) 0.0052 (15) 0.0022 (14) −0.0081 (13)C31 0.0563 (18) 0.0503 (16) 0.0363 (15) 0.0000 (13) 0.0109 (13) −0.0067 (12)H31 0.07690 0.09618 0.07201 −0.00370 0.03959 −0.01244H3C 0.06949 0.06772 0.05532 −0.00420 0.02468 −0.01121H4 0.08059 0.10764 0.06180 −0.00430 0.03107 −0.01039O5 0.0590 (11) 0.0285 (9) 0.0451 (11) 0.0000 (8) 0.0078 (8) 0.0054 (8)O6 0.0664 (12) 0.0301 (9) 0.0493 (11) 0.0062 (8) 0.0199 (9) −0.0010 (8)O7 0.130 (2) 0.0405 (11) 0.0321 (10) 0.0190 (11) 0.0144 (11) 0.0027 (8)O8 0.0594 (11) 0.0351 (9) 0.0342 (9) 0.0058 (8) 0.0130 (8) −0.0004 (7)C32 0.0385 (13) 0.0269 (12) 0.0425 (15) 0.0004 (10) 0.0117 (11) 0.0026 (11)C33 0.0337 (12) 0.0242 (11) 0.0377 (13) −0.0025 (9) 0.0087 (10) 0.0001 (10)C34 0.0457 (14) 0.0266 (12) 0.0364 (14) 0.0004 (10) 0.0106 (11) −0.0015 (10)H34 0.08055 0.05093 0.05423 0.00130 0.01777 −0.01325C35 0.0558 (16) 0.0300 (13) 0.0331 (13) 0.0022 (11) 0.0086 (11) 0.0016 (11)C36 0.0540 (15) 0.0252 (12) 0.0327 (13) 0.0036 (10) 0.0069 (11) −0.0012 (10)H36 0.07357 0.03865 0.04587 0.00208 0.01183 0.00144C37 0.0391 (13) 0.0287 (12) 0.0323 (13) 0.0013 (10) 0.0078 (10) −0.0011 (10)C38 0.0446 (14) 0.0290 (12) 0.0342 (13) 0.0016 (10) 0.0076 (11) 0.0024 (10)H38 0.07075 0.04744 0.04826 0.00769 0.01224 0.00696H7 0.07345 0.04710 0.04327 −0.00233 0.01303 −0.00259H8 0.06250 0.03763 0.04148 0.00189 0.00952 0.00275O9 0.0515 (11) 0.0366 (9) 0.0435 (10) −0.0007 (8) 0.0108 (8) −0.0065 (8)H9A 0.05351 0.05247 0.05271 −0.00529 0.01391 −0.00040H9B 0.06354 0.05052 0.03827 −0.00317 0.00351 0.00214

Geometric parameters (Å, º)

Cl1—C4 1.722 (3) C15—C16 1.371 (5)N1—C9 1.326 (3) C15—H15 1.0830N1—C8 1.334 (3) C16—C17 1.361 (5)N2—C9 1.352 (3) C17—C18 1.384 (4)N2—C10 1.362 (3) C17—H17 1.0830N2—H2A 1.0323 C18—H18 1.0830N3—C8 1.324 (3) C19—C20 1.444 (3)N3—H3A 0.9861 C19—C22 1.360 (3)N3—H3B 1.0422 C22—C23 1.498 (3)N4—C9 1.326 (3) C23—C24 1.513 (5)N4—H4A 0.9736 C23—H23A 1.0920N4—H4B 1.0107 C23—H23B 1.0920C1—C7 1.481 (3) C24—H24B 1.0770C1—C2 1.384 (3) C24—H24C 1.0770C1—C6 1.388 (4) C24—H24A 1.0770C2—C3 1.393 (4) O1—C25 1.251 (3)

electronic reprint

Page 16: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-7Acta Cryst. (2019). C75, 46-53

C2—H2 1.0830 O2—C25 1.259 (3)C3—C4 1.380 (4) O3—C28 1.349 (3)C3—H3 1.0830 O3—H3C 0.9790C4—C5 1.362 (4) O4—C30 1.363 (3)C5—C6 1.379 (4) O4—H4 0.9800C5—H5 1.0830 C25—C26 1.500 (4)C6—H6 1.0830 C26—C27 1.384 (3)C7—C8 1.446 (3) C26—C31 1.385 (3)C7—C10 1.358 (3) C27—C28 1.399 (4)C10—C11 1.497 (3) C27—H27 1.0830C11—C12 1.517 (4) C28—C29 1.393 (4)C11—H11A 1.0920 C29—C30 1.383 (4)C11—H11B 1.0920 C29—H29 1.0830C12—H12A 1.0770 C30—C31 1.393 (4)C12—H12C 1.0770 C31—H31 1.0830C12—H12B 1.0770 O5—C32 1.263 (3)Cl2—C16 1.711 (3) O6—C32 1.244 (3)N5—C21 1.327 (3) O7—C35 1.350 (3)N5—C20 1.331 (3) O7—H7 0.9430N6—C21 1.359 (3) O8—C37 1.362 (3)N6—C22 1.369 (3) O8—H8 0.9893N6—H6A 1.0832 C32—C33 1.503 (3)N7—C20 1.331 (3) C33—C38 1.386 (3)N7—H7A 0.9971 C33—C34 1.388 (3)N7—H7B 1.0763 C34—C35 1.388 (3)N8—C21 1.321 (3) C34—H34 1.0830N8—H8A 1.0119 C35—C36 1.397 (3)N8—H8B 1.0738 C36—C37 1.392 (3)C13—C19 1.480 (3) C36—H36 1.0830C13—C14 1.380 (4) C37—C38 1.389 (3)C13—C18 1.381 (4) C38—H38 1.0830C14—C15 1.388 (4) O9—H9A 0.9271C14—H14 1.0830 O9—H9B 1.0167

C9—N1—C8 118.34 (18) C18—C17—H17 118.5 (2)C9—N2—C10 121.05 (17) C13—C18—C17 121.5 (2)C9—N2—H2A 118.21 (16) C13—C18—H18 117.8 (2)C10—N2—H2A 119.69 (16) C17—C18—H18 120.6 (2)C8—N3—H3A 119.50 (17) C20—C19—C22 116.4 (2)C8—N3—H3B 121.26 (17) C20—C19—C13 119.16 (19)H3A—N3—H3B 119.21 (16) C22—C19—C13 124.45 (19)C9—N4—H4A 119.38 (17) N5—C20—N7 116.51 (19)C9—N4—H4B 119.35 (17) N5—C20—C19 122.73 (19)H4A—N4—H4B 119.19 (16) N7—C20—C19 120.8 (2)C7—C1—C2 121.65 (19) N6—C21—N5 122.32 (18)C7—C1—C6 120.1 (2) N6—C21—N8 118.39 (18)C2—C1—C6 118.2 (2) N5—C21—N8 119.29 (19)C1—C2—C3 120.8 (2) N6—C22—C19 119.54 (19)

electronic reprint

Page 17: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-8Acta Cryst. (2019). C75, 46-53

C1—C2—H2 121.4 (2) N6—C22—C23 114.98 (19)C3—C2—H2 117.7 (2) C19—C22—C23 125.4 (2)C4—C3—C2 118.8 (2) C22—C23—C24 115.2 (2)C4—C3—H3 120.7 (2) C22—C23—H23A 107.95 (19)C2—C3—H3 120.5 (2) C22—C23—H23B 108.3 (2)Cl1—C4—C5 119.5 (2) C24—C23—H23A 108.6 (2)Cl1—C4—C3 119.0 (2) C24—C23—H23B 109.0 (2)C5—C4—C3 121.4 (3) H23A—C23—H23B 107.5 (2)C4—C5—C6 119.1 (2) C23—C24—H24B 109.4 (2)C4—C5—H5 123.5 (2) C23—C24—H24C 107.8 (2)C6—C5—H5 117.4 (2) C23—C24—H24A 107.9 (3)C1—C6—C5 121.5 (2) H24B—C24—H24C 110.8 (2)C1—C6—H6 119.4 (2) H24B—C24—H24A 113.7 (3)C5—C6—H6 119.1 (2) H24C—C24—H24A 107.1 (3)C8—C7—C10 116.09 (18) C28—O3—H3C 111.63 (19)C8—C7—C1 119.82 (18) C30—O4—H4 98.5 (2)C10—C7—C1 124.09 (19) O1—C25—O2 123.45 (19)N1—C8—N3 117.23 (18) O1—C25—C26 118.02 (19)N1—C8—C7 122.36 (18) O2—C25—C26 118.5 (2)N3—C8—C7 120.40 (18) C25—C26—C27 119.3 (2)N2—C9—N1 122.02 (17) C25—C26—C31 119.0 (2)N2—C9—N4 117.48 (18) C27—C26—C31 121.6 (2)N1—C9—N4 120.49 (18) C28—C27—C26 118.9 (2)N2—C10—C7 119.97 (18) C28—C27—H27 119.2 (2)N2—C10—C11 114.31 (18) C26—C27—H27 121.8 (2)C7—C10—C11 125.72 (19) O3—C28—C29 117.4 (2)C10—C11—C12 112.5 (2) O3—C28—C27 122.3 (2)C10—C11—H11A 110.17 (18) C29—C28—C27 120.3 (2)C10—C11—H11B 110.17 (18) C30—C29—C28 119.3 (2)C12—C11—H11A 108.7 (2) C30—C29—H29 119.9 (2)C12—C11—H11B 108.8 (2) C28—C29—H29 120.8 (2)H11A—C11—H11B 106.30 (19) O4—C30—C29 118.8 (2)C11—C12—H12A 105.9 (2) O4—C30—C31 119.9 (2)C11—C12—H12C 106.3 (2) C29—C30—C31 121.3 (2)C11—C12—H12B 106.1 (2) C30—C31—C26 118.5 (2)H12A—C12—H12C 112.8 (3) C30—C31—H31 118.6 (2)H12A—C12—H12B 111.1 (2) C26—C31—H31 122.9 (2)H12C—C12—H12B 114.0 (2) C35—O7—H7 110.63 (17)C21—N5—C20 117.96 (19) C37—O8—H8 107.88 (15)C21—N6—C22 120.83 (18) O6—C32—O5 123.1 (2)C21—N6—H6A 118.46 (16) O6—C32—C33 119.30 (19)C22—N6—H6A 120.53 (16) O5—C32—C33 117.58 (19)C20—N7—H7A 117.35 (18) C32—C33—C38 118.50 (19)C20—N7—H7B 121.08 (18) C32—C33—C34 120.19 (19)H7A—N7—H7B 121.27 (17) C38—C33—C34 121.29 (19)C21—N8—H8A 117.72 (17) C35—C34—C33 118.9 (2)C21—N8—H8B 120.49 (17) C35—C34—H34 119.76 (19)H8A—N8—H8B 121.37 (16) C33—C34—H34 121.33 (19)

electronic reprint

Page 18: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-9Acta Cryst. (2019). C75, 46-53

C19—C13—C14 122.1 (2) O7—C35—C34 117.98 (19)C19—C13—C18 119.6 (2) O7—C35—C36 121.33 (19)C14—C13—C18 118.2 (2) C34—C35—C36 120.7 (2)C13—C14—C15 120.8 (2) C37—C36—C35 119.42 (19)C13—C14—H14 119.2 (2) C37—C36—H36 120.06 (19)C15—C14—H14 120.0 (3) C35—C36—H36 120.50 (19)C16—C15—C14 119.4 (3) O8—C37—C38 118.00 (18)C16—C15—H15 118.5 (3) O8—C37—C36 121.70 (18)C14—C15—H15 122.2 (2) C38—C37—C36 120.3 (2)Cl2—C16—C17 119.7 (2) C37—C38—C33 119.40 (19)Cl2—C16—C15 119.2 (2) C37—C38—H38 119.58 (19)C17—C16—C15 121.1 (3) C33—C38—H38 121.02 (19)C16—C17—C18 119.1 (3) H9A—O9—H9B 105.39 (15)C16—C17—H17 122.5 (3)

Cl1—C4—C5—C6 178.0 (4) C13—C14—C15—H15 179.67Cl1—C4—C5—H5 −3.90 C13—C18—C17—C16 −0.3 (4)Cl1—C4—C3—C2 −177.1 (4) C13—C18—C17—H17 179.10Cl1—C4—C3—H3 2.14 C14—C13—C19—C20 109.6 (4)N1—C9—N2—C10 4.2 (3) C14—C13—C19—C22 −70.8 (4)N1—C9—N2—H2A 172.41 C14—C13—C18—C17 0.0 (4)N1—C9—N4—H4A −17.21 C14—C13—C18—H18 179.18N1—C9—N4—H4B 179.31 C14—C15—C16—C17 −0.6 (5)N1—C8—N3—H3A −1.99 H14—C14—C13—C19 3.49N1—C8—N3—H3B −179.85 H14—C14—C13—C18 −179.94N1—C8—C7—C10 2.4 (3) H14—C14—C15—C16 −179.77N1—C8—C7—C1 −177.4 (3) H14—C14—C15—H15 −0.40N2—C9—N1—C8 −4.0 (3) C15—C16—C17—C18 0.5 (4)N2—C9—N4—H4A 163.93 C15—C16—C17—H17 −178.78N2—C9—N4—H4B 0.46 C15—C14—C13—C19 −176.6 (4)N2—C10—C7—C8 −2.3 (3) C15—C14—C13—C18 0.0 (4)N2—C10—C7—C1 177.5 (3) H15—C15—C16—C17 −179.97N2—C10—C11—C12 69.5 (3) C16—C17—C18—H18 −179.42N2—C10—C11—H11A −51.96 C17—C18—C13—C19 176.6 (4)N2—C10—C11—H11B −168.93 H17—C17—C18—H18 −0.06H2A—N2—C9—N4 −8.76 C18—C13—C19—C20 −67.0 (4)H2A—N2—C10—C7 −168.87 C18—C13—C19—C22 112.7 (4)H2A—N2—C10—C11 11.33 H18—C18—C13—C19 −4.17N3—C8—N1—C9 −179.9 (3) C19—C20—N5—C21 5.4 (3)N3—C8—C7—C10 −177.0 (3) C19—C22—N6—C21 2.9 (3)N3—C8—C7—C1 3.2 (3) C19—C22—C23—C24 114.8 (4)H3A—N3—C8—C7 177.44 C19—C22—C23—H23A −6.76H3B—N3—C8—C7 −0.42 C19—C22—C23—H23B −122.91N4—C9—N2—C10 −177.0 (3) C20—C19—C22—C23 176.0 (3)N4—C9—N1—C8 177.2 (3) C21—N6—C22—C23 −175.1 (3)C1—C7—C10—C11 −2.7 (3) C22—C23—C24—H24B 170.15C1—C2—C3—C4 −1.0 (4) C22—C23—C24—H24C 49.57C1—C2—C3—H3 179.79 C22—C23—C24—H24A −65.73

electronic reprint

Page 19: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-10Acta Cryst. (2019). C75, 46-53

C1—C6—C5—C4 −0.8 (4) H23A—C23—C24—H24B −68.69C1—C6—C5—H5 −179.08 H23A—C23—C24—H24C 170.73C2—C1—C7—C8 −113.0 (4) H23A—C23—C24—H24A 55.43C2—C1—C7—C10 67.2 (4) H23B—C23—C24—H24B 48.19C2—C1—C6—C5 2.0 (4) H23B—C23—C24—H24C −72.39C2—C1—C6—H6 −178.17 H23B—C23—C24—H24A 172.31C2—C3—C4—C5 2.2 (4) O1—C25—C26—C27 −13.2 (3)H2—C2—C1—C7 −2.98 O1—C25—C26—C31 166.7 (3)H2—C2—C1—C6 178.55 O2—C25—C26—C27 167.6 (3)H2—C2—C3—C4 179.42 O2—C25—C26—C31 −12.5 (3)H2—C2—C3—H3 0.21 O3—C28—C29—C30 179.7 (4)C3—C4—C5—C6 −1.3 (4) O3—C28—C29—H29 −0.62C3—C4—C5—H5 176.84 O3—C28—C27—C26 179.8 (4)C3—C2—C1—C7 177.4 (4) O3—C28—C27—H27 −0.04C3—C2—C1—C6 −1.0 (4) O4—C30—C29—C28 179.1 (4)H3—C3—C4—C5 −178.59 O4—C30—C29—H29 −0.60C4—C5—C6—H6 179.30 O4—C30—C31—C26 −178.5 (4)C5—C6—C1—C7 −176.5 (4) O4—C30—C31—H31 2.05H5—C5—C6—H6 1.04 C25—C26—C27—C28 −179.2 (3)C6—C1—C7—C8 65.4 (4) C25—C26—C27—H27 0.66C6—C1—C7—C10 −114.4 (4) C25—C26—C31—C30 179.2 (3)H6—C6—C1—C7 3.34 C25—C26—C31—H31 −1.46C7—C8—N1—C9 0.7 (3) C26—C27—C28—C29 −0.3 (3)C7—C10—N2—C9 −0.8 (3) C26—C31—C30—C29 0.4 (4)C7—C10—C11—C12 −110.3 (3) C27—C28—O3—H3C 7.94C7—C10—C11—H11A 128.25 C27—C28—C29—C30 −0.2 (4)C7—C10—C11—H11B 11.28 C27—C28—C29—H29 179.48C8—C7—C10—C11 177.5 (3) C27—C26—C31—C30 −0.9 (3)C9—N2—C10—C11 179.4 (3) C27—C26—C31—H31 178.45C10—C11—C12—H12A −61.17 H27—C27—C28—C29 179.84C10—C11—C12—H12C 58.98 H27—C27—C26—C31 −179.25C10—C11—C12—H12B −179.31 C28—C29—C30—C31 0.2 (4)H11A—C11—C12—H12A 61.13 C28—C27—C26—C31 0.9 (4)H11A—C11—C12—H12C −178.72 C29—C30—O4—H4 −152.32H11A—C11—C12—H12B −57.00 C29—C30—C31—H31 −179.06H11B—C11—C12—H12A 176.50 C29—C28—O3—H3C −171.95H11B—C11—C12—H12C −63.34 H29—C29—C30—C31 −179.50H11B—C11—C12—H12B 58.37 C31—C30—O4—H4 26.59Cl2—C16—C17—C18 −178.2 (4) O5—C32—C33—C38 −9.3 (3)Cl2—C16—C17—H17 2.45 O5—C32—C33—C34 169.0 (3)Cl2—C16—C15—C14 178.2 (4) O6—C32—C33—C38 171.1 (3)Cl2—C16—C15—H15 −1.19 O6—C32—C33—C34 −10.6 (3)N5—C21—N6—C22 0.2 (3) O7—C35—C34—C33 −179.1 (3)N5—C21—N6—H6A 175.30 O7—C35—C34—H34 0.97N5—C21—N8—H8A −8.10 O7—C35—C36—C37 177.8 (3)N5—C21—N8—H8B 179.22 O7—C35—C36—H36 −4.13N5—C20—N7—H7A 2.49 O8—C37—C38—C33 −179.1 (3)N5—C20—N7—H7B 176.30 O8—C37—C38—H38 0.11

electronic reprint

Page 20: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-11Acta Cryst. (2019). C75, 46-53

N5—C20—C19—C22 −2.5 (3) O8—C37—C36—C35 −180.0 (3)N5—C20—C19—C13 177.2 (3) O8—C37—C36—H36 1.96N6—C21—N5—C20 −4.3 (3) C32—C33—C38—C37 176.8 (3)N6—C21—N8—H8A 172.72 C32—C33—C38—H38 −2.38N6—C21—N8—H8B 0.05 C32—C33—C34—C35 −176.5 (3)N6—C22—C19—C20 −1.7 (3) C32—C33—C34—H34 3.42N6—C22—C19—C13 178.6 (3) C33—C38—C37—C36 0.2 (3)N6—C22—C23—C24 −67.4 (3) C33—C34—C35—C36 −0.8 (3)N6—C22—C23—H23A 171.07 C34—C35—O7—H7 −179.46N6—C22—C23—H23B 54.91 C34—C35—C36—C37 −0.4 (3)H6A—N6—C21—N8 −5.55 C34—C35—C36—H36 177.62H6A—N6—C22—C19 −172.14 C34—C33—C38—C37 −1.4 (3)H6A—N6—C22—C23 9.90 C34—C33—C38—H38 179.33N7—C20—N5—C21 −174.4 (3) H34—C34—C35—C36 179.27N7—C20—C19—C22 177.4 (3) H34—C34—C33—C38 −178.32N7—C20—C19—C13 −2.9 (3) C35—C34—C33—C38 1.7 (3)H7A—N7—C20—C19 −177.37 C35—C36—C37—C38 0.7 (3)H7B—N7—C20—C19 −3.56 C36—C37—O8—H8 −8.88N8—C21—N6—C22 179.3 (3) C36—C37—C38—H38 179.43N8—C21—N5—C20 176.6 (3) C36—C35—O7—H7 2.25C13—C19—C22—C23 −3.6 (4) H36—C36—C37—C38 −177.34C13—C14—C15—C16 0.3 (4) C38—C37—O8—H8 170.44

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N3—H3B···O1i 1.04 (4) 2.08 (4) 2.850 (3) 129 (2)N6—H6A···O2ii 1.08 (4) 1.67 (4) 2.741 (3) 170 (1)N6—H6A···C25ii 1.08 (4) 2.55 (4) 3.513 (3) 148 (2)N8—H8B···O1ii 1.07 (4) 1.73 (4) 2.793 (3) 170 (1)N8—H8B···O2ii 1.07 (4) 2.54 (4) 3.336 (3) 130 (2)N8—H8B···C25ii 1.07 (4) 2.33 (4) 3.348 (3) 158 (1)C24—H24C···O2ii 1.1 2.6 3.502 (4) 144O7—H7···O2ii 0.94 (4) 1.85 (4) 2.792 (3) 174 (1)O7—H7···C25ii 0.94 (4) 2.63 (4) 3.510 (3) 157 (1)O9—H9B···O1ii 1.02 (4) 1.87 (4) 2.885 (3) 179 (1)C18—H18···C30iii 1.08 2.59 3.512 (4) 143C18—H18···C31iii 1.08 2.77 3.461 (4) 122N3—H3A···O9iv 0.99 (4) 1.96 (4) 2.924 (3) 166 (1)N4—H4A···N5iv 0.97 (4) 2.11 (4) 3.086 (3) 175 (1)C38—H38···N5iv 1.1 2.5 3.390 (3) 141C2—H2···N4v 1.08 2.6 3.550 (4) 146O4—H4···Cl1vi 0.98 (16) 2.86 (15) 3.555 (3) 129 (9)O3—H3C···O6vii 0.98 (4) 1.68 (4) 2.652 (3) 172 (1)N2—H2A···O5viii 1.03 (4) 1.65 (4) 2.684 (3) 178 (1)N4—H4B···O6viii 1.01 (4) 1.84 (4) 2.824 (3) 164 (1)N8—H8A···N1viii 1.01 (4) 2.07 (4) 3.069 (3) 169 (1)

electronic reprint

Page 21: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-12Acta Cryst. (2019). C75, 46-53

O9—H9A···O5viii 0.93 (4) 1.94 (4) 2.828 (3) 161 (1)O8—H8···O9 0.99 (4) 1.76 (4) 2.744 (3) 171 (1)

Symmetry codes: (i) x−1/2, y−1/2, z; (ii) x−1, y, z; (iii) x−1/2, y+1/2, z; (iv) −x+1/2, y−1/2, −z+1/2; (v) −x+1, y, −z+1/2; (vi) −x+3/2, −y+1/2, −z; (vii) x+1/2, y+1/2, z; (viii) −x+1/2, y+1/2, −z+1/2.

2,4-Diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 3,5-dihydroxybenzoate hemihydrate (IAM_MoPro)

Crystal data

2C12H14ClN4+·2C7H5O4

−·H2OMr = 823.64Monoclinic, C2/cHall symbol: -C 2yca = 14.9367 (7) Åb = 15.7910 (7) Åc = 33.5896 (1) Åβ = 100.123 (2)°V = 7799.3 (5) Å3

Z = 8

F(000) = 3440Dx = 1.403 Mg m−3

Mo Kα radiation, λ = 0.71073 ÅCell parameters from 500 reflectionsθ = 1.9–26.4°µ = 0.23 mm−1

T = 297 KPlate like, yellow0.38 × 0.30 × 0.18 mm

Data collection

Bruker Kappa APEXII CCD detector diffractometer

Radiation source: fine-focus sealed tubeω and phi scanAbsorption correction: multi-scan

(SADABS; Krause et al., 2015)Tmin = 0.917, Tmax = 0.95946169 measured reflections

7995 independent reflections5812 reflections with > 2.0σ(I)Rint = 0.044θmax = 26.4°, θmin = 1.9°h = 0→18k = 0→19l = −41→41

Refinement

Refinement on F2

Least-squares matrix: fullR[F2 > 2σ(F2)] = 0.052wR(F2) = 0.128S = 1.087995 reflections534 parameters0 restraintsPrimary atom site location: structure-invariant

direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier mapH atoms treated by a mixture of independent

and constrained refinementw = 1/[σ2(Fo

2) + (0.056P)2 + 5.17P] where P = (Fo

2 + 2Fc2)/3

Δρmax = 0.32 e Å−3

Δρmin = −0.34 e Å−3

Special details

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.48195 (18) 0.11076 (17) 0.02573 (6) 0.09734 (7)N1 0.36329 (15) 0.16989 (13) 0.24969 (6) 0.03664 (9)N2 0.34966 (15) 0.31346 (13) 0.23197 (6) 0.03629 (9)H2A 0.32597 0.36971 0.23839 0.05432N3 0.40648 (17) 0.07427 (14) 0.20619 (7) 0.04477 (10)

electronic reprint

Page 22: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-13Acta Cryst. (2019). C75, 46-53

H3A 0.40817 0.02992 0.22664 0.06132H3B 0.42197 0.05705 0.18065 0.06245N4 0.31616 (16) 0.26776 (14) 0.29229 (7) 0.04227 (10)H4A 0.29465 0.22378 0.30848 0.05406H4B 0.30598 0.32692 0.29951 0.05272C1 0.41202 (19) 0.19626 (17) 0.14377 (8) 0.03822 (11)C2 0.4919 (2) 0.2223 (2) 0.13219 (9) 0.05266 (13)H2 0.53987 0.26282 0.15128 0.06313C3 0.5129 (2) 0.1975 (2) 0.09512 (10) 0.06311 (16)H3 0.57561 0.21816 0.08618 0.06967C4 0.4533 (2) 0.1453 (2) 0.07063 (9) 0.05668 (15)C5 0.3736 (3) 0.1200 (2) 0.08092 (10) 0.06284 (16)H5 0.32445 0.08113 0.06150 0.07177C6 0.3531 (2) 0.1461 (2) 0.11742 (9) 0.05418 (14)H6 0.28911 0.12675 0.12554 0.06379C7 0.39026 (18) 0.21896 (16) 0.18399 (8) 0.03497 (10)C8 0.38622 (17) 0.15396 (16) 0.21351 (8) 0.03444 (10)C9 0.34282 (17) 0.24914 (16) 0.25775 (8) 0.03424 (10)C10 0.37261 (17) 0.29901 (16) 0.19491 (8) 0.03510 (10)C11 0.3757 (2) 0.37713 (18) 0.16986 (9) 0.04680 (12)H11A 0.31250 0.41279 0.16800 0.05831H11B 0.38087 0.35979 0.13887 0.06116C12 0.4552 (2) 0.4343 (2) 0.18712 (11) 0.06526 (15)H12A 0.44501 0.45311 0.21681 0.06391H12B 0.45129 0.48827 0.16730 0.06645H12C 0.51632 0.39762 0.18786 0.06584Cl2 0.62107 (18) 0.6319 (2) 0.00875 (8) 0.11521 (7)N5 0.26032 (15) 0.62496 (14) 0.16083 (7) 0.03948 (9)N6 0.18856 (15) 0.51698 (14) 0.11860 (7) 0.04011 (9)H6A 0.14166 0.47057 0.11421 0.05840N7 0.39323 (17) 0.68088 (16) 0.14991 (8) 0.05377 (11)H7A 0.39708 0.70907 0.17657 0.06325H7B 0.44470 0.68399 0.13527 0.06566N8 0.13274 (16) 0.56021 (15) 0.17482 (7) 0.04507 (10)H8A 0.13906 0.59434 0.19964 0.05350H8B 0.08329 0.51756 0.16897 0.05289C13 0.3942 (2) 0.58773 (18) 0.07730 (8) 0.04266 (12)C14 0.4587 (2) 0.5261 (2) 0.07565 (10) 0.06281 (15)H14 0.45472 0.46685 0.09146 0.06698C15 0.5286 (3) 0.5397 (3) 0.05393 (12) 0.07518 (18)H15 0.58047 0.49250 0.05227 0.07342C16 0.5327 (2) 0.6151 (3) 0.03438 (10) 0.06290 (16)C17 0.4700 (3) 0.6765 (2) 0.03524 (11) 0.06581 (16)H17 0.47168 0.73604 0.01936 0.08155C18 0.4003 (2) 0.6626 (2) 0.05690 (10) 0.05701 (14)H18 0.34867 0.71031 0.05788 0.07380C19 0.32186 (19) 0.57731 (17) 0.10207 (8) 0.03957 (11)C20 0.32477 (19) 0.62799 (17) 0.13788 (8) 0.03978 (11)

electronic reprint

Page 23: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-14Acta Cryst. (2019). C75, 46-53

C21 0.19481 (19) 0.56775 (16) 0.15151 (8) 0.03719 (11)C22 0.25101 (19) 0.52254 (17) 0.09303 (8) 0.04057 (11)C23 0.2306 (2) 0.4679 (2) 0.05599 (9) 0.05324 (14)H23A 0.27780 0.48541 0.03595 0.07056H23B 0.16201 0.48230 0.04020 0.06805C24 0.2386 (3) 0.3735 (2) 0.06401 (11) 0.07376 (19)H24A 0.30889 0.35915 0.07556 0.07153H24B 0.21203 0.34015 0.03651 0.07423H24C 0.19969 0.35867 0.08720 0.06862O1 0.98712 (13) 0.44647 (14) 0.16414 (6) 0.05241 (9)O2 1.05654 (13) 0.39548 (12) 0.11632 (6) 0.04939 (8)O3 0.65390 (15) 0.39185 (18) 0.11054 (7) 0.07448 (12)O4 0.80179 (19) 0.3459 (2) −0.00064 (7) 0.08648 (15)C25 0.98568 (19) 0.41455 (17) 0.13000 (9) 0.04079 (11)C26 0.89510 (19) 0.39948 (16) 0.10380 (8) 0.03971 (11)C27 0.8171 (2) 0.40395 (18) 0.12058 (9) 0.04402 (12)H27 0.81960 0.41887 0.15223 0.06753C28 0.7333 (2) 0.3887 (2) 0.09606 (10) 0.05333 (14)C29 0.7281 (2) 0.3694 (2) 0.05548 (10) 0.06298 (16)H29 0.66312 0.35716 0.03638 0.07580C30 0.8068 (3) 0.3662 (2) 0.03969 (9) 0.05887 (16)C31 0.8913 (2) 0.38111 (19) 0.06322 (9) 0.05021 (13)H31 0.95106 0.37841 0.04910 0.07849H3C 0.66548 0.41259 0.13733 0.06252H4 0.86228 0.32084 0.00077 0.08110O5 0.21239 (14) −0.03257 (11) 0.25264 (6) 0.04788 (8)O6 0.19106 (15) −0.05920 (12) 0.18723 (6) 0.05111 (9)O7 0.10593 (19) 0.22512 (13) 0.12428 (6) 0.07072 (13)O8 0.10344 (14) 0.25989 (12) 0.26614 (6) 0.04648 (8)C32 0.18841 (18) −0.01047 (17) 0.21620 (9) 0.03906 (10)C33 0.15620 (17) 0.07879 (16) 0.20791 (8) 0.03506 (10)C34 0.14372 (19) 0.11128 (17) 0.16904 (8) 0.03916 (11)H34 0.15354 0.07197 0.14374 0.06119C35 0.1187 (2) 0.19511 (18) 0.16288 (8) 0.04320 (12)C36 0.10506 (19) 0.24633 (17) 0.19492 (8) 0.04081 (11)H36 0.08788 0.31258 0.19000 0.05254C37 0.11622 (18) 0.21231 (16) 0.23337 (8) 0.03626 (10)C38 0.14157 (18) 0.12863 (17) 0.24025 (8) 0.03900 (11)H38 0.15054 0.10311 0.27062 0.05527H7 0.09198 0.28398 0.12252 0.05427H8 0.09541 0.31811 0.25807 0.04715O9 0.10200 (14) 0.42649 (12) 0.24218 (6) 0.04680 (8)H9A 0.16136 0.43585 0.23771 0.05234H9B 0.06522 0.43279 0.21576 0.05143

electronic reprint

Page 24: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-15Acta Cryst. (2019). C75, 46-53

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.1301 (10) 0.1187 (9) 0.0555 (6) −0.0064 (7) 0.0501 (6) −0.0181 (6)N1 0.0452 (13) 0.0289 (11) 0.0389 (12) 0.0020 (9) 0.0159 (10) 0.0031 (9)N2 0.0462 (13) 0.0274 (11) 0.0370 (12) 0.0020 (9) 0.0122 (10) 0.0021 (9)H2A 0.07102 0.04491 0.04989 0.00170 0.01847 −0.00554N3 0.0620 (16) 0.0301 (12) 0.0472 (14) 0.0051 (11) 0.0232 (12) 0.0005 (10)H3A 0.07324 0.05015 0.06403 0.00406 0.02162 −0.00110H3B 0.07595 0.05617 0.05977 0.00206 0.02448 −0.01180N4 0.0565 (15) 0.0341 (12) 0.0408 (13) 0.0022 (10) 0.0214 (11) 0.0000 (10)H4A 0.06415 0.05158 0.04826 0.00576 0.01482 0.00488H4B 0.06343 0.04684 0.04951 0.00557 0.01436 −0.00362C1 0.0441 (16) 0.0369 (14) 0.0354 (14) 0.0035 (12) 0.0117 (12) 0.0059 (12)C2 0.0473 (18) 0.067 (2) 0.0456 (17) −0.0065 (15) 0.0129 (14) 0.0013 (15)H2 0.07113 0.06548 0.05589 −0.00949 0.01974 −0.01673C3 0.057 (2) 0.086 (2) 0.052 (2) −0.0028 (18) 0.0260 (16) 0.0034 (18)H3 0.07453 0.07918 0.06161 −0.01044 0.02936 −0.01677C4 0.075 (2) 0.061 (2) 0.0380 (17) 0.0047 (17) 0.0206 (16) −0.0002 (15)C5 0.077 (2) 0.069 (2) 0.0455 (18) −0.0140 (18) 0.0189 (17) −0.0094 (16)H5 0.07933 0.07743 0.06125 −0.01252 0.01981 −0.02673C6 0.0579 (19) 0.062 (2) 0.0462 (18) −0.0150 (15) 0.0177 (15) −0.0098 (15)H6 0.06948 0.06632 0.05960 −0.00876 0.02244 −0.01442C7 0.0379 (15) 0.0333 (14) 0.0350 (14) −0.0008 (11) 0.0100 (11) 0.0035 (11)C8 0.0361 (14) 0.0304 (14) 0.0388 (14) 0.0000 (11) 0.0118 (11) 0.0004 (11)C9 0.0343 (14) 0.0308 (14) 0.0384 (14) −0.0012 (11) 0.0085 (11) 0.0016 (11)C10 0.0355 (14) 0.0348 (14) 0.0349 (14) −0.0017 (11) 0.0059 (11) 0.0028 (11)C11 0.0598 (19) 0.0375 (16) 0.0441 (16) 0.0036 (13) 0.0118 (14) 0.0115 (13)H11A 0.06210 0.05435 0.06104 0.00046 0.01793 −0.00164H11B 0.07849 0.06244 0.04652 −0.00714 0.02195 −0.00842C12 0.073 (2) 0.0502 (19) 0.075 (2) −0.0166 (17) 0.0202 (18) 0.0153 (17)H12A 0.07309 0.07072 0.05227 −0.00975 0.02300 −0.01478H12B 0.07741 0.05923 0.06354 −0.00900 0.01467 0.00720H12C 0.06221 0.06131 0.07653 0.00334 0.01916 −0.01168Cl2 0.1026 (9) 0.1457 (12) 0.1201 (10) −0.0281 (8) 0.0822 (8) −0.0278 (8)N5 0.0476 (14) 0.0353 (12) 0.0383 (12) −0.0037 (10) 0.0154 (10) −0.0042 (10)N6 0.0449 (13) 0.0379 (12) 0.0396 (13) −0.0051 (10) 0.0131 (10) −0.0071 (10)H6A 0.06789 0.05861 0.05124 −0.01484 0.01746 −0.00095N7 0.0535 (15) 0.0567 (16) 0.0546 (15) −0.0175 (12) 0.0193 (12) −0.0172 (12)H7A 0.06352 0.05757 0.07289 −0.00860 0.02365 −0.00443H7B 0.06258 0.06537 0.07522 −0.00874 0.02918 0.00296N8 0.0517 (14) 0.0454 (14) 0.0421 (13) −0.0081 (11) 0.0194 (11) −0.0069 (11)H8A 0.06267 0.04748 0.05212 −0.00913 0.01497 −0.00418H8B 0.06114 0.04719 0.05148 −0.01317 0.01302 0.00016C13 0.0470 (16) 0.0456 (16) 0.0370 (15) −0.0015 (13) 0.0120 (12) −0.0043 (12)C14 0.071 (2) 0.062 (2) 0.062 (2) 0.0127 (17) 0.0310 (18) 0.0007 (17)H14 0.07769 0.06580 0.06296 −0.00401 0.02750 0.00686C15 0.070 (2) 0.088 (3) 0.076 (3) 0.019 (2) 0.036 (2) −0.008 (2)

electronic reprint

Page 25: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-16Acta Cryst. (2019). C75, 46-53

H15 0.07698 0.07944 0.07082 0.00154 0.03227 0.00409C16 0.059 (2) 0.084 (3) 0.053 (2) −0.0124 (19) 0.0289 (16) −0.0124 (18)C17 0.072 (2) 0.068 (2) 0.064 (2) −0.0107 (19) 0.0310 (18) 0.0048 (18)H17 0.07939 0.08461 0.08837 −0.00404 0.03605 0.02886C18 0.0543 (19) 0.058 (2) 0.063 (2) 0.0019 (15) 0.0222 (16) 0.0095 (16)H18 0.07092 0.07364 0.08307 −0.00021 0.03074 0.01972C19 0.0458 (16) 0.0380 (15) 0.0374 (15) −0.0005 (12) 0.0141 (12) −0.0026 (12)C20 0.0459 (16) 0.0356 (14) 0.0394 (15) −0.0006 (12) 0.0117 (12) 0.0002 (12)C21 0.0446 (16) 0.0328 (14) 0.0357 (14) 0.0029 (12) 0.0112 (12) −0.0001 (11)C22 0.0459 (16) 0.0406 (15) 0.0373 (15) 0.0006 (12) 0.0128 (12) −0.0025 (12)C23 0.061 (2) 0.0563 (19) 0.0450 (17) −0.0057 (15) 0.0157 (15) −0.0153 (14)H23A 0.08046 0.08163 0.05595 −0.01081 0.02951 0.00552H23B 0.07071 0.07791 0.05587 −0.00533 0.01209 0.00544C24 0.104 (3) 0.060 (2) 0.064 (2) −0.014 (2) 0.036 (2) −0.0223 (18)H24A 0.06948 0.07529 0.07046 −0.00380 0.01408 0.00024H24B 0.09762 0.07939 0.04544 −0.00942 0.01185 −0.00842H24C 0.08706 0.07002 0.05609 −0.00580 0.03271 0.00240O1 0.0449 (12) 0.0651 (13) 0.0471 (12) −0.0024 (10) 0.0076 (9) −0.0195 (10)O2 0.0462 (12) 0.0440 (11) 0.0617 (13) −0.0030 (9) 0.0196 (10) −0.0101 (9)O3 0.0448 (13) 0.116 (2) 0.0624 (15) −0.0066 (13) 0.0075 (11) −0.0171 (14)O4 0.0839 (18) 0.130 (2) 0.0431 (13) 0.0097 (16) 0.0047 (12) −0.0210 (14)C25 0.0447 (16) 0.0350 (15) 0.0443 (16) −0.0017 (12) 0.0124 (13) −0.0060 (12)C26 0.0470 (16) 0.0328 (14) 0.0398 (15) −0.0015 (12) 0.0087 (12) −0.0028 (12)C27 0.0462 (17) 0.0439 (16) 0.0420 (16) −0.0026 (13) 0.0077 (13) −0.0031 (13)H27 0.07318 0.07582 0.05959 −0.00280 0.02821 −0.01407C28 0.0491 (19) 0.061 (2) 0.0497 (19) −0.0001 (15) 0.0073 (15) −0.0038 (15)C29 0.060 (2) 0.070 (2) 0.053 (2) 0.0031 (17) −0.0041 (16) −0.0085 (17)H29 0.07547 0.09638 0.06027 −0.00748 0.02493 −0.01120C30 0.073 (2) 0.065 (2) 0.0367 (17) 0.0072 (17) 0.0035 (16) −0.0078 (15)C31 0.061 (2) 0.0477 (18) 0.0426 (17) 0.0008 (14) 0.0119 (15) −0.0051 (13)H31 0.07690 0.09618 0.07201 −0.00370 0.03959 −0.01244H3C 0.06949 0.06772 0.05532 −0.00420 0.02468 −0.01121H4 0.08059 0.10764 0.06180 −0.00430 0.03107 −0.01039O5 0.0619 (13) 0.0333 (10) 0.0479 (12) −0.0008 (9) 0.0083 (10) 0.0056 (9)O6 0.0693 (14) 0.0342 (10) 0.0534 (12) 0.0058 (9) 0.0207 (10) −0.0015 (9)O7 0.133 (2) 0.0442 (12) 0.0344 (11) 0.0185 (13) 0.0145 (12) 0.0039 (9)O8 0.0646 (13) 0.0389 (11) 0.0375 (10) 0.0065 (9) 0.0134 (9) −0.0012 (9)C32 0.0369 (15) 0.0330 (14) 0.0495 (17) −0.0029 (11) 0.0138 (12) 0.0022 (13)C33 0.0333 (14) 0.0293 (13) 0.0435 (15) −0.0041 (10) 0.0093 (11) −0.0009 (11)C34 0.0440 (16) 0.0327 (14) 0.0416 (15) −0.0014 (11) 0.0100 (12) −0.0016 (12)H34 0.08055 0.05093 0.05423 0.00130 0.01777 −0.01325C35 0.0540 (18) 0.0379 (15) 0.0374 (15) −0.0008 (13) 0.0071 (13) 0.0031 (12)C36 0.0518 (17) 0.0304 (14) 0.0398 (15) 0.0013 (12) 0.0068 (13) −0.0014 (12)H36 0.07357 0.03865 0.04587 0.00208 0.01183 0.00144C37 0.0373 (15) 0.0343 (14) 0.0377 (15) −0.0007 (11) 0.0082 (11) −0.0045 (11)C38 0.0414 (15) 0.0357 (14) 0.0401 (15) −0.0016 (12) 0.0077 (12) 0.0016 (12)H38 0.07075 0.04744 0.04826 0.00769 0.01224 0.00696H7 0.07345 0.04710 0.04327 −0.00233 0.01303 −0.00259

electronic reprint

Page 26: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-17Acta Cryst. (2019). C75, 46-53

H8 0.06250 0.03763 0.04148 0.00189 0.00952 0.00275O9 0.0559 (12) 0.0389 (11) 0.0460 (11) −0.0005 (9) 0.0101 (9) −0.0057 (9)H9A 0.05351 0.05247 0.05271 −0.00529 0.01391 −0.00040H9B 0.06354 0.05052 0.03827 −0.00317 0.00351 0.00214

Geometric parameters (Å, º)

Cl1—C4 1.727 (4) C15—C16 1.366 (5)N1—C9 1.327 (3) C15—H15 1.0830N1—C8 1.343 (3) C16—C17 1.353 (5)N2—C9 1.350 (3) C17—C18 1.388 (4)N2—C10 1.367 (3) C17—H17 1.0830N2—H2A 0.9939 C18—H18 1.0830N3—C8 1.327 (3) C19—C20 1.439 (4)N3—H3B 0.9663 C19—C22 1.359 (4)N3—H3A 0.9781 C22—C23 1.501 (4)N4—C9 1.324 (3) C23—C24 1.515 (5)N4—H4A 0.9710 C23—H23A 1.0920N4—H4B 0.9836 C23—H23B 1.0920C1—C7 1.488 (4) C24—H24C 1.0770C1—C2 1.381 (4) C24—H24A 1.0770C1—C6 1.383 (4) C24—H24B 1.0770C2—C3 1.393 (4) O1—C25 1.249 (3)C2—H2 1.0830 O2—C25 1.262 (3)C3—C4 1.375 (5) O3—C28 1.360 (4)C3—H3 1.0830 O3—H3C 0.9447C4—C5 1.357 (5) O4—C30 1.381 (4)C5—C6 1.378 (4) O4—H4 0.9800C5—H5 1.0830 C25—C26 1.498 (4)C6—H6 1.0830 C26—C27 1.383 (4)C7—C8 1.436 (3) C26—C31 1.385 (4)C7—C10 1.355 (4) C27—C28 1.393 (4)C10—C11 1.499 (4) C27—H27 1.0830C11—C12 1.523 (5) C28—C29 1.386 (4)C11—H11B 1.0920 C29—C30 1.373 (5)C11—H11A 1.0920 C29—H29 1.0830C12—H12A 1.0770 C30—C31 1.386 (5)C12—H12C 1.0770 C31—H31 1.0830C12—H12B 1.0770 O5—C32 1.263 (3)Cl2—C16 1.718 (4) O6—C32 1.247 (3)N5—C21 1.328 (3) O7—C35 1.362 (3)N5—C20 1.336 (3) O7—H7 0.9522N6—C21 1.355 (3) O8—C37 1.373 (3)N6—C22 1.377 (3) O8—H8 0.9601N6—H6A 1.0066 C32—C33 1.500 (4)N7—C20 1.327 (4) C33—C34 1.385 (4)N7—H7B 0.9839 C33—C38 1.389 (4)N7—H7A 0.9926 C34—C35 1.381 (4)

electronic reprint

Page 27: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-18Acta Cryst. (2019). C75, 46-53

N8—C21 1.320 (3) C34—H34 1.0830N8—H8A 0.9833 C35—C36 1.389 (4)N8—H8B 0.9934 C36—C37 1.382 (4)C13—C19 1.484 (4) C36—H36 1.0830C13—C18 1.377 (4) C37—C38 1.383 (4)C13—C14 1.377 (4) C38—H38 1.0830C14—C15 1.391 (5) O9—H9A 0.9368C14—H14 1.0830 O9—H9B 0.9634

C9—N1—C8 117.7 (2) C18—C17—H17 118.7 (3)C9—N2—C10 121.19 (19) C13—C18—C17 121.2 (3)C9—N2—H2A 117.59 (18) C13—C18—H18 118.2 (2)C10—N2—H2A 120.17 (18) C17—C18—H18 120.6 (3)C8—N3—H3B 121.96 (19) C20—C19—C22 116.7 (2)C8—N3—H3A 121.83 (19) C20—C19—C13 119.3 (2)H3B—N3—H3A 116.18 (18) C22—C19—C13 124.1 (2)C9—N4—H4A 120.80 (19) N5—C20—N7 116.2 (2)C9—N4—H4B 120.68 (19) N5—C20—C19 122.9 (2)H4A—N4—H4B 117.41 (18) N7—C20—C19 120.9 (2)C7—C1—C2 121.4 (2) N6—C21—N5 122.5 (2)C7—C1—C6 120.2 (2) N6—C21—N8 118.4 (2)C2—C1—C6 118.3 (2) N5—C21—N8 119.1 (2)C1—C2—C3 120.6 (2) N6—C22—C19 119.2 (2)C1—C2—H2 121.6 (2) N6—C22—C23 114.8 (2)C3—C2—H2 117.8 (3) C19—C22—C23 126.0 (2)C4—C3—C2 118.6 (3) C22—C23—C24 114.8 (2)C4—C3—H3 121.0 (3) C22—C23—H23A 107.9 (2)C2—C3—H3 120.3 (2) C22—C23—H23B 108.6 (2)Cl1—C4—C5 119.5 (2) C24—C23—H23A 108.6 (2)Cl1—C4—C3 118.6 (2) C24—C23—H23B 109.2 (3)C5—C4—C3 121.9 (3) H23A—C23—H23B 107.5 (2)C4—C5—C6 118.7 (3) C23—C24—H24C 107.9 (3)C4—C5—H5 123.1 (3) C23—C24—H24A 108.2 (3)C6—C5—H5 118.2 (3) C23—C24—H24B 108.8 (3)C1—C6—C5 121.7 (2) H24C—C24—H24A 108.0 (3)C1—C6—H6 119.4 (2) H24C—C24—H24B 110.4 (3)C5—C6—H6 118.9 (2) H24A—C24—H24B 113.3 (3)C8—C7—C10 116.5 (2) C28—O3—H3C 109.2 (2)C8—C7—C1 119.8 (2) C30—O4—H4 98.9 (2)C10—C7—C1 123.7 (2) O1—C25—O2 123.4 (2)N1—C8—N3 116.6 (2) O1—C25—C26 118.1 (2)N1—C8—C7 122.7 (2) O2—C25—C26 118.5 (2)N3—C8—C7 120.7 (2) C25—C26—C27 119.4 (2)N2—C9—N1 122.2 (2) C25—C26—C31 119.2 (2)N2—C9—N4 117.6 (2) C27—C26—C31 121.3 (2)N1—C9—N4 120.2 (2) C28—C27—C26 119.0 (2)N2—C10—C7 119.6 (2) C28—C27—H27 119.4 (2)N2—C10—C11 114.3 (2) C26—C27—H27 121.7 (2)

electronic reprint

Page 28: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-19Acta Cryst. (2019). C75, 46-53

C7—C10—C11 126.1 (2) O3—C28—C29 117.3 (3)C10—C11—C12 111.9 (2) O3—C28—C27 122.1 (2)C10—C11—H11B 110.1 (2) C29—C28—C27 120.6 (3)C10—C11—H11A 110.1 (2) C30—C29—C28 119.0 (3)C12—C11—H11B 109.3 (2) C30—C29—H29 120.3 (3)C12—C11—H11A 109.0 (2) C28—C29—H29 120.8 (3)H11B—C11—H11A 106.2 (2) O4—C30—C29 119.0 (3)C11—C12—H12A 106.7 (3) O4—C30—C31 119.1 (2)C11—C12—H12C 106.9 (3) C29—C30—C31 121.9 (3)C11—C12—H12B 106.2 (2) C30—C31—C26 118.2 (2)H12A—C12—H12C 112.6 (3) C30—C31—H31 118.8 (3)H12A—C12—H12B 110.6 (3) C26—C31—H31 123.0 (2)H12C—C12—H12B 113.2 (3) C35—O7—H7 113.02 (19)C21—N5—C20 117.7 (2) C37—O8—H8 109.00 (17)C21—N6—C22 120.9 (2) O6—C32—O5 122.9 (2)C21—N6—H6A 119.76 (19) O6—C32—C33 119.2 (2)C22—N6—H6A 119.03 (19) O5—C32—C33 117.8 (2)C20—N7—H7B 120.5 (2) C32—C33—C34 120.6 (2)C20—N7—H7A 118.5 (2) C32—C33—C38 118.5 (2)H7B—N7—H7A 120.12 (19) C34—C33—C38 120.9 (2)C21—N8—H8A 118.75 (19) C35—C34—C33 119.0 (2)C21—N8—H8B 121.3 (2) C35—C34—H34 120.2 (2)H8A—N8—H8B 119.76 (19) C33—C34—H34 120.9 (2)C19—C13—C18 119.5 (2) O7—C35—C34 117.7 (2)C19—C13—C14 121.9 (2) O7—C35—C36 121.3 (2)C18—C13—C14 118.6 (3) C34—C35—C36 121.0 (2)C13—C14—C15 120.5 (3) C37—C36—C35 119.2 (2)C13—C14—H14 119.4 (3) C37—C36—H36 120.3 (2)C15—C14—H14 120.1 (3) C35—C36—H36 120.5 (2)C16—C15—C14 119.2 (3) O8—C37—C36 121.7 (2)C16—C15—H15 118.8 (3) O8—C37—C38 117.5 (2)C14—C15—H15 122.0 (3) C36—C37—C38 120.8 (2)Cl2—C16—C17 119.7 (3) C37—C38—C33 119.1 (2)Cl2—C16—C15 118.6 (3) C37—C38—H38 119.9 (2)C17—C16—C15 121.6 (3) C33—C38—H38 121.0 (2)C16—C17—C18 118.9 (3) H9A—O9—H9B 103.78 (17)C16—C17—H17 122.4 (3)

Cl1—C4—C5—C6 178.1 (4) C13—C18—C17—H17 179.29Cl1—C4—C5—H5 −3.21 C13—C14—C15—C16 0.3 (4)Cl1—C4—C3—C2 −177.1 (4) C13—C14—C15—H15 179.66Cl1—C4—C3—H3 1.77 C14—C13—C19—C20 109.7 (4)N1—C9—N2—C10 4.3 (3) C14—C13—C19—C22 −70.8 (4)N1—C9—N2—H2A 172.58 C14—C13—C18—C17 −0.4 (4)N1—C9—N4—H4A −17.67 C14—C13—C18—H18 178.96N1—C9—N4—H4B 174.68 C14—C15—C16—C17 −0.7 (5)N1—C8—N3—H3B 178.18 H14—C14—C13—C19 3.52N1—C8—N3—H3A −3.50 H14—C14—C13—C18 −179.79

electronic reprint

Page 29: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-20Acta Cryst. (2019). C75, 46-53

N1—C8—C7—C10 2.2 (3) H14—C14—C15—C16 −179.67N1—C8—C7—C1 −177.2 (3) H14—C14—C15—H15 −0.30N2—C9—N1—C8 −4.0 (3) C15—C16—C17—C18 0.6 (4)N2—C9—N4—H4A 163.49 C15—C16—C17—H17 −178.70N2—C9—N4—H4B −4.16 C15—C14—C13—C19 −176.5 (4)N2—C10—C7—C8 −2.0 (3) C15—C14—C13—C18 0.2 (4)N2—C10—C7—C1 177.4 (3) H15—C15—C16—C17 179.88N2—C10—C11—C12 69.5 (3) C16—C17—C18—H18 −179.36N2—C10—C11—H11B −168.67 C17—C18—C13—C19 176.4 (4)N2—C10—C11—H11A −51.85 H17—C17—C18—H18 −0.03H2A—N2—C9—N4 −8.61 C18—C13—C19—C20 −67.0 (4)H2A—N2—C10—C7 −169.06 C18—C13—C19—C22 112.5 (4)H2A—N2—C10—C11 11.07 H18—C18—C13—C19 −4.26N3—C8—N1—C9 179.9 (3) C19—C20—N5—C21 5.2 (3)N3—C8—C7—C10 −177.0 (3) C19—C22—N6—C21 2.8 (3)N3—C8—C7—C1 3.7 (3) C19—C22—C23—C24 114.6 (4)H3A—N3—C8—C7 175.70 C19—C22—C23—H23A −6.67H3B—N3—C8—C7 −2.61 C19—C22—C23—H23B −122.85N4—C9—N2—C10 −176.9 (3) C20—C19—C22—C23 175.7 (3)N4—C9—N1—C8 177.2 (3) C21—N6—C22—C23 −174.8 (3)C1—C7—C10—C11 −2.8 (3) C22—C23—C24—H24C 50.72C1—C2—C3—C4 −1.1 (4) C22—C23—C24—H24A −65.93C1—C2—C3—H3 179.95 C22—C23—C24—H24B 170.57C1—C6—C5—C4 −0.8 (4) H23A—C23—C24—H24C 171.54C1—C6—C5—H5 −179.55 H23A—C23—C24—H24A 54.89C2—C1—C7—C8 −113.2 (4) H23A—C23—C24—H24B −68.62C2—C1—C7—C10 67.5 (4) H23B—C23—C24—H24C −71.54C2—C1—C6—C5 1.9 (4) H23B—C23—C24—H24A 171.81C2—C1—C6—H6 −177.95 H23B—C23—C24—H24B 48.31C2—C3—C4—C5 2.4 (4) O1—C25—C26—C27 −13.5 (3)H2—C2—C1—C7 −3.17 O1—C25—C26—C31 166.6 (3)H2—C2—C1—C6 178.63 O2—C25—C26—C27 167.4 (3)H2—C2—C3—C4 179.28 O2—C25—C26—C31 −12.4 (3)H2—C2—C3—H3 0.36 O3—C28—C29—C30 179.6 (4)C3—C4—C5—C6 −1.4 (4) O3—C28—C29—H29 −0.32C3—C4—C5—H5 177.29 O3—C28—C27—C26 179.9 (4)C3—C2—C1—C7 177.3 (4) O3—C28—C27—H27 0C3—C2—C1—C6 −0.9 (4) O4—C30—C29—C28 179.2 (4)H3—C3—C4—C5 −178.72 O4—C30—C29—H29 −0.95C4—C5—C6—H6 179.11 O4—C30—C31—C26 −178.6 (4)C5—C6—C1—C7 −176.3 (4) O4—C30—C31—H31 1.90H5—C5—C6—H6 0.33 C25—C26—C27—C28 −179.1 (3)C6—C1—C7—C8 65.0 (4) C25—C26—C27—H27 0.77C6—C1—C7—C10 −114.4 (4) C25—C26—C31—C30 179.1 (3)H6—C6—C1—C7 3.82 C25—C26—C31—H31 −1.42C7—C8—N1—C9 0.7 (3) C26—C27—C28—C29 −0.1 (4)C7—C10—N2—C9 −1.0 (3) C26—C31—C30—C29 0.2 (4)C7—C10—C11—C12 −110.3 (3) C27—C28—O3—H3C 7.60

electronic reprint

Page 30: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-21Acta Cryst. (2019). C75, 46-53

C7—C10—C11—H11B 11.47 C27—C28—C29—C30 −0.5 (4)C7—C10—C11—H11A 128.29 C27—C28—C29—H29 179.66C8—C7—C10—C11 177.9 (3) C27—C26—C31—C30 −0.8 (3)C9—N2—C10—C11 179.1 (3) C27—C26—C31—H31 178.75C10—C11—C12—H12A −61.52 H27—C27—C28—C29 −179.97C10—C11—C12—H12C 59.23 H27—C27—C26—C31 −179.41C10—C11—C12—H12B −179.62 C28—C29—C30—C31 0.4 (4)H11A—C11—C12—H12A 60.54 C28—C27—C26—C31 0.7 (4)H11A—C11—C12—H12C −178.71 C29—C30—O4—H4 −152.39H11A—C11—C12—H12B −57.55 C29—C30—C31—H31 −179.34H11B—C11—C12—H12A 176.27 C29—C28—O3—H3C −172.43H11B—C11—C12—H12C −62.98 H29—C29—C30—C31 −179.71H11B—C11—C12—H12B 58.17 C31—C30—O4—H4 26.40Cl2—C16—C17—C18 −178.5 (4) O5—C32—C33—C34 169.0 (3)Cl2—C16—C17—H17 2.19 O5—C32—C33—C38 −9.3 (3)Cl2—C16—C15—C14 178.4 (4) O6—C32—C33—C34 −10.5 (3)Cl2—C16—C15—H15 −1.01 O6—C32—C33—C38 171.2 (3)N5—C21—N6—C22 0.1 (3) O7—C35—C34—C33 −179.3 (3)N5—C21—N6—H6A 173.85 O7—C35—C34—H34 0.89N5—C21—N8—H8A −4.38 O7—C35—C36—C37 178.1 (3)N5—C21—N8—H8B −179.15 O7—C35—C36—H36 −3.73N5—C20—N7—H7B 176.62 O8—C37—C36—C35 −179.8 (3)N5—C20—N7—H7A 7.75 O8—C37—C36—H36 1.97N5—C20—C19—C22 −2.4 (3) O8—C37—C38—C33 −179.2 (3)N5—C20—C19—C13 177.1 (3) O8—C37—C38—H38 0N6—C21—N5—C20 −4.1 (3) C32—C33—C34—C35 −176.6 (3)N6—C21—N8—H8A 176.24 C32—C33—C34—H34 3.23N6—C21—N8—H8B 1.47 C32—C33—C38—C37 176.8 (3)N6—C22—C19—C20 −1.7 (3) C32—C33—C38—H38 −2.41N6—C22—C19—C13 178.8 (3) C33—C34—C35—C36 −0.7 (3)N6—C22—C23—C24 −68.0 (3) C33—C38—C37—C36 0.3 (3)N6—C22—C23—H23A 170.76 C34—C35—O7—H7 −176.86N6—C22—C23—H23B 54.58 C34—C35—C36—C37 −0.5 (3)H6A—N6—C21—N8 −6.79 C34—C35—C36—H36 177.73H6A—N6—C22—C19 −170.96 C34—C33—C38—C37 −1.5 (3)H6A—N6—C22—C23 11.42 C34—C33—C38—H38 179.27N7—C20—N5—C21 −174.6 (3) H34—C34—C35—C36 179.48N7—C20—C19—C22 177.4 (3) H34—C34—C33—C38 −178.49N7—C20—C19—C13 −3.0 (3) C35—C34—C33—C38 1.7 (3)H7A—N7—C20—C19 −172.09 C35—C36—C37—C38 0.7 (3)H7B—N7—C20—C19 −3.22 C36—C37—O8—H8 −8.27N8—C21—N6—C22 179.5 (3) C36—C37—C38—H38 179.51N8—C21—N5—C20 176.6 (3) C36—C35—O7—H7 4.55C13—C19—C22—C23 −3.8 (4) H36—C36—C37—C38 −177.51C13—C18—C17—C16 0.0 (4) C38—C37—O8—H8 171.22

electronic reprint

Page 31: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-22Acta Cryst. (2019). C75, 46-53

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N3—H3B···O1i 0.97 2.12 (1) 2.849 (3) 131 (1)N6—H6A···O2ii 1.01 1.75 (1) 2.743 (3) 169 (1)N6—H6A···C25ii 1.01 2.63 (1) 3.515 (3) 146 (1)N8—H8B···O1ii 0.99 1.81 (1) 2.795 (3) 172 (1)N8—H8B···O2ii 0.99 2.60 (1) 3.337 (3) 131 (1)N8—H8B···C25ii 0.99 2.41 (1) 3.350 (4) 157 (1)C24—H24C···O2ii 1.08 2.57 (1) 3.505 (4) 145 (1)O7—H7···O2ii 0.95 1.84 (1) 2.790 (3) 175 (1)O7—H7···C25ii 0.95 2.64 (1) 3.512 (4) 152 (1)O9—H9B···O1ii 0.96 1.92 (1) 2.887 (3) 177 (1)C18—H18···C30iii 1.08 2.59 (1) 3.513 (5) 143 (1)C18—H18···C31iii 1.08 2.77 (1) 3.462 (4) 122 (1)N3—H3A···O9iv 0.98 1.96 (1) 2.923 (3) 168 (1)N4—H4A···N5iv 0.97 2.11 (1) 3.083 (3) 175 (1)C38—H38···N5iv 1.08 2.47 (1) 3.388 (4) 142 (1)N3—H3B···C1 0.97 2.52 (1) 2.859 (3) 101 (1)N3—H3B···C6 0.97 2.60 (1) 3.159 (4) 117 (1)C11—H11B···C1 1.09 2.62 (1) 3.064 (4) 103 (1)C11—H11B···C2 1.09 2.76 (1) 3.370 (4) 115 (1)N7—H7B···C13 0.98 2.48 (1) 2.850 (4) 102 (1)N7—H7B···C18 0.98 2.62 (1) 3.158 (4) 114 (1)C15—H15···O3 1.08 2.61 (1) 3.364 (5) 126 (1)C23—H23A···C13 1.09 2.59 (1) 3.074 (4) 106 (1)C36—H36···O9 1.08 2.49 (1) 3.262 (3) 127 (1)O8—H8···O9 0.96 1.80 (1) 2.750 (3) 170 (1)N7—H7B···O7v 0.98 2.58 (1) 3.505 (4) 156 (1)N7—H7B···C35v 0.98 2.61 (1) 3.326 (4) 130 (1)C27—H27···O6v 1.08 2.45 (1) 3.221 (3) 127 (1)O3—H3C···O6v 0.95 1.71 (1) 2.653 (3) 174 (1)N2—H2A···O5vi 0.99 1.69 (1) 2.684 (3) 177 (1)N2—H2A···C32vi 0.99 2.46 (1) 3.381 (3) 153 (1)N4—H4B···O6vi 0.98 1.85 (1) 2.824 (3) 170 (1)N4—H4B···C32vi 0.98 2.63 (1) 3.513 (3) 150 (1)N7—H7A···O8vi 0.99 2.09 (1) 3.076 (3) 175 (1)N8—H8A···N1vi 0.98 2.08 (1) 3.063 (3) 174 (1)O9—H9A···O5vi 0.94 1.92 (1) 2.822 (3) 160 (1)O9—H9A···C32vi 0.94 2.63 (1) 3.348 (3) 134 (1)C2—H2···N4vii 1.08 2.61 (1) 3.552 (4) 146 (1)O4—H4···Cl1viii 0.98 2.85 (1) 3.545 (4) 129 (1)

Symmetry codes: (i) x−1/2, y−1/2, z; (ii) x−1, y, z; (iii) x−1/2, y+1/2, z; (iv) −x+1/2, y−1/2, −z+1/2; (v) x+1/2, y+1/2, z; (vi) −x+1/2, y+1/2, −z+1/2; (vii) −x+1, y, −z+1/2; (viii) −x+3/2, −y+1/2, −z.

electronic reprint

Page 32: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-23Acta Cryst. (2019). C75, 46-53

2,4-Diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 3,5-dihydroxybenzoate hemihydrate (IAM_shelx)

Crystal data

2C12H14ClN4+·2C7H5O4

−·H2OMr = 823.68Monoclinic, C2/ca = 14.9367 (7) Åb = 15.7910 (7) Åc = 33.5896 (16) Åβ = 100.123 (2)°V = 7799.3 (6) Å3

Z = 8

F(000) = 3440Dx = 1.403 Mg m−3

Mo Kα radiation, λ = 0.71073 ÅCell parameters from 500 reflectionsθ = 1.9–28.4°µ = 0.23 mm−1

T = 297 KPlate like, yellow0.38 × 0.30 × 0.18 mm

Data collection

Bruker Kappa APEXII CCD detector diffractometer

ω and phi scanAbsorption correction: multi-scan

(SADABS; Krause et al., 2015)Tmin = 0.917, Tmax = 0.95946169 measured reflections

7995 independent reflections5812 reflections with I > 2σ(I)Rint = 0.044θmax = 26.4°, θmin = 1.9°h = −19→19k = −20→21l = −44→44

Refinement

Refinement on F2

Least-squares matrix: fullR[F2 > 2σ(F2)] = 0.051wR(F2) = 0.141S = 1.019655 reflections532 parameters0 restraints

Hydrogen site location: mixedH atoms treated by a mixture of independent

and constrained refinementw = 1/[σ2(Fo

2) + (0.0561P)2 + 5.4602P] where P = (Fo

2 + 2Fc2)/3

(Δ/σ)max < 0.001Δρmax = 0.40 e Å−3

Δρmin = −0.49 e Å−3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.48157 (7) 0.10955 (6) 0.02535 (2) 0.0964 (3)N1 0.36334 (11) 0.16989 (10) 0.24974 (5) 0.0360 (4)N2 0.34951 (11) 0.31305 (10) 0.23187 (5) 0.0360 (4)H2A 0.338991 0.363981 0.238853 0.043*N3 0.40618 (13) 0.07437 (10) 0.20627 (5) 0.0448 (5)H3A 0.404264 0.036086 0.224310 0.054*H3B 0.421146 0.060987 0.183500 0.054*N4 0.31593 (12) 0.26765 (11) 0.29214 (5) 0.0423 (4)H4A 0.311848 0.228317 0.309432 0.051*H4B 0.302590 0.319035 0.297251 0.051*C1 0.41195 (14) 0.19627 (13) 0.14379 (6) 0.0374 (5)

electronic reprint

Page 33: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-24Acta Cryst. (2019). C75, 46-53

C2 0.49169 (16) 0.22206 (17) 0.13197 (7) 0.0528 (6)H2 0.531876 0.256670 0.148974 0.063*C3 0.51262 (19) 0.19716 (19) 0.09521 (8) 0.0641 (7)H3 0.566082 0.215348 0.087318 0.077*C4 0.45366 (19) 0.14544 (17) 0.07065 (7) 0.0562 (6)C5 0.3742 (2) 0.12011 (17) 0.08111 (8) 0.0629 (7)H5 0.334231 0.085647 0.063894 0.075*C6 0.35337 (17) 0.14604 (16) 0.11748 (7) 0.0541 (6)H6 0.298520 0.129323 0.124520 0.065*C7 0.39009 (14) 0.21905 (12) 0.18397 (6) 0.0348 (4)C8 0.38608 (13) 0.15385 (12) 0.21354 (6) 0.0343 (4)C9 0.34271 (13) 0.24915 (12) 0.25771 (6) 0.0336 (4)C10 0.37264 (13) 0.29913 (12) 0.19494 (6) 0.0350 (4)C11 0.37609 (16) 0.37718 (13) 0.17008 (7) 0.0457 (5)H11A 0.319788 0.408431 0.168916 0.055*H11B 0.381039 0.360919 0.142702 0.055*C12 0.45508 (19) 0.43402 (16) 0.18690 (9) 0.0661 (7)H12A 0.449411 0.451894 0.213664 0.099*H12B 0.454960 0.482751 0.169804 0.099*H12C 0.511044 0.403540 0.187927 0.099*Cl2 0.62167 (7) 0.63381 (7) 0.00858 (3) 0.1138 (4)N5 0.26047 (12) 0.62474 (10) 0.16087 (5) 0.0391 (4)N6 0.18897 (12) 0.51720 (11) 0.11867 (5) 0.0403 (4)H6A 0.145517 0.480900 0.113712 0.048*N7 0.39290 (13) 0.68057 (12) 0.14997 (6) 0.0540 (5)H7A 0.393840 0.710349 0.171476 0.065*H7B 0.436266 0.685102 0.136311 0.065*N8 0.13317 (13) 0.56006 (11) 0.17478 (5) 0.0454 (4)H8A 0.135647 0.591871 0.195730 0.054*H8B 0.090331 0.523322 0.169068 0.054*C13 0.39431 (15) 0.58768 (14) 0.07739 (6) 0.0416 (5)C14 0.45864 (19) 0.52656 (17) 0.07549 (8) 0.0612 (7)H14 0.455485 0.475351 0.088849 0.073*C15 0.5284 (2) 0.5403 (2) 0.05386 (9) 0.0752 (9)H15 0.571731 0.498473 0.052681 0.090*C16 0.53293 (18) 0.6151 (2) 0.03445 (8) 0.0624 (7)C17 0.47013 (19) 0.67593 (18) 0.03532 (8) 0.0655 (7)H17 0.473429 0.726575 0.021528 0.079*C18 0.40069 (17) 0.66239 (16) 0.05692 (8) 0.0563 (6)H18 0.357507 0.704530 0.057646 0.068*C19 0.32159 (15) 0.57718 (13) 0.10204 (6) 0.0394 (5)C20 0.32488 (15) 0.62787 (13) 0.13792 (6) 0.0393 (5)C21 0.19479 (14) 0.56758 (12) 0.15152 (6) 0.0366 (5)C22 0.25095 (14) 0.52265 (13) 0.09299 (6) 0.0397 (5)C23 0.23060 (17) 0.46783 (15) 0.05612 (7) 0.0526 (6)H23A 0.271639 0.483272 0.037921 0.063*H23B 0.169204 0.479872 0.042408 0.063*C24 0.2388 (2) 0.37393 (17) 0.06400 (9) 0.0742 (9)

electronic reprint

Page 34: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-25Acta Cryst. (2019). C75, 46-53

H24A 0.301450 0.359597 0.073273 0.111*H24B 0.216455 0.343698 0.039464 0.111*H24C 0.203705 0.358690 0.084265 0.111*O1 0.98710 (10) 0.44643 (10) 0.16415 (5) 0.0518 (4)O2 1.05646 (10) 0.39551 (9) 0.11628 (5) 0.0489 (4)O3 0.65383 (12) 0.39161 (15) 0.11035 (6) 0.0744 (6)O4 0.80363 (15) 0.34557 (17) −0.00046 (5) 0.0864 (7)H4C 0.750909 0.348270 −0.012437 0.130*C25 0.98567 (15) 0.41456 (13) 0.12993 (7) 0.0406 (5)C26 0.89526 (15) 0.39943 (13) 0.10383 (6) 0.0395 (5)C27 0.81683 (15) 0.40374 (14) 0.12029 (7) 0.0435 (5)H27 0.820158 0.416760 0.147517 0.052*C28 0.73321 (16) 0.38861 (16) 0.09610 (7) 0.0524 (6)C29 0.72810 (19) 0.36953 (18) 0.05566 (8) 0.0631 (7)H29 0.672120 0.358936 0.039408 0.076*C30 0.80692 (19) 0.36637 (17) 0.03964 (7) 0.0579 (6)C31 0.89090 (17) 0.38128 (15) 0.06330 (7) 0.0498 (6)H31 0.943582 0.379136 0.052131 0.060*H3C 0.659 (2) 0.4119 (19) 0.1338 (9) 0.075*O5 0.21244 (11) −0.03255 (9) 0.25266 (5) 0.0471 (4)O6 0.19104 (11) −0.05920 (9) 0.18721 (5) 0.0501 (4)O7 0.10595 (16) 0.22472 (11) 0.12429 (5) 0.0707 (6)O8 0.10351 (11) 0.25961 (10) 0.26610 (4) 0.0462 (4)C32 0.18855 (14) −0.01053 (13) 0.21617 (7) 0.0386 (5)C33 0.15606 (13) 0.07878 (12) 0.20801 (6) 0.0347 (4)C34 0.14364 (14) 0.11146 (13) 0.16916 (6) 0.0396 (5)H34 0.151960 0.077354 0.147535 0.048*C35 0.11874 (15) 0.19533 (13) 0.16292 (6) 0.0423 (5)C36 0.10520 (15) 0.24586 (13) 0.19495 (6) 0.0404 (5)H36 0.088748 0.302337 0.190555 0.048*C37 0.11611 (14) 0.21245 (12) 0.23339 (6) 0.0358 (4)C38 0.14160 (14) 0.12893 (13) 0.24011 (6) 0.0385 (5)H38 0.149025 0.106434 0.266068 0.046*H7 0.0910 (17) 0.2753 (17) 0.1228 (8) 0.058*H8 0.0964 (17) 0.3115 (17) 0.2589 (7) 0.058*O9 0.10166 (12) 0.42638 (10) 0.24228 (5) 0.0465 (4)H9A 0.1512 (18) 0.4362 (16) 0.2385 (8) 0.056*H9B 0.0689 (17) 0.4302 (15) 0.2165 (8) 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.1278 (8) 0.1185 (7) 0.0549 (4) −0.0069 (6) 0.0492 (5) −0.0186 (4)N1 0.0444 (10) 0.0284 (8) 0.0382 (9) 0.0023 (7) 0.0155 (8) 0.0034 (7)N2 0.0460 (10) 0.0251 (8) 0.0388 (9) 0.0019 (7) 0.0124 (8) 0.0006 (7)N3 0.0651 (13) 0.0304 (9) 0.0448 (10) 0.0054 (8) 0.0258 (9) 0.0018 (8)N4 0.0606 (12) 0.0302 (9) 0.0410 (10) 0.0040 (8) 0.0224 (9) 0.0018 (8)C1 0.0439 (12) 0.0364 (11) 0.0338 (11) 0.0028 (9) 0.0120 (9) 0.0060 (9)

electronic reprint

Page 35: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-26Acta Cryst. (2019). C75, 46-53

C2 0.0478 (14) 0.0680 (16) 0.0443 (13) −0.0088 (12) 0.0127 (11) −0.0018 (11)C3 0.0578 (16) 0.089 (2) 0.0524 (15) −0.0047 (14) 0.0279 (13) 0.0022 (14)C4 0.0740 (18) 0.0624 (16) 0.0363 (12) 0.0038 (13) 0.0214 (12) 0.0008 (11)C5 0.0787 (19) 0.0678 (17) 0.0445 (14) −0.0161 (14) 0.0170 (13) −0.0116 (12)C6 0.0562 (15) 0.0638 (16) 0.0462 (14) −0.0158 (12) 0.0194 (11) −0.0082 (12)C7 0.0390 (11) 0.0325 (10) 0.0348 (11) −0.0013 (8) 0.0113 (9) 0.0030 (8)C8 0.0356 (11) 0.0306 (10) 0.0389 (11) −0.0005 (8) 0.0127 (9) 0.0007 (8)C9 0.0336 (11) 0.0301 (10) 0.0385 (11) −0.0007 (8) 0.0103 (8) 0.0012 (8)C10 0.0356 (11) 0.0351 (11) 0.0339 (10) −0.0024 (8) 0.0056 (8) 0.0037 (8)C11 0.0582 (14) 0.0375 (12) 0.0426 (12) 0.0053 (10) 0.0122 (10) 0.0107 (9)C12 0.0746 (19) 0.0513 (15) 0.0750 (18) −0.0168 (13) 0.0206 (15) 0.0164 (13)Cl2 0.1018 (7) 0.1427 (9) 0.1199 (8) −0.0276 (6) 0.0823 (6) −0.0272 (7)N5 0.0474 (11) 0.0351 (9) 0.0378 (9) −0.0042 (8) 0.0153 (8) −0.0039 (7)N6 0.0433 (10) 0.0387 (9) 0.0408 (10) −0.0079 (8) 0.0129 (8) −0.0082 (8)N7 0.0546 (12) 0.0579 (12) 0.0542 (12) −0.0181 (10) 0.0223 (10) −0.0183 (10)N8 0.0520 (11) 0.0458 (10) 0.0424 (10) −0.0101 (9) 0.0195 (9) −0.0097 (8)C13 0.0454 (13) 0.0453 (12) 0.0359 (11) −0.0021 (10) 0.0124 (9) −0.0049 (9)C14 0.0706 (18) 0.0579 (16) 0.0619 (16) 0.0133 (13) 0.0305 (14) 0.0039 (13)C15 0.0702 (19) 0.087 (2) 0.077 (2) 0.0206 (16) 0.0371 (16) −0.0062 (17)C16 0.0580 (16) 0.084 (2) 0.0521 (15) −0.0141 (15) 0.0295 (13) −0.0152 (14)C17 0.0723 (19) 0.0672 (18) 0.0636 (17) −0.0105 (15) 0.0303 (14) 0.0087 (14)C18 0.0543 (15) 0.0570 (15) 0.0623 (16) 0.0045 (12) 0.0228 (12) 0.0085 (12)C19 0.0454 (13) 0.0385 (11) 0.0365 (11) 0.0001 (9) 0.0135 (9) −0.0025 (9)C20 0.0459 (12) 0.0350 (11) 0.0390 (11) −0.0007 (9) 0.0127 (9) −0.0004 (9)C21 0.0435 (12) 0.0323 (10) 0.0355 (11) 0.0029 (9) 0.0114 (9) −0.0003 (8)C22 0.0456 (13) 0.0386 (11) 0.0369 (11) −0.0006 (9) 0.0125 (9) −0.0031 (9)C23 0.0578 (15) 0.0586 (15) 0.0440 (13) −0.0065 (12) 0.0159 (11) −0.0142 (11)C24 0.105 (2) 0.0599 (17) 0.0654 (18) −0.0137 (16) 0.0364 (17) −0.0225 (14)O1 0.0449 (9) 0.0635 (10) 0.0469 (9) −0.0024 (8) 0.0079 (7) −0.0195 (8)O2 0.0454 (9) 0.0449 (9) 0.0602 (10) −0.0025 (7) 0.0200 (8) −0.0106 (7)O3 0.0459 (11) 0.1153 (17) 0.0613 (12) −0.0082 (10) 0.0077 (9) −0.0183 (11)O4 0.0822 (15) 0.1314 (19) 0.0417 (10) 0.0059 (14) 0.0004 (10) −0.0207 (12)C25 0.0452 (13) 0.0340 (11) 0.0440 (12) −0.0023 (9) 0.0114 (10) −0.0052 (9)C26 0.0467 (13) 0.0334 (10) 0.0387 (11) −0.0016 (9) 0.0087 (9) −0.0034 (9)C27 0.0477 (13) 0.0447 (12) 0.0382 (12) −0.0028 (10) 0.0081 (10) −0.0048 (9)C28 0.0477 (14) 0.0601 (15) 0.0490 (14) −0.0008 (11) 0.0072 (11) −0.0049 (12)C29 0.0585 (17) 0.0715 (18) 0.0534 (16) 0.0025 (13) −0.0066 (13) −0.0102 (13)C30 0.0721 (18) 0.0643 (16) 0.0353 (13) 0.0065 (13) 0.0041 (12) −0.0065 (11)C31 0.0577 (15) 0.0501 (14) 0.0433 (13) 0.0011 (11) 0.0138 (11) −0.0052 (10)O5 0.0594 (10) 0.0333 (8) 0.0483 (9) −0.0006 (7) 0.0085 (7) 0.0052 (7)O6 0.0677 (11) 0.0342 (8) 0.0518 (9) 0.0057 (7) 0.0200 (8) −0.0011 (7)O7 0.1353 (18) 0.0409 (9) 0.0357 (9) 0.0206 (11) 0.0149 (10) 0.0043 (8)O8 0.0655 (11) 0.0363 (8) 0.0387 (8) 0.0067 (7) 0.0141 (7) −0.0007 (7)C32 0.0372 (11) 0.0321 (10) 0.0486 (13) −0.0034 (8) 0.0132 (9) 0.0029 (9)C33 0.0335 (11) 0.0294 (10) 0.0421 (11) −0.0042 (8) 0.0092 (9) 0.0002 (8)C34 0.0454 (12) 0.0331 (11) 0.0417 (12) −0.0013 (9) 0.0115 (9) −0.0046 (9)C35 0.0541 (14) 0.0367 (11) 0.0360 (11) −0.0010 (10) 0.0075 (10) 0.0028 (9)C36 0.0512 (13) 0.0286 (10) 0.0409 (12) 0.0023 (9) 0.0069 (10) −0.0002 (9)

electronic reprint

Page 36: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-27Acta Cryst. (2019). C75, 46-53

C37 0.0384 (11) 0.0335 (10) 0.0364 (11) −0.0009 (8) 0.0086 (9) −0.0038 (8)C38 0.0422 (12) 0.0368 (11) 0.0371 (11) −0.0015 (9) 0.0083 (9) 0.0039 (9)O9 0.0538 (10) 0.0405 (9) 0.0456 (9) −0.0017 (8) 0.0095 (8) −0.0057 (7)

Geometric parameters (Å, º)

Cl1—C4 1.742 (2) C15—C16 1.357 (4)N1—C9 1.327 (2) C15—H15 0.9300N1—C8 1.343 (2) C16—C17 1.347 (4)N2—C9 1.346 (2) C17—C18 1.383 (3)N2—C10 1.363 (2) C17—H17 0.9300N2—H2A 0.8600 C18—H18 0.9300N3—C8 1.323 (2) C19—C22 1.354 (3)N3—H3A 0.8600 C19—C20 1.440 (3)N3—H3B 0.8600 C22—C23 1.498 (3)N4—C9 1.321 (2) C23—C24 1.507 (4)N4—H4A 0.8600 C23—H23A 0.9700N4—H4B 0.8600 C23—H23B 0.9700C1—C6 1.380 (3) C24—H24A 0.9600C1—C2 1.381 (3) C24—H24B 0.9600C1—C7 1.487 (3) C24—H24C 0.9600C2—C3 1.383 (3) O1—C25 1.252 (2)C2—H2 0.9300 O2—C25 1.261 (2)C3—C4 1.367 (4) O3—C28 1.355 (3)C3—H3 0.9300 O3—H3C 0.84 (3)C4—C5 1.357 (4) O4—C30 1.379 (3)C5—C6 1.375 (3) O4—H4C 0.8200C5—H5 0.9300 C25—C26 1.494 (3)C6—H6 0.9300 C26—C31 1.381 (3)C7—C10 1.355 (3) C26—C27 1.382 (3)C7—C8 1.439 (3) C27—C28 1.386 (3)C10—C11 1.495 (3) C27—H27 0.9300C11—C12 1.511 (3) C28—C29 1.380 (3)C11—H11A 0.9700 C29—C30 1.379 (4)C11—H11B 0.9700 C29—H29 0.9300C12—H12A 0.9600 C30—C31 1.382 (4)C12—H12B 0.9600 C31—H31 0.9300C12—H12C 0.9600 O5—C32 1.264 (3)Cl2—C16 1.733 (2) O6—C32 1.245 (2)N5—C21 1.329 (3) O7—C35 1.359 (3)N5—C20 1.335 (3) O7—H7 0.83 (3)N6—C21 1.351 (2) O8—C37 1.367 (2)N6—C22 1.374 (2) O8—H8 0.85 (3)N6—H6A 0.8600 C32—C33 1.501 (3)N7—C20 1.321 (3) C33—C38 1.385 (3)N7—H7A 0.8600 C33—C34 1.385 (3)N7—H7B 0.8600 C34—C35 1.382 (3)N8—C21 1.313 (2) C34—H34 0.9300

electronic reprint

Page 37: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-28Acta Cryst. (2019). C75, 46-53

N8—H8A 0.8600 C35—C36 1.383 (3)N8—H8B 0.8600 C36—C37 1.378 (3)C13—C14 1.371 (3) C36—H36 0.9300C13—C18 1.377 (3) C37—C38 1.380 (3)C13—C19 1.486 (3) C38—H38 0.9300C14—C15 1.388 (4) O9—H9A 0.79 (3)C14—H14 0.9300 O9—H9B 0.92 (3)

C9—N1—C8 117.72 (16) C18—C17—H17 120.3C9—N2—C10 121.73 (16) C13—C18—C17 121.2 (2)C9—N2—H2A 119.1 C13—C18—H18 119.4C10—N2—H2A 119.1 C17—C18—H18 119.4C8—N3—H3A 120.0 C22—C19—C20 116.86 (18)C8—N3—H3B 120.0 C22—C19—C13 124.23 (18)H3A—N3—H3B 120.0 C20—C19—C13 118.91 (18)C9—N4—H4A 120.0 N7—C20—N5 116.10 (18)C9—N4—H4B 120.0 N7—C20—C19 121.18 (19)H4A—N4—H4B 120.0 N5—C20—C19 122.71 (19)C6—C1—C2 117.8 (2) N8—C21—N5 119.10 (18)C6—C1—C7 120.31 (19) N8—C21—N6 118.79 (19)C2—C1—C7 121.8 (2) N5—C21—N6 122.12 (18)C1—C2—C3 121.0 (2) C19—C22—N6 118.88 (18)C1—C2—H2 119.5 C19—C22—C23 126.16 (19)C3—C2—H2 119.5 N6—C22—C23 114.93 (19)C4—C3—C2 119.1 (2) C22—C23—C24 115.2 (2)C4—C3—H3 120.5 C22—C23—H23A 108.5C2—C3—H3 120.5 C24—C23—H23A 108.5C5—C4—C3 121.4 (2) C22—C23—H23B 108.5C5—C4—Cl1 119.0 (2) C24—C23—H23B 108.5C3—C4—Cl1 119.6 (2) H23A—C23—H23B 107.5C4—C5—C6 119.1 (2) C23—C24—H24A 109.5C4—C5—H5 120.4 C23—C24—H24B 109.5C6—C5—H5 120.4 H24A—C24—H24B 109.5C5—C6—C1 121.6 (2) C23—C24—H24C 109.5C5—C6—H6 119.2 H24A—C24—H24C 109.5C1—C6—H6 119.2 H24B—C24—H24C 109.5C10—C7—C8 116.53 (17) C28—O3—H3C 114 (2)C10—C7—C1 123.76 (17) C30—O4—H4C 109.5C8—C7—C1 119.71 (17) O1—C25—O2 123.4 (2)N3—C8—N1 116.60 (17) O1—C25—C26 118.09 (19)N3—C8—C7 120.87 (17) O2—C25—C26 118.54 (19)N1—C8—C7 122.53 (17) C31—C26—C27 120.5 (2)N4—C9—N1 120.12 (17) C31—C26—C25 119.50 (19)N4—C9—N2 117.86 (17) C27—C26—C25 119.97 (19)N1—C9—N2 122.01 (17) C26—C27—C28 119.8 (2)C7—C10—N2 119.31 (17) C26—C27—H27 120.1C7—C10—C11 126.19 (18) C28—C27—H27 120.1N2—C10—C11 114.50 (17) O3—C28—C29 117.0 (2)

electronic reprint

Page 38: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-29Acta Cryst. (2019). C75, 46-53

C10—C11—C12 112.48 (19) O3—C28—C27 122.8 (2)C10—C11—H11A 109.1 C29—C28—C27 120.2 (2)C12—C11—H11A 109.1 C30—C29—C28 119.3 (2)C10—C11—H11B 109.1 C30—C29—H29 120.4C12—C11—H11B 109.1 C28—C29—H29 120.4H11A—C11—H11B 107.8 C29—C30—O4 120.2 (2)C11—C12—H12A 109.5 C29—C30—C31 121.4 (2)C11—C12—H12B 109.5 O4—C30—C31 118.4 (2)H12A—C12—H12B 109.5 C26—C31—C30 118.9 (2)C11—C12—H12C 109.5 C26—C31—H31 120.6H12A—C12—H12C 109.5 C30—C31—H31 120.6H12B—C12—H12C 109.5 C35—O7—H7 112.2 (18)C21—N5—C20 117.74 (17) C37—O8—H8 108.8 (17)C21—N6—C22 121.47 (17) O6—C32—O5 123.08 (19)C21—N6—H6A 119.3 O6—C32—C33 119.36 (19)C22—N6—H6A 119.3 O5—C32—C33 117.57 (19)C20—N7—H7A 120.0 C38—C33—C34 120.46 (18)C20—N7—H7B 120.0 C38—C33—C32 119.00 (18)H7A—N7—H7B 120.0 C34—C33—C32 120.50 (18)C21—N8—H8A 120.0 C35—C34—C33 119.21 (19)C21—N8—H8B 120.0 C35—C34—H34 120.4H8A—N8—H8B 120.0 C33—C34—H34 120.4C14—C13—C18 118.0 (2) O7—C35—C34 117.46 (19)C14—C13—C19 122.3 (2) O7—C35—C36 122.04 (19)C18—C13—C19 119.7 (2) C34—C35—C36 120.48 (19)C13—C14—C15 120.7 (3) C37—C36—C35 119.94 (19)C13—C14—H14 119.6 C37—C36—H36 120.0C15—C14—H14 119.6 C35—C36—H36 120.0C16—C15—C14 119.5 (3) O8—C37—C36 122.29 (18)C16—C15—H15 120.2 O8—C37—C38 117.52 (18)C14—C15—H15 120.2 C36—C37—C38 120.18 (18)C17—C16—C15 121.1 (2) C37—C38—C33 119.70 (19)C17—C16—Cl2 119.1 (2) C37—C38—H38 120.1C15—C16—Cl2 119.8 (2) C33—C38—H38 120.1C16—C17—C18 119.4 (3) H9A—O9—H9B 101 (2)C16—C17—H17 120.3

C6—C1—C2—C3 −1.0 (4) C22—C19—C20—N7 177.5 (2)C7—C1—C2—C3 177.2 (2) C13—C19—C20—N7 −2.7 (3)C1—C2—C3—C4 −0.8 (4) C22—C19—C20—N5 −2.4 (3)C2—C3—C4—C5 1.8 (4) C13—C19—C20—N5 177.32 (19)C2—C3—C4—Cl1 −177.0 (2) C20—N5—C21—N8 176.50 (19)C3—C4—C5—C6 −1.0 (4) C20—N5—C21—N6 −3.9 (3)Cl1—C4—C5—C6 177.8 (2) C22—N6—C21—N8 179.40 (19)C4—C5—C6—C1 −0.8 (4) C22—N6—C21—N5 −0.2 (3)C2—C1—C6—C5 1.8 (4) C20—C19—C22—N6 −1.7 (3)C7—C1—C6—C5 −176.3 (2) C13—C19—C22—N6 178.5 (2)C6—C1—C7—C10 −114.7 (3) C20—C19—C22—C23 176.1 (2)

electronic reprint

Page 39: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-30Acta Cryst. (2019). C75, 46-53

C2—C1—C7—C10 67.2 (3) C13—C19—C22—C23 −3.7 (4)C6—C1—C7—C8 64.9 (3) C21—N6—C22—C19 3.1 (3)C2—C1—C7—C8 −113.2 (2) C21—N6—C22—C23 −174.98 (19)C9—N1—C8—N3 −179.86 (19) C19—C22—C23—C24 114.2 (3)C9—N1—C8—C7 1.0 (3) N6—C22—C23—C24 −68.0 (3)C10—C7—C8—N3 −176.9 (2) O1—C25—C26—C31 166.6 (2)C1—C7—C8—N3 3.5 (3) O2—C25—C26—C31 −12.7 (3)C10—C7—C8—N1 2.2 (3) O1—C25—C26—C27 −13.3 (3)C1—C7—C8—N1 −177.41 (19) O2—C25—C26—C27 167.4 (2)C8—N1—C9—N4 176.96 (18) C31—C26—C27—C28 0.9 (3)C8—N1—C9—N2 −4.2 (3) C25—C26—C27—C28 −179.2 (2)C10—N2—C9—N4 −176.99 (18) C26—C27—C28—O3 179.8 (2)C10—N2—C9—N1 4.1 (3) C26—C27—C28—C29 −0.2 (4)C8—C7—C10—N2 −2.3 (3) O3—C28—C29—C30 179.5 (2)C1—C7—C10—N2 177.25 (19) C27—C28—C29—C30 −0.5 (4)C8—C7—C10—C11 177.6 (2) C28—C29—C30—O4 178.5 (3)C1—C7—C10—C11 −2.8 (3) C28—C29—C30—C31 0.5 (4)C9—N2—C10—C7 −0.6 (3) C27—C26—C31—C30 −0.9 (3)C9—N2—C10—C11 179.44 (18) C25—C26—C31—C30 179.2 (2)C7—C10—C11—C12 −110.0 (3) C29—C30—C31—C26 0.2 (4)N2—C10—C11—C12 69.9 (3) O4—C30—C31—C26 −177.9 (2)C18—C13—C14—C15 0.6 (4) O6—C32—C33—C38 171.23 (19)C19—C13—C14—C15 −176.6 (2) O5—C32—C33—C38 −8.9 (3)C13—C14—C15—C16 0.1 (5) O6—C32—C33—C34 −10.9 (3)C14—C15—C16—C17 −0.9 (5) O5—C32—C33—C34 168.97 (19)C14—C15—C16—Cl2 178.2 (2) C38—C33—C34—C35 1.5 (3)C15—C16—C17—C18 1.1 (4) C32—C33—C34—C35 −176.30 (19)Cl2—C16—C17—C18 −178.1 (2) C33—C34—C35—O7 −179.1 (2)C14—C13—C18—C17 −0.5 (4) C33—C34—C35—C36 −0.8 (3)C19—C13—C18—C17 176.8 (2) O7—C35—C36—C37 177.8 (2)C16—C17—C18—C13 −0.3 (4) C34—C35—C36—C37 −0.3 (3)C14—C13—C19—C22 −70.5 (3) C35—C36—C37—O8 −179.96 (19)C18—C13—C19—C22 112.4 (3) C35—C36—C37—C38 0.8 (3)C14—C13—C19—C20 109.8 (3) O8—C37—C38—C33 −179.36 (18)C18—C13—C19—C20 −67.3 (3) C36—C37—C38—C33 −0.1 (3)C21—N5—C20—N7 −174.73 (19) C34—C33—C38—C37 −1.1 (3)C21—N5—C20—C19 5.2 (3) C32—C33—C38—C37 176.78 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H2A···O5i 0.86 1.85 2.691 (2) 166N3—H3A···O9ii 0.86 2.07 2.921 (2) 168N3—H3B···O1iii 0.86 2.21 2.854 (2) 131N4—H4A···N5ii 0.86 2.28 3.086 (2) 155N4—H4B···O6i 0.86 1.99 2.827 (2) 164N6—H6A···O2iv 0.86 1.91 2.750 (2) 166N7—H7A···O8i 0.86 2.23 3.075 (2) 167

electronic reprint

Page 40: Structure and electrostatic properties of the ...mcl.iub.edu.pk/templates/materialschemistrylaboratory/images/news… · 2016, 2018; Shahid et al., 2018) and have successfully shown

supporting information

sup-31Acta Cryst. (2019). C75, 46-53

N8—H8A···N1i 0.86 2.21 3.065 (2) 177N8—H8B···O1iv 0.86 1.95 2.799 (2) 171O3—H3C···O6v 0.84 (3) 1.83 (3) 2.660 (3) 168 (3)C27—H27···O6v 0.93 2.56 3.226 (3) 129O7—H7···O2iv 0.83 (3) 1.97 (3) 2.797 (2) 177 (2)O8—H8···O9 0.85 (3) 1.90 (3) 2.751 (2) 170 (2)C36—H36···O9 0.93 2.60 3.269 (3) 129C38—H38···N5ii 0.93 2.60 3.391 (3) 143O9—H9A···O5i 0.79 (3) 2.07 (3) 2.827 (2) 163 (3)O9—H9B···O1iv 0.92 (3) 1.97 (3) 2.887 (2) 173 (2)N2—H2A···O5i 0.86 1.85 2.691 (2) 166N3—H3A···O9ii 0.86 2.07 2.921 (2) 168N3—H3B···O1iii 0.86 2.21 2.854 (2) 131N4—H4A···N5ii 0.86 2.28 3.086 (2) 155N4—H4B···O6i 0.86 1.99 2.827 (2) 164N6—H6A···O2iv 0.86 1.91 2.750 (2) 166N7—H7A···O8i 0.86 2.23 3.075 (2) 167N8—H8A···N1i 0.86 2.21 3.065 (2) 177N8—H8B···O1iv 0.86 1.95 2.799 (2) 171O3—H3C···O6v 0.84 (3) 1.83 (3) 2.660 (3) 168 (3)C27—H27···O6v 0.93 2.56 3.226 (3) 129O7—H7···O2iv 0.83 (3) 1.97 (3) 2.797 (2) 177 (2)O8—H8···O9 0.85 (3) 1.90 (3) 2.751 (2) 170 (2)C36—H36···O9 0.93 2.60 3.269 (3) 129C38—H38···N5ii 0.93 2.60 3.391 (3) 143O9—H9A···O5i 0.79 (3) 2.07 (3) 2.827 (2) 163 (3)O9—H9B···O1iv 0.92 (3) 1.97 (3) 2.887 (2) 173 (2)N2—H2A···O5i 0.86 1.85 2.691 (2) 166N3—H3A···O9ii 0.86 2.07 2.921 (2) 168N3—H3B···O1iii 0.86 2.21 2.854 (2) 131N4—H4A···N5ii 0.86 2.28 3.086 (2) 155N4—H4B···O6i 0.86 1.99 2.827 (2) 164N6—H6A···O2iv 0.86 1.91 2.750 (2) 166N7—H7A···O8i 0.86 2.23 3.075 (2) 167N8—H8A···N1i 0.86 2.21 3.065 (2) 177N8—H8B···O1iv 0.86 1.95 2.799 (2) 171C27—H27···O6v 0.93 2.56 3.226 (3) 129O3—H3C···O6v 0.84 (3) 1.83 (3) 2.660 (3) 168 (3)C36—H36···O9 0.93 2.60 3.269 (3) 129C38—H38···N5ii 0.93 2.60 3.391 (3) 143O7—H7···O2iv 0.83 (3) 1.97 (3) 2.797 (2) 177 (2)O8—H8···O9 0.85 (3) 1.90 (3) 2.751 (2) 170 (2)O9—H9A···O5i 0.79 (3) 2.07 (3) 2.827 (2) 163 (3)O9—H9B···O1iv 0.92 (3) 1.97 (3) 2.887 (2) 173 (2)

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x−1/2, y−1/2, z; (iv) x−1, y, z; (v) x+1/2, y+1/2, z.

electronic reprint