structural composite elements

Upload: romixrayzen

Post on 17-Feb-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Structural Composite Elements

    1/23

    1

    Structural Composite Elements with Special

    Behavior

    H. BANSEMIR

    Consulting for Composites, Light Weight Structures and

    Knowledge Management

    Geitnerweg 4D-81825 Mnchen

    mailto:[email protected]

    Tel.: +49 (0)89 4300968

    ICSAT20135th International Conference on Sustainable AutomotiveTechnologies

    25-27 September, 2013 in Ingolstadt / Germany

    mailto:[email protected]:[email protected]:[email protected]:[email protected]
  • 7/23/2019 Structural Composite Elements

    2/23

    2

    Contents

    Introduction

    Composite Material Properties The Indian Helicopter Dhruv with Composite Spring

    Element

    The Tailrotor of the Indian Helicopter Dhruv

    Possible Helicopter Rotor Structures The Gimbal Rotor with a Flexible Composite

    Membrane

    Flexible Composite Membrane Springs of Vibration

    Absorbers Flexible Composite Blade Attachment System

    Flexible Composite Bearingless Seat Hinge System

    Summary

    References

  • 7/23/2019 Structural Composite Elements

    3/23

    Introduction

    The HelicopterTiger in an Aerobatic Motion

    1

  • 7/23/2019 Structural Composite Elements

    4/23

    Sikorsky S-58

    Movable for

    Torsional Angles

    Flapping Hinge

    Lead-Lag

    Hinge

    Lead-Lag Damper

    Control Rod Blade-Attachment

    Examplefor a Rotor with Lead-Lag and Flapping HingesSikorsky S 58

    Lever for Torsional

    Displacement

  • 7/23/2019 Structural Composite Elements

    5/23

    Design Features of the EC 135 Rotor

    Swash Plate, Control Cuff, Damper and Hub Cap

  • 7/23/2019 Structural Composite Elements

    6/23

    6

    Principle of the Bearingless Main Rotor

    The main rotorblade of the helicopter EC 135 with severalintegrated functions

    Flapping Hinge

    Lead-Lag Hinge

    FeatheringDamper

    Control Cuff

    Attach-

    ment

    DMH3 Profile

  • 7/23/2019 Structural Composite Elements

    7/23

    7

    Flexible/Elast ic B lade Neck in

    Flapping , Lead-Lag and Torsion

    Principle EC135 system

    Lead-Lag Hinge

    Feathering

    Principles of Bearingless Main Rotor

    http://localhost/var/www/apps/conversion/tmp/scratch_7/FlexTors.avi
  • 7/23/2019 Structural Composite Elements

    8/23

    8

    Multirole Helicopter EC 135 with the Attachment

    Element and Flexbeam Torsional Cross Section

  • 7/23/2019 Structural Composite Elements

    9/23

    Flexbeam Torsion Test

    Flexbeam

    unloaded

    Flexbeam

    loaded bycentrifugalforce andtwisted by100

    Flexbeam

    unloaded

    Flexbeam

    unloaded

  • 7/23/2019 Structural Composite Elements

    10/23

    10

    Bearingless and Hingeless Tailrotor for the BK 117

    (Soft in Lead-Lag Direction)

    Damper-Plate

    Adhesive

    Damping Material

    Glasfiber-Unidirectional

    Glasfiber-Shear-Layer

  • 7/23/2019 Structural Composite Elements

    11/23

    Comparison between Fiber-

    Composites and Metals

    Material S2-Glas T300 M55J K13 Alumium Titan Stahl

    Data of unidirectional composites Material data

    E N/mm2 54 000 133 000 300 000 500 000 72 200 105 200 208 000

    E

    N/mm2 14 000 10 800 6 400 5 700

    G# N/mm2 5 400 5 700 3 900 4 500 27 200 38 700 80 000

    Zug N/mm2 1 690 1 610 1 860.00 2 100 400 1 000 800

    Druck N/mm2 1 220 1 810 835.00 410

    T 10-61/K 6,5 0,4 -0,7 -1,4 24 8,35 11,1

    T 10-61/K 35,8 42 35,2 32,2T W/Kcm(293K) 0,01 0,05 0,544 8 2,1 0,15 0,12

    T W/Kcm (4K) 0.002

    0,000

    Material Properties of Unidirectional

    Fiber-Composites (60%) and

    Metals

    SpecificStrengthValue,

    B

    /g[km]

    Specific Youngs Modulus E/g [km]

  • 7/23/2019 Structural Composite Elements

    12/23

    The Indian Multipurpose Helicopter Dhruv with the

    Composite Spring Element

    12

    The Out of Plane behavior of the Spring Element is driven by the low shearmodulus. The arms of the Spring Element are loaded in torsion and thus the Spring

    is soft in Out of Plane direction.

  • 7/23/2019 Structural Composite Elements

    13/23

    The resonator of the Anti Resonance Isolation

    System of the Indian Multipurpose Helicopter

    13

  • 7/23/2019 Structural Composite Elements

    14/23

    The Tail Rotor of the Indian Multipurpose ALH

    Helicopter System

    14

  • 7/23/2019 Structural Composite Elements

    15/23

    The Flexible Composite Support of the Tail Rotor of the

    Indian ALH Helicopter System [4]

    15

  • 7/23/2019 Structural Composite Elements

    16/23

    The Flexible Composite Main Rotors Flex Beam and

    Flex Plate System [5]

    16

  • 7/23/2019 Structural Composite Elements

    17/23

    The Gimbal Rotor with a Flexible Composite

    Quasiisotrope Membrane [7]

    17

  • 7/23/2019 Structural Composite Elements

    18/23

    Flexible Composite Membrane Springs of Vibration

    Absorbers [9]

    18

  • 7/23/2019 Structural Composite Elements

    19/23

    Flexible Composite Blade Attachment System [10]

    19

  • 7/23/2019 Structural Composite Elements

    20/23

    Flexible Composite Bearingless Seat Hinge System [6]

    20

  • 7/23/2019 Structural Composite Elements

    21/23

    Conclusion / Summary

    The spectrum of material properties of composites is very high. The low modulus of shear allows the design of specialadvantageous designs.

    Very simple helicopter rotor designs are possible. The Gimbal Rotor needs a composite flexible quasiisotrope

    membrane, which is shown in the patent [7]. Flexible Composite Membrane Springs can be used for non- and

    adaptive Vibration Absorbers [9]. Flexible Composite Blade Attachment Systems [10] can be used for

    simple bearingless attachments of flaps.

    Flexible Composite Bearingless Seat Hinge Systems [6] can beused for simple automotive seats.

    21

  • 7/23/2019 Structural Composite Elements

    22/23

    References

    [1] Bansemir H.: Design of Basic Structural Composite Elements,ICSAT2011, Greenville 2011, USA

    [2] Bansemir H.: Querelastische Feder- und Sandwichkomponenten alsGrundelemente verschiedener Bauweisen, Technisch-wissenschaftlichesSeminar: Hochleistungsstrukturen im Leichtbau in Luft- u. Raumfahrt,

    Fahrzeugen, Sonderkonstruktionen, Themenschwerpunkt im Herbst 2011,23. Nov. (TU Mnchen): Leichtbau in frhen Konzeptphasen

    [3] Schrmann, H.: Konstruieren mit Faser-Kunststoff-Verbunden, Springer-Verlag Berlin, Heidelberg, New York, ISBN 3-540-40283-7, 2004

    [4] Bansemir H.: Patent Nr. US 6305640 B1, Date of Patent: Oct. 23, 2001:Spring Component and Support Bearing for Helicopter Tail Rotors andSupport Structure for Use in Outer Space

    [5] Bansemir H.: Patentschrift DE 19701403 C 1, Mehrblattrotor fr einDrehflgelflugzeug, Date of publication: 26.2.98

    22

  • 7/23/2019 Structural Composite Elements

    23/23

    References (cont.)

    [6] Bansemir H., Vullriede S.: Patentschrift DE 19961070 C1, EinteiligerSchalensitz in Leichtbauweise, Date of registration: 17.12.1999

    [7] Bansemir H.: Patentschrift DE 19961071 B4, Kupplungsmembran.Dateof registration: 17.12.1999

    [8] Bansemir H., Bongers B.: Patentschrift DE 18748707 C1

    Schwingungstilger fr einen Hubschrauber und Verwendung einer Batterieals Masse eines Schwingungstilgers, Date of registration: 21.1.1999

    [9] Bansemir H.: Patentschrift DE 10 2004 001 470 B4 2005.11.03,Mechanischer Resonator, Date of registration:8.1.2004

    [10] Bansemir H., Klppel V.: Offenlegungsschrift DE 19909257 A1,

    Verbindungsmittel zum Verbinden einer beweglichen Klappe mit einemFlgel eines Luftfahrzeuges,

    23