structural analysis of new modular and...

22
STRUCTURAL ANALYSIS OF NEW MODULAR AND LIGHTWEIGHT AUTOMOBILE BODY STRUCTURE ALI FAROKHI NEJAD UNIVERSITI TEKNOLOGI MALAYSIA

Upload: others

Post on 15-Feb-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

STRUCTURAL ANALYSIS OF NEW MODULAR AND LIGHTWEIGHT

AUTOMOBILE BODY STRUCTURE

ALI FAROKHI NEJAD

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

iii

DEDICATION

The world of knowledge is fast developing day to day, and only persons can be

efficient who are dominant on today’s knowledge.

This thesis is dedicated to all people who endeavor to develop knowledge, and to my

beloved and kind parents who always supported me and filled my heart with nothing

but their love and finally to all peaceful people of Iran.

Page 3: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

STRUCTURAL ANALYSIS OF NEW MODULAR AND LIGHTWEIGHT

AUTOMOBILE BODY STRUCTURE

ALI FAROKHI NEJAD

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Mechanical)

Faculty of Mechanical Engineering

Universiti Teknologi Malaysia

JUNE 2013

Page 4: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

iv

ACKNOWLEDGMENT

In the Name of God

I would like to express my deepest gratitude to PROF. MOHD NASIR BIN

TAMIN, who always advised and encouraged me with his perfect knowledge

throughout the project. His constant support and invaluable suggestions made this

work successful. This research project would not have been possible without the help

of many people.

Special thanks to my family for the support they provided me through my

entire life.

Page 5: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

v

ABSTRAK

Penambahbaikan keselamatan, pengurangan penggunaan tenaga dan

pengurangan pelepasan gas menjadi salah satu isu yang amat diketengahkan dalam

industri automotif beberapa tahun kebelakangan ini. Salah satu penyelesaian terbaik

ialah pelaksanaan badan kereta yang ringan seperti yang diterangkan dalam projek

ini. Reka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan

juga diambil kira. Selain daripada itu, struktur modular meningkatkan kadar

pembelian dan pengeluaran. Dengan mengambil kira spesifikasi reka bentuk, konsep

casis modular baru dan ringan telah diiktiraf. Di peringkat awal, simulasi model

rasuk telah digunakan. Tiga simulasi utama iaitu kekukuhan lenturan, kekukuhan

kilasan dan analisis modal telah dilaksanakan. Oleh itu, keputusan yang telah

disahkan digunakan sebagai asas untuk membuat model yang lebih kompleks. Model

ini menggunakan elemen kerangka, di mana ia boleh digunakan untuk melaksanakan

simulasi kedua yang lebih tepat dan serasi dengan simulasi keupayaan struktur

melindungi penumpang semasa pelanggaran. Dengan mencapai keputusan yang

betul, proses reka bentuk yang dicadangkan telah diluluskan. Aliran reka bentuk

meruapakan hasil akhir projek ini. Prosedur ini membawa kita untuk mereka bentuk

casis yang ringan dan modular berdasarkan piawaian SAE.

Page 6: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

vi

ABSTRACT

Improvement of safety, reduction of energy consumption, and reduction of

emission become one of the most highlighted issues for automotive industry in recent

years. One of the most significant solutions, i.e. lightweight car body has been

described in this project. Design, implementation, and characterization of parameters

of lightweight car body are used as well. Moreover, modular structures enhanced the

rate of purchase and production. Based on design specification, the new modular and

lightweight chassis concept has been established. In the beginning of the simulation a

beam model has used. Three primary simulations, bending stiffness, torsional

stiffness, and modal analysis have implemented. Therefore, the confirmed results

used as a baseline for making a more complex model. This model used shell element,

which it can be used for performing second simulation that is more accurate and

compatible with crashworthiness simulation. To get the reason appropriate results,

proposed design process has been approved. This design flow is the last outcome of

this project. Following this procedure leads us to design a lightweight and modular

chassis based on SAE standard.

Page 7: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION

DEDICATION

ACKNOWLEDGEMENTS

ABSTRAK

ABSTRACT

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

ii

iii

iv

v

vi

vii

xi

xii

xv

1

INTRODUCTION

1.1 Back ground of Study

1.2 Research Objectives

1.3 Research Scopes

1

1

4

5

2

Literature and research background

2.1 Introductions

2.2 Lightweight Structure

2.2.1 Steel Body

2.2.2 Aluminum body

2.2.3 Polymer Composite Body

6

6

6

8

9

9

vii

Page 8: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

2.3 Electric motor and battery

2.4 Driven front axles

2.4.1 Advantages and disadvantages of

front-wheel drive

2.4.2 Suspension systems

10

12

13

14

3

RESEARCH METHODOLOGY

3.1 Introduction

3.2 Design Characteristic

3.3 First Finite Element Model

3.3.1 FE Modeling

3.3.2 Material Properties

3.3.3 Bending Stiffness

3.3.4 Applying Load and Boundary

Condition

3.3.5 Torsion Test

3.3.6 Applying Boundary Condition

3.3.7 Modal Analysis Test

3.4 Second Finite Element Model

3.4.1 Developed Shell Model

3.4.2 Material Property

3.5 Preliminary to Crash Simulation

3.5.1 Applied Boundary Condition

3.5.2 Material Properties

3.6 Crash Worthiness Simulation

3.6.1 Frontal Crash Test

3.6.1.1 Applied Boundary

Condition

3.6.2 Rear Crash Test

3.6.2.1 Applied load and

Boundary Condition

3.6.3 Roof Crash Test

16

16

19

20

20

21

22

23

24

24

25

26

26

27

27

28

29

29

30

30

31

31

32

32

viii

Page 9: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

3.6.3.1 Boundary Condition and

Applied Load

3.6.4 Lateral Crash Test

3.6.4.1 Boundary Condition and

Applied Load

33

33

4

RESULT AND DISCUSSION

4.1 Introduction

4.2 Conceptual Design

4.2.1 Main Module

4.2.2 Front Module

4.2.3 Rear Module

4.2.4 Roof Module

4.2.5 Suspension System

4.2.6 Final Conceptual Design

4.3 First Model Finite Element Results

4.3.1 Bending Stress

4.3.2 Evaluation of Bending Stiffness

4.3.3 Torsional Stiffness Simulation

4.3.4 Stress Distribution from Torsion

Forces

4.3.5 Torsional Stiffness Calculation

4.3.6 Modal Test with Beam Element

4.4 Second Finite Element Model

4.4.1 Developed Shell Model

4.4.2 Bending Stiffness of Shell Element

4.4.3 Torsional Stiffness of Shell Element

4.4.4 Modal Analysis of Shell Element

4.5 Preliminary to Crash Testing

4.5.1 Results and Discussion

4.6 Crash worthiness evaluation

4.6.1 Frontal Crash Simulation Result

34

34

34

35

35

36

37

37

38

39

39

40

41

41

42

43

44

44

44

46

47

48

48

50

51

ix

Page 10: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

4.6.2 Lateral Crash Simulation

FMVSS 214 Result

4.6.3 Rear Crash Simulation FMV SS 301

Result

4.6.4 Roof Crash Simulation FMV SS 216

Result

4.7 Outcome Design Methodology

4.8 Summary

52

54

55

56

58

5

CONCLUSION

59

REFRENCES 61

x

Page 11: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

0

LIST OF TABLE

TABLE NO. TITLE PAGE

2.1

3.1

3.2

3.3

3.4

3.5

4.1

5.1

Type of electrical motor

Design specification

Profile cross-section dimensions

Material properties

Mass distribution

Bending test boundary condition

Torsional stiffness for beam model

Comparison between target and obtained results

12

19

21

22

22

24

42

60

xi

Page 12: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

0

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1

1.2

1.3

2.1

2.2

2.3a

2.3b

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.1

4.2

Electrical components alignment

AC Motor/Controller Kit, 67 hp, 72/108 volt,

650 Amp

Unit Module Design-50Ah lithium-ion batteries

Passenger Car Mass Distribution

Front driven axle with double Wishbone

suspension system (AUDIA6 1997)

MC person strut

Double wishbone suspensions

Flowchart of project

The initial3D model of car chassis

Bending test boundary condition

Applied boundary condition

The shell3D model of car chassis

Applied boundary condition

Stress – strain curve –low carbon steel

NCAP test boundary condition

FMVSS301Standard test boundary condition

FMVSS216 Standard test boundary condition

FMVSS214 Standard test boundary condition

Main module and battery package

Front module and double wishbone suspension

system

3

4

4

7

13

15

15

18

20

23

25

27

28

29

30

31

32

33

35

36

xii

Page 13: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

4.3

4.4

4.5

4.6a

4.6b

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

Rear module set

Roof module and related joints

Double wishbone suspension system

Final conceptual designs- side view

Final conceptual designs

Bending stresses(a) Vertical deflection (b)

Stress distributions from torsion test with Beam

element

Maximum vertical deflection from torsion test

with Beam element

Modal analysis of HSS structure

Von misses stress from bending stiffness test

The Maximum vertical deflection for bending

test by shell element

Von misses stress from torsional stiffness test

for shell element

The Maximum vertical deflection from

torsional test by shell element

The modal analysis of shell element

Stress – Strain curve –low carbon steel

Low carbon steel strain rate

The energy absorption comparison

The US NCAP frontal test in different time

steps

The maximum intrusion on foot well from

frontal test

The maximum intrusion from lateral test -

FMVSS214

The equivalent plastic strain from lateral test -

FMVSS214

The maximum intrusion from rear test –

FMVSS301

The maximum deformation from roof test –

36

37

38

38

39

40

41

42

43

45

45

46

46

47

48

49

50

51

52

53

53

54

55

xiii

Page 14: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

4.25

4.26

FMVSS216

The Von Misses stress from roof test –

FMVSS216

Outcome design process

56

57

xiv

Page 15: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

xv

LIST OF SYMBOLS

U1 - Horizontal displacement

U2 - Vertical displacement

UR3 - Rotational displacement around Z-axis

- Torsional stiffness

T - Torque

F - Applied load

B - Width track of car body

- Angular deflection of driver seat

- Angular deflection of passenger seat

- Average of angular deflection

V1 - Velocity along X-axis

V3 - Velocity along Z-axis

g - Passengers foot well acceleration

Page 16: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

1

CHAPTER 1.0

INTRODUCTION

1.1 Background of Study

The automotive industry has in recent years successfully attempted to build

lighter vehicles with more energy efficient motors in order to significantly reduce

fleet consumption in accordance with legal requirements. Significantly lower fuel

consumption and CO2 emissions have been the immediate compromised of such

developments. On the other hand, demand for Electric Vehicles (EVs) has

increased during the last years, especially after the peak oil prices experienced in the

last few years. In spite of the technology that supports the EVs been well known

since many years, vehicle manufactures have presented some reluctance to

introduce it in the market [1]. However, the oil prices increase associated to the

present pressure introduced by some national and regional authorities to reduce the

environmental impacts of the transportation sector, is acting as a driver for

vehicle manufactures changing the status-quo and start a regular production of EV

models.

One of the major requirements to improve performance of a vehicle is the

efficient design of the body and the structure. The chassis frame of the car is

Page 17: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

2

expected to provide r i g i d i t y f o r accurate handling, provide m o u n t i n g

p o i n t s for t h e suspensions, steering mechanism, gearbox, and seating for the

occupant. While fulfilling these functions, the chassis should be light enough to

reduce inertia and offer satisfactory performance. It should also be tough enough to

resist fatigue loads that are produced due to the interaction between the driver, the

engine and power transmission and the road. Reduced mass of the vehicle could be

achieved through optimized design of the chassis or frame. Since the chassis is a

critical load-bearing structure, such design is made possible with the aid of numerical

simulation for displacement and stress analysis. In this respect, finite element (FE)

anal ys i s i s an es tab l i shed versa t i l e design tool r e ad i l y avai lable for

engineers.

A direct weight reduction can also be accomplished by substituting the

structural member with lightweight materials. Two common choices for the

materials are aluminum and fiber-reinforced polymer (FRP) composites. Testing of

critical components and full scale testing of the chassis structure prototype is

indispensible both for validation of FE prediction and qualifying the parts for

structural safety. The structure stiffness must be considered in relation to the

weight to assess the efficiency of structure.

Performance of a vehicle is also evaluated in terms of ride comfort and

handling. This vehicle dynamic behavior is primarily characterized by the response

of the vehicle suspension system to road profile and distributed loading. Prediction

of dynamic responses of the system (comprises of vehicle body and masses,

suspension system and road surface profile) is commonly analyzed.

Modeling and analyzing the effect of the chassis framework for the

electric vehicle is obtain through Finite Element software ABAQUS 6.9Ef. This tool

is very important to identifying the structure failure before manufacturing and test.

This software is used efficiently for calculating structure properties, such as

static displacement and static stress, natural frequencies and mode shapes,

Page 18: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

3

forced harmonic response amplitude. The finite element analysis is very useful tool

to identify dynamic characteristics such as natural frequencies and mode shapes. A

finite element stress analysis is carried out at the failure region to determine the

stress distribution and possible design improvement [2].However; the finite

e lement resul ts are ex tremely sensitive to mesh refinement, especially with

respect to singularities at the ends of the joint.

In this project, the electric vehicle uses an Azure Dynamics AC24LS 5.5

KW 4- pole, three-phase air-cooled AC electric motor. The corresponding digital

motor controller DMOC445 has been suggested. T h e m o t o r can spin up to a

maximum of 11,000 rpm, and which offers 47 KW (63 hp) of peak power and 92

Nm of maximum torque, working with a single-gear transmission and a 15 KWh,

50Ah lithium-ion battery. The battery consists of eight separate modules, and each

module is made up of 40 cells (in a four-in-parallel, 10-in-series configuration),

and together the assembly weighs in at 240 kg. Incidentally, weight-wise, the

Electric Vehicle has 150 kg .Weight more than a standard vehicle, with the battery

being the hefty lad.

Figure 1.1 electrical components alignment

Page 19: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

4

Figure 1.2 AC Motor/Controller Kit, 67 hp, 72/108 volt, 650 Amp

Figure 1.3 Unit Module Design-50Ah lithium-ion batteries

1.2 Research Objectives

The objectives of this project are as follows.

To develop design methodology for modular and lightweight automobile body

structures

To design a prototype modular and lightweight body structure for an electric vehicle

Establish structural crash response on the structure

Page 20: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

5

1.3 Research Scopes

The first scope of this project focused on material properties. In this case,

according to previous investigation the high strength steel choose as used material.

Perform FE simulation of the structure for vibration response, deformation and stress

analysis. Assess adequacy of the structure with respect to strength of materials and

structural stability. Develop methodology for designing modular and lightweight

automobile body structure, for a given set of design constraints. Establish the

crashworthiness evaluation based on SAE standard, which it focused on four most

important crash test simulation.

Page 21: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

61

REFRENCES

[1] SUN Hongtu HP, MA Ning ,SHEN Guozhe ,LIU Bo and ZHOU

Dinglu. Application of Hot Forming High Strength Steel Parts on Car

Body in Side Impact. 2010;23.

[2] Stodolsky F, A. Vyas, et al. Life-Cycle Energy Savings Potential

from Aluminum- Intensive Vehicles. 1996.

[3] Ota. Total Life Cycle Conference & Exposition. 1995.

[4] Kragtwijk NAJLSP. The Application of Steel and Aluminum in a

New Lightweight Car Body Design. 1998.

[5] ULSAB. Data distributed by the ULSAB organization. 1997.

[6] Kelkar A. Analysis of Aluminum in Auto Body Designs and its

Strategic Implications for the Aluminum Industry. 2000.

[7] Andrew Mills MFaAC. Development of a Carbon Fibre Composite

Ultra Lightweight Vehicle Structure for the Aero-Stable Carbon Car

– Fastframes. 2002. [8] Stoll D-IJRIH. The Automotive Chassis.

2002:456.

[9] Warrendale P. Automotive Handbook, Society of Automotive

Engineers. 1995.

[10] George WBRaAR. Design, Analysis and Testing of a Formula SAE

Car Chassis.2002.

Page 22: STRUCTURAL ANALYSIS OF NEW MODULAR AND ...eprints.utm.my/id/eprint/33837/5/AliFarokhiNejadMFKM2013.pdfReka bentuk, pelaksanaan, dan pencirian parameter badan kereta yang ringan juga

62

[11] Barari STEEaA. Methods to Determine Torsion Stiffness in an

Automotive Chassis. 2011.

[12] Shulze SRGTKaRC. Design nd Analysis of a Conceptual

Modular Aluminun spaceframe Platform. 2005.

[13] Fenton J. Handbook of Vehicle Design Analysis. 1996.