stellar atmospheres: solution strategies 1 solution strategies

37
Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Upload: avice-foster

Post on 26-Dec-2015

230 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

1

Solution Strategies

Page 2: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

2

All equations

Radiation Transport Iv(z), Jv(z), Hv(z), Kv(z)

Energy Balance T(z)

Hydrostatic Equilibrium ne(z)

Saha-Boltzmann / Statistical Equilibrium nijk(z)

Huge system with coupling over depth (RT) and frequency (SE)

Complete Linearisation (Auer Mihalas 1969)

Separate in sub-problems

Page 3: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

3

RT: Short characteristic method

Olson & Kunasz, 1987, JQSRT 38, 325

Solution along rays passing through whole plane-parallel slab

max

maxmax

0

( , , ) ( , , ) exp ( )exp

( , , ) (0, , ) exp ( ) exp

Solution on a discrete depth grid , 1, with boundi

dI v I v S

dI v I v S

i ND

1

max

ary conditions:

( , ) (0, , )

( , ) ( , , )ND

I v I v

I v I v

Page 4: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

4

Short characteristic method

Rewrite with previous depth point as boundary condition for the next interval:

1

1 1

11

( , , ) ( , , ) exp ( , , )

( , , ) ( , , ) exp ( , , )

with

using a linear interpolation for the spatial variation of

the intergrals can be evaluated

i i i i

i i i i

i ii

i

I v I v I S v

I v I v I S v

S

I

1 1

as

i i i i i i iI S S S

Page 5: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

5

Short characteristic method

Out-going rays:

1 1

1

/ / / /

/ / / /

( , , ) exp exp exp

, ( ) exp( ) , , ,

1 11

1

i i

i i

i ii

ii i

a a b ai a

a b b ai b

d dI S v S S

x g x x a b

ew e e e e

w e e e e

1ee

Page 6: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

6

Short characteristic method

In-going rays:

11

11

/ / / /

/ /

( , , ) exp exp exp

, ( ) exp( ) , , ,

1 1

1

i i

i i

i ii

ii i

b a b ai a

b b bi b

d dI S v S S

x g x x a b

ew e e e e e

w e e e

/ / 11a e

e

Page 7: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

7

Short characteristic method

Also possible: Parabolic instead of linear interpolation

Problem: Scattering

Requires iteration

1

1

1 , ( )

2e e e e e en J I d

Page 8: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

8

Solution as boundary-value problemFeautrier scheme

Radiation transfer equation along a ray:

Two differential equations for inbound and outbound rays

Definitions by Feautrier (1964):

( )( ) ( )

pp:

sp:

vv v

dII S

ddt

dd

d dZ

symmetric, intensity-like

antisymmetric, flux-l

1

2

k1

i e2

u I I

v I I

Page 9: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

9

Feautrier scheme

Addition and subtraction of both DEQs:

One DEQ of second order instead of two DEQ of first order

2

2

( )( ) ( )

( )( )

(1)

(2

( )( )

)

( )

v

v

dvu S

ddu

vd

d uu S

d

Page 10: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

10

Feautrier scheme

Boundary conditions (pp-case)

Outer boundary ... with irradiation

Inner boundary

Schuster boundary-value problem

0

(2

(

)

0) 0 ( 0) ( 0)

( ) ( 0)

I u v

duu

d

max max

max

max

max max max

max

( ) ( ) ( )

(( )

) )2 (

I I u v I

duI u

d

0

00

( 0)

( )( 0)

I I u v I

duu I

d

Page 11: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

11

Finite differencesApproximation of the derivatives by finite differences:

1 2 1 2

2

2

1 2 1

1 1

1 1

discretization on a scale

at interfirst derivative

second

mediate points:

1

2( ) ( )

and

(

derivative

)

:

)

(

i i

i

i i i

i i i i

i i i i

d uu S

d

u u u udu du

d d

dudd du

d d

1 2 1 2

1 2 1 2

1 12

1 12

1 1

( )

( )12

i i

i

i i

i i i i

i i i i

i i

dud

u u u u

du

d

Page 12: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

12

Finite differences

Approximation of the derivatives by finite differences:

2

2

1 1

1 1

1 1

1 1

1

1 1 1

1

1 1 1

discretisation on a scale

, 2 112

, 2 1

1

2

1

2

1

i i i i

i i i ii i

i i

i i i i i i i

i i i i i

i i i i i

i

d uu S

du u u u

u S i ND

Au B u C u S i ND

A

C

B

i iA C

Page 13: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

13

Linear system of equations

Linear system for ui

Use Gauss-Jordan elimination for solution

11 1 1 1

2 2 2 2 2

1 1 1

2

1*

0

0

=

ND ND

ND

ND ND

ND ND ND ND

B C u W

A B C u W

C u

S

S

S

S

W

A B u W

Page 14: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

14

Upper diagonal matrix

1st step:

1 11

2 22

1 11

1 11 1 1 1 1 1

1 1

1 1

1

1 0

0

1

1

2

ND NDND

ND ND

i i i i i i i i i

u WC

u WC

u WC

u W

i C B C W B W

i ND C B AC C W B AC

1i i iW AW

Page 15: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

15

Back-substitution

2nd step:

Solution fulfils differential equation as well as both boundary conditions

Remark: for later generalization the matrix elements are treated as matrices (non-commutative)

11 1ND ND

i i i i

i ND u W

i ND u W C u

Page 16: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

16

Complete Linearization

Auer & Mihalas 1969

Newton-Raphson method in n

Solution according to Feautrier scheme

Unknown variables:

Equations:

System of the form:

1 , 1 , , , ,Ti

i i ND

i

Ji ND

n

, 1, , , , 1, , ( ) 0 NF transfer equations

( ) 0 NL equations for SE

i k i k i k i k i k i k i k i

i i i

A J B J C J S n

P J n b

, ( ) 0 , 1if NF NL

Page 17: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

17

Complete Linearization

Start approximation:

Now looking for a correction so that

Taylor series:

Linear system of equations for ND(NF+NL) unknowns

Converges towards correct solution

Many coefficients vanish

0, ( ) 0if

0, ( ) 0 , if i

0

0, ,

, ,0, , ,

1 1 1, ,

0 ( ) ( )

( )

i i

ND NF NLi i

i i k i li k li k i l

f f

f ff J n

J n

, , , i k i lJ n

Page 18: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

18

Complete Linearization - structureOnly neighbouring depth points (2nd order transfer equation

with tri-diagonal depth structure and diagonal statistical equations):

Results in tri-diagonal block scheme (like Feautrier), , 1 1( ) ( , , )i i i i if f

1 1

, 1 ,

1

,

0 0

0

0 0

0 0

0

0

0

0 0

i i i i i i i

i k i i k i

i i

i k

A B C L

A J B J

n n

C

1

0,

1

( )i

i

i

J

f

n

Page 19: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

19

Complete Linearization - structure

Transfer equations: coupling of Ji-1,k , Ji,k , and Ji+1,k at the same frequency point:

Upper left quadrants of Ai, Bi, Ci describe 2nd derivative

Source function is local:

Upper right quadrants of Ai, Ci vanish

Statistical equations are local

Lower right and lower left quadrants of Ai, Ci vanish

2

2

d J

d

Page 20: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

20

Complete Linearization - structureMatrix Bi:

,,

,

,, ,

1 ,

0

0

i ki k

i l

i

NLi l m

i m i l lm i k

SB

n

B

Pn P

J

1 ... NF 1 ... NL1

... NF

1 ... N

L

Page 21: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

21

Complete Linearization

Alternative (recommended by Mihalas): solve SE first and linearize afterwards:

Newton-Raphson method:• Converges towards correct solution• Limited convergence radius• In principle quadratic convergence, however, not achieved

because variable Eddington factors and -scale are fixed during iteration step

• CPU~ND (NF+NL)3 simple model atoms only– Rybicki scheme is no relief since statistical equilibrium not as

simple as scattering integral

1( ) 0 ( )i i i i i iP J n b n P J b

Page 22: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

22

Energy Balance

Including radiative equilibrium into solution of radiative transfer Complete Linearization for model atmospheres

Separate solution via temperature correction Quite simple implementation Application within an iteration scheme allows completely linear

system next chapter No direct coupling Moderate convergence properties

Page 23: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

23

Temperature correction – basic scheme

0. start approximation for

1. formal solution

2. correction

3. convergence?

Several possibilities for step 2 based on radiative equilibrium or flux conservation

Generalization to non-LTE not straightforward

With additional equations towards full model atmospheres:• Hydrostatic equilibrium• Statistical equilibrium

0( ) ( )T T ( )v v vJ S T

( ) ( ) ( )T T T

Page 24: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

24

LTE

Strict LTE

Scattering

Simple correction from radiative equilibrium:

( ) ( ( ))v vS B T ( ) (1 ) ( ( )) ( )v e v e vS B T J

0

0

( )0

( )0 0

( , ) ( , ) ( ( ), ) 0

( , ) ( , ) ) 0

0

( )(

v v

v

v vTv

vv v

T Tv

vv v

T Tv v

v J v B T v dv

v J v B T dv

BJ B dv

T

BJ B dv dv

T

T

T

T

Page 25: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

25

LTEProblem:

Gray opacity ( independent of frequency):

deviation from constant flux provides temperature correction

( )0 0

independent of the temperature 0

vv v

T Tv v

v v

BT J B dv dv

T

J B T

0

0.Moment equation

( ) ( )

( ) 0

( )

v v

v

v J B dv J B

J B B

J B B

dHB

dt

Page 26: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

26

Unsöld-Lucy correction

Unsöld (1955) for gray LTE atmospheres, generalized by Lucy (1964) for non-gray LTE atmospheres

0 0

0

0-th moment

1st m

:

, , ,

:

,

now new quantities , , fulfill

omen

ing ra

t

diat

vv v v

JB v v J v v B

B v v

vv v

HH v v

B v

dHJ B

dt

dHdv J B B B dv J J dv d dt

d

dKH

dt

dKdv H H H dv

d

J H K

4eff

radiative equi

ive equilibrium (local) and

flux conservation (non local)

: librium

flux conservation

0

: 4

J

B

H H

B B

dHJ B

d

dKH T

d

Page 27: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

27

Unsöld-Lucy correction

Now corrections to obtain new quantities:

0

0 0 0 0

0

integrate (0)

, (0) (0) (0)

(0)

(0) (0)

(0) (0

) 1

HH

B

J

B

v v v v v v

H

B

B

J

B

X X X

K K Hd

K K dv f J dv fJ H H dv h J dv hJ

f H

d H

d

K Hd fh

f HB

fh

d KH

d

d H

fB

J

Jd

0

3

0

30

4 (0) (0) 1

(0) (0) 1

4

J

B

H

B

J H

B B

J H

B B

Hd

T dH dH

d d

f HB T Hd

fh f

f HT HdB

fh fJ

T

Page 28: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

28

Unsöld-Lucy correction

„Radiative equilibrium“ part good at small optical depths but poor at large optical depths

„Flux conservation“ part good at large optical depths but poor at small optical depths

Unsöld-Lucy scheme typically requires damping

Still problems with strong resonance lines, i.e. radiative equilibrium term is dominated by few optically thick frequencies

30

(0) (0) 1

4J J H

B B B

f HT J B Hd

T fh f

J B

0dH

d

Page 29: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

29

NLTE Model Atmospheres

Radiation Transport and Sattistical Equilibrium are very closely coupled

Simple separation (Lamda Iteration) does not work

Complete Linearization

Accelerated Lambda Iteration

Page 30: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

30

Lambda Iteration

Split RT and SE+RE:

• Good: SE is linear (if a separate T-correction scheme is used)

• Bad: SE contain old values of n,T (in rate matrix A)

Disadvantage: not converging, this is a Lambda iteration!

0

( , )

( , )

( , , ) ( , , ) 0

new old

new

v v

J S n T

A J T n b

v n T J S v n T dv

RT formal solution

SE

RE

Page 31: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

31

Accelerated Lambda Iteration (ALI)

Again: split RT and SE+RE but now use ALI

• Good: SE contains new quantities n, T• Bad: Non-Linear equations linearization (but without RT)

Basic advantage over Lambda Iteration: ALI converges!

* *

0

( , ) ( , ) ( , )

( , )

( , , ) ( , , ) 0

new old old old new new new old old old

newnew new

new new new new newv v

J S n T S n T S n T

A J T n b

v n T J S v n T dv

RT

SE

RE

Page 32: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

32

Example: ALI working on Thomson scattering problem

amplification factor

* *

* *

*

*

:=formal solution on

solve for

1

1

1 1

new

new newe e

new new newe e

e e

old old

old old old

new old

FS

FS

FS

e

old new newe e

new

e

S B J

S S

B J B

S

B J

B J

J S

J

J

J J J J

J

B

1* *

1*

1 subtract on both sides

1

FS old olde e

new old FS olde

J J J

J J J J

Interpretation: iteration is driven by difference (JFS-Jold) but: this differenceis amplified, hence, iteration is accelerated.Example: e=0.99; at large optical depth * almost 1 → strong amplifaction

source function with scattering, problem: J unknown→iterate

Page 33: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

33

What is a good Λ*?The choice of Λ* is in principle irrelevant but in practice it decides about the success/failure of the iteration scheme.First (useful) Λ* (Werner & Husfeld 1985):

A few other, more elaborate suggestions until Olson & Kunasz (1987): Best Λ* is the diagonal of the Λ-matrix(Λ-matrix is the numerical representation of the integral operator Λ)

We therefore need an efficient method to calculate the elements of the Λ-matrix (are essentially functions of ).Could compute directly elements representing the Λ-integral operator, but too expensive (E1 functions). Instead: use solution method for transfer equation in differential (not integral) form: short characteristics method

* ( ), ' ( ')

0

vv v

SS

Page 34: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

34

Towards a linear scheme

Λ* acts on S, which makes the equations non-linear in the occupation numbers

• Idea of Rybicki & Hummer (1992): use J=ΔJ+Ψ*ηnew instead• Modify the rate equations slightly:

*

0 0

*3

20

*3

*2

0

4 4 ( )

24

24 ( )

ij ijij i i v

ijiji j j v

j

i

i

jji

j

R n n J dv J dvhv hv

n hvR n n J dv

n hv c

n hvJ dv

n

n n

nhv

nc

Page 35: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

35

Stellar Atmospheres

This was the contents of our lecture:

Radiation field

Radiation transfer

Emission and absorption

Energy balance and Radiative equilibrium

Hydrostatic equilibrium

Solution Strategies for Stellar atmosphere models

Page 36: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

36

Stellar Atmospheres

This was the contents of our lecture:

Radiation field

Radiation transfer

Emission and absorption

Radiative equilibrium

Hydrostatic equilibrium

Stellar atmosphere models

The End

Page 37: Stellar Atmospheres: Solution Strategies 1 Solution Strategies

Stellar Atmospheres: Solution Strategies

37

Stellar Atmospheres

This was the contents of our lecture:

Radiation field

Radiation transfer

Emission and absorption

Radiative equilibrium

Hydrostatic equilibrium

Stellar atmosphere models

The End

Thank you forlistening !