structural design practices...structural design practices enae 483/788d - principles of space...

36
Structural Design Practices ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Structural Design and Analysis Example What employers look for when hiring Common design issues Considerations when beginning the design Material properties / applications Example of “complete” spacecraft component structural design and analysis 1

Upload: others

Post on 05-Apr-2020

14 views

Category:

Documents


1 download

TRANSCRIPT

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Structural Design and Analysis Example• What employers look for when hiring• Common design issues• Considerations when beginning the design• Material properties / applications• Example of “complete” spacecraft component

structural design and analysis

1

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

What Employers Want

2

• “Hands on structural/mechanical design, analysis and test.”• “Fabrication of hardware – even better.”• “All the theory makes more sense when you have practical application

to hardware.”• “Work in a team environment on a project and show an enjoyment for

the process.” • “The real world - at least in the projects [Orbital] works on - has a

lot of that, and it helps to have experienced that.”• “Has had some good FEA/FEM experience.”

– NX or Creo is what Orbital uses, SpaceX uses Unigraphics/NX• Understanding of analysis/FEM, and ability to identify sources of error.

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Common Issues in Structural Design

3

• Static analysis is straightforward; dynamics is tricky.– Frequency-dependent interactions between subsystems are

complex.– As much as possible, try to decouple, i.e. isolate, structures or

components from each other.

• Structural design is very dependent on the design requirements of other subsystems such as thermal, propulsion, communications, and power.

• Accordingly, aerospace vehicles inherently have very little structural margin.

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Commonly designed for launch loads

4

• Spacecraft protected from atmospheric heating and loads by fairing (acoustic)• Fairing jettisoned when atmospheric effects become negligible (shock)• Spacecraft attached to rocket by adapter, transfers loads between the two

(acceleration, random vibe)• Spacecraft usually

separated from rocket after completion of thrusting (acceleration, shock)

• Clamps/Spring bands used for attachment and separation (shock)

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Acoustics/Launch Transients(@launch/landing)

5

• Acoustic vibration loads will be greatest immediately before/after launch (or landing if using retrorockets), as the ground serves as a huge reflecting surface, directing all of the sound pressure energy produced by the rocket engines back up at the payload. The fairing enclosure can provide only modest acoustic isolation, and sound pressure levels inside can reach 145 dB (about the level of a jet engine w/ afterburner, well above the threshold for creating physical pain in humans.

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚,𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡𝑚𝑚𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙𝑡𝑡 < 2(𝐹𝐹𝑡𝑡𝑙𝑡𝑡𝑙𝑙𝑡𝑡𝑡𝑡)

• Launch/landing transients occur as the engines are activated, going from 0 thrust loading to some nonzero value. This is analogous to a step input applied to the launch vehicle, and the relevant dynamic analysis applies.

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Atmospheric flight, staging (mid launch/landing)

6

• Max winds are usually the high altitude winds (> 100 mph), combined with launch accelerations/random vibration are often the critical loading case.

• Transonic buffeting occurs when shock waves are impacting the fairing/heat shield, and can reduce the clearance between internal components and the shielding structure.

𝑎𝑎 =𝑇𝑇�𝑊𝑊 𝑔𝑔

• Maximum sustained acceleration is achieved prior to stage separation

• Separation transient will add on to this

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Late launch/landing events

7

• Fairing separation / heat shield separation use pyro mechanisms and impart high frequency content, but are generally only a concern for electronics and components mounted in the immediate proximity

• Spin stabilization may use small solid rockets or gas thrusters to spin up to 200 rpm, yielding tangential and centripetal accelerations.

• Spacecraft separation again may produce high frequency shock, more of a concern for electronics.

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

𝑎𝑎𝑡𝑡 = 𝑟𝑟𝛼𝛼𝑎𝑎𝑙𝑙 = 𝑟𝑟𝜔𝜔2

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

S/C system limit loads for ELVs (in gs)

8

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

S/C system limit loads for ELVs (in gs)

9

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

S/C system limit loads for ELVs (in gs)

10

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

S/C system limit loads for ELVs (in gs)

11

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

The Octave Rule

12

• “Rule” applied to ensure the interaction between spacecraft components and their mounting structure is minimized.

• General loads estimate applicable to components and secondary structures

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

𝜔𝜔𝑙𝑙,𝑙𝑙𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑙𝑙𝑡𝑡𝑙𝑙𝑡𝑡 ≥ 2𝜔𝜔𝑙𝑙,𝑡𝑡𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙𝑡𝑡𝑡𝑡

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Stress Analysis

13

• Hooke’s Law : σ = Stress (P/A), ε = Strain (∆L/L), E = Elastic/Young’s Modulus

• Yield/ultimate strengths forcommon aerospace materials arecompiled in the aerospace industrystandard MMPDS, formerly theMIL-HDBK-5• Poisson’s Ratio, 0.1≤ ν ≤ 0.35

𝜎𝜎 = 𝐸𝐸𝐸𝐸

ν =𝐸𝐸𝑙𝑙𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑙𝑙𝐸𝐸𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑙𝑙

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Normal Stress Conditions

14

• Effective stiffness:

• Examples: Static weight (on pad), axial thrust load

𝑃𝑃 =𝐴𝐴𝐸𝐸𝐿𝐿∆𝐿𝐿 → 𝐾𝐾𝑡𝑡𝑒𝑒 =

𝐴𝐴𝐸𝐸𝐿𝐿

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Bending Stress Conditions

15

• Bending (transverse) stress is a maximum furthest from neutral axis:

• Worst-case example: axial + transverse

• Examples: Thrust vectoring, wind gusts• See Roark and Young’s Formulas for Stress and Strain for I, A

𝜎𝜎 =𝑀𝑀𝑀𝑀𝐼𝐼

→ 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 =𝑀𝑀(ℎ2)𝐼𝐼

𝜎𝜎 = ±𝑃𝑃𝐴𝐴

±𝑀𝑀(ℎ2)𝐼𝐼

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Shear Stress Conditions (Bending and Twisting)

16

• Bending shear stress is a maximum at the neutral axis:

• α depends on shape of cross-section

• Examples: Accompanies bending, especially important for bonded materials (sandwich structures, lap joints)

• Twisting due to torque• Shear modulus, G, and twist angle, ϕ• Again, see Roark for J, 𝛼𝛼

𝜏𝜏 =𝑉𝑉𝑉𝑉(𝑀𝑀)𝐼𝐼𝐼𝐼

→ 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼𝑉𝑉𝐴𝐴

= 𝛼𝛼𝜏𝜏𝑚𝑚𝑎𝑎𝑎𝑎

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

𝜏𝜏 =𝐺𝐺𝑀𝑀

𝐺𝐺 =𝐸𝐸

2(1 + ν)

ϕ =𝑇𝑇𝐿𝐿𝐽𝐽𝐺𝐺

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Buckling in Compression (Linear Elastic Instability)

17

• Buckling in long* beams depends on end boundary conditions:

• L = column length, ρ = ⁄𝐼𝐼 𝐴𝐴 “Radius of Gyration”, C depends on end B.C.s

• Applies to columns with:1. Slenderness ratio (L’/ρ) ≥ 110

2. Stress doesn’t exceed elastic limit of the material

3. A “stable” cross-section (closed section with relatively thick walls)

• Again, see Roark

𝜎𝜎𝑙𝑙𝑡𝑡 =𝐶𝐶𝜋𝜋2𝐸𝐸( �𝐿𝐿 𝜌𝜌)

→ 𝜎𝜎𝑙𝑙𝑡𝑡 =𝑃𝑃𝑙𝑙𝑡𝑡𝐴𝐴

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Knock Down Factors (Euler Theory is Overly Optimistic)

18

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Load Path

19

• The stiffer structural member carries the greater part of the loading1. Honeycomb penthouse deck

attached to outer structure via flat plate, supporting instrument electronics

2. Flat plat offers little resistance to bending

3. Thrust load path is predominantly through the center structure (vertical plate)

• Control load paths by controlling stiffness

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

What changed between the Falcon 9 v1.0 and v1.1?

20

The Falcon 9 v1.1 uses the vehicle’s skin to resolve the vertical thrust loads, avoiding the need for specialized thrust structures (like in the tic-tac-toe of v1.0).

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Dynamic Interactions

21

• Every structure has a fundamental resonant frequency

• Use this to control load paths by controlling stiffness

R. Stengel, Space System Design, Princeton University

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Dynamic Interactions - Transient

22

R. Stengel, Space System Design, Princeton University

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Dynamic Interactions- Oscillation

23

R. Stengel, Space System Design, Princeton University

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Dynamic Interactions- Oscillation

24

R. Stengel, Space System Design, Princeton University

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Dynamic Interactions- Oscillation

25

R. Stengel, Space System Design, Princeton University

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Transmissibility

26

R. Stengel, Space System Design, Princeton University

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

S/C stiffness requirements for ELVs (minimum fundamental frequency to avoid resonance w/ launch vehicle)

27

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

https://spacex.com/sites/spacex/files/falcon_9_users_guide_rev_2.0.pdf

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Aerospace Structural Materials

28

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Aerospace Structural Materials

29

V.L. Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford University Press, 2005

• Aluminum– High stiffness/density ratio, excellent workability, non-magnetic, moderate

cost, high corrosion-resistance• Al-Li alloys can reduce LV weight by nearly 30%• Al-Li sheet laminates with fiber/epoxy sandwiches for fatigue resistance

• Titanium– Non-magnetic, stronger than aluminum, difficult to machine, suitable for

cryogenic applications, not suitable for high-temperature applications

• Steel alloys– High strength (absolute magnitude), high temperature applications, magnetic

(can interact negatively with magnetosphere)

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Common Composite Structural Materials

30

Material Properties UsesS-Glass Moderate σ, Low $,

Fatigue InsensitiveSolid rocket engine

casing, Pressure vessels, thermal

decouplingAramid (Kevlar) High σ, Low $,

Impact resistant, RF transparent

SRE casing, Press.Vess.,

Shrouds/FairingsHigh Tensile Carbon Fiber

Reinforced Polymer

High σ, Low $ Interstages

High Modulus-CFRP

High E, reasonable $

Optimized structures, solar arrays, antenna

reflectorsUltra HM-CFRP High E, low Coef.

Therm. Exp., very high $ (10X HT)

Thermo-elasticallystable structures, telescopes, wave

guides

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Common Composite Structural Materials

31

ReinforcingMaterial

Yield Strengthksi (MPa)

Tensile Strengthksi (MPa)

Elastic Modulusksi (GPa)

Strain at Breakpercent

Steel 40-75(276-517) N/A 29,000

(200) N/A

Glass FRP N/A 70-230(480-1,600)

5,100-7,400(35-51) 1.2-3.1

Basalt FRP N/A 150-240(1,035-1,650)

6,500-8,500(45-59) 1.6-3.0

Aramid FRP N/A 250-368(1,720-2,540)

6,000-18,000(41-125) 1.9-4.4

Carbon FRP N/A 250-585(1,720-3,690)

15,900-84,000(120-580) 0.5-1.9

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Structural Materials Selection

32

Material Ultimate Strength(MPa)

Elastic Modulus(GPa)

Density(kg/m3)

Steel 4100 210 7700Aluminum 620 73 2700 Titanium 1900 115 4700

E-Glass Fiber 3400 72 2550S-Glass Fiber 4800 86 2500Carbon Fiber 1700 190 1410Boron Fiber 3400 400 2570

Graphite Fiber 1700 250 1410

When/why do you choose to use a certain material?

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Structural Materials Selection

33

Performance Index

Strength design𝜎𝜎𝑙𝑙𝑙𝑙𝑡𝑡/𝜌𝜌

Stiffness Design𝐸𝐸/𝜌𝜌

Buckling Design𝐸𝐸/𝜌𝜌3

Steel 530 5.2 0.46Aluminum 230 5.2 3.7Titanium 405 4.9 1.1

E-Glass Fiber 1300 5.5 4.3S-Glass Fiber 1920 5.9 5.5Carbon Fiber 1200 11.6 68Boron Fiber 1320 12.5 23

Graphite Fiber 1200 13.3 89

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Creep in Composite Structures

34

An important factor when choosing the type of reinforced composite for a structural application is understanding the limits of a fiber to resist long term loading.

Continuous and cyclic loading on a fiber reinforced polymer in excess of its ability to resist those loads may induce long-term deflection, fatigue failure, or creep-rupture in the structural component.

To eliminate the deflections caused by creep, the stresses in FRP reinforcement in structural members must be less than the creep-rupture stress limit.

GFRP BFRP AFRP CFRPCreep-RuptureStress Limit, Ff,s

0.20 0.20 0.30 0.55

Carbon FRPs have a much greater useable strength after the application of the reduction factor, equating to less material and less mass.

•American Concrete Institute (ACI) Committee 440, 440.6-08 "Specification for Carbon and Glass Fiber-Reinforced Polymer Bar Materials for Concrete Reinforcement," 2008•Prince Engineering, PLC, "Characteristics and Behaviors of Fiber Reinforced Polymers (FRPs) Used for Reinforcement and Strengthening of Structures," 2011

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLANDR. Stengel, Space System Design, Princeton University

Structural Design PracticesENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLANDR. Stengel, Space System Design, Princeton University