inverse problems - applications and solution strategies · 2014. 12. 10. · inverse problems -...

100
Inverse Problems - Applications and Solution Strategies Inverse Problems - Applications and Solution Strategies Barbara Kaltenbacher, Alpen-Adria Universit¨ at Klagenfurt AD12, Fort Collins, July 2012

Upload: others

Post on 24-Feb-2021

11 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Inverse Problems -Applications and Solution Strategies

Barbara Kaltenbacher, Alpen-Adria Universitat Klagenfurt

AD12, Fort Collins, July 2012

Page 2: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Outline

I inverse problems

I some applicationsI regularization of nonlinear problems

I Tikhonov regularizationI iterative methodsI Kaczmarz methodsI expectation maximization

Page 3: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Inverse Problems

Determine causes for

identification

observedor

desired

optimization

effects.

Inverse problems are often unstable:Small perturbations in the data can lead to large errors in the solution!→ regularization necessary

Identifiability question:Are the searched for quantities uniquely determined by the given data?

Page 4: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Inverse Problems

Determine causes for

identification

observedor

desired

optimization

effects.

Inverse problems are often unstable:Small perturbations in the data can lead to large errors in the solution!→ regularization necessary

Identifiability question:Are the searched for quantities uniquely determined by the given data?

Page 5: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Inverse Problems

Determine causes for

identification

observedor

desired

optimization

effects.

Inverse problems are often unstable:Small perturbations in the data can lead to large errors in the solution!→ regularization necessary

Identifiability question:Are the searched for quantities uniquely determined by the given data?

Page 6: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Some Application Examples

Page 7: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Material Characterization for Magnetic Flux Measurement

measurement principle:

Faraday’s Law:

moving conductor

in magnetic field

induces electric voltage.

→ identification of the space-dependentmagnetic permeability of the coil core;

→ hysteresis modelling

• Endress + Hauser, Reinach, CH;

• Inst. theor. Elektrotechnik, Univ. Stuttgart;

• Inst. Mechanik u. Mechatronik, TU Wien

Page 8: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Virtual Material Development

cross section of piezoceramicpolarization hysteresis strain hysteresis

→ micromechnaical modelling of ferroelectric polycrystals;→ hysteresis modelling

• joint project COMFEM (Bosch, Siemens, PI Ceramic, CeramTec,Fraunhofer Inst. f. Werkstoffmechanik, KIT)

• Inst. Mechanik u. Mechatronik, TU Wien

Page 9: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Parameter Identification in Systems Biology

→ determination of parameters in technical and biological systems→ application to identification of gene networks (activation/inhibition)

gene network dependency matrix

• Cluster of Excellence SimTech project with Jun.Prof.Dr. Nicole Radde,

Univ. Stuttgart

Page 10: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Identification of Cracks in Piezoceramics

current/voltage measurementsat surface electrodes

potential distributionin material with crack

→ localization of cracksinside piezoelectric devicesfrom surface measurements(nondestructive testing)

→ identifiability→ adaptive discretizetion

• DFG Project with Prof.Dr. Anna-Margarete Sandig, Univ. Stuttgart

Page 11: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

All these applications lead toparameter identification problems in PDE/ODE models

Page 12: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Medical Imaging

I e.g., electrical impedance tomography (EIT)

−∇(σ∇φ) = 0 in Ω .

Identify conductivity σ = σ(x) from measurements of theDirichlet-to-Neumann map Λσ, i.e., all possible pairs(φ , σ∂nφ) on ∂Ω.

I e.g., quantitative thermoacoustic tomography (qTAT):

∇×(µ−1∇× E

)+ σ

∂tE + ε

∂2

∂t2E = J in Ω .

Identify σ = σ(x) from measurements of the deposited energyσ|E|2 in Ω.

Page 13: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Medical Imaging

I e.g., electrical impedance tomography (EIT)

−∇(σ∇φ) = 0 in Ω .

Identify conductivity σ = σ(x) from measurements of theDirichlet-to-Neumann map Λσ, i.e., all possible pairs(φ , σ∂nφ) on ∂Ω.

I e.g., quantitative thermoacoustic tomography (qTAT):

∇×(µ−1∇× E

)+ σ

∂tE + ε

∂2

∂t2E = J in Ω .

Identify σ = σ(x) from measurements of the deposited energyσ|E|2 in Ω.

Page 14: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Parameter identification in PDEs: Model problems

I e.g. “a-example” (transmissivity in groundwater modelling)

−∇(a∇u) = 0 in Ω .

Identify a = a(x) from measurements of u in Ω. [Adrian Sandu, Tue]

I e.g. “c-example” (potential in stat. Schrodinger equation)

−∆u + c u = 0 in Ω .

Identify c = c(x) from measurements of u in Ω.

Page 15: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Parameter identification in PDEs: Model problems

I e.g. “a-example” (transmissivity in groundwater modelling)

−∇(a∇u) = 0 in Ω .

Identify a = a(x) from measurements of u in Ω. [Adrian Sandu, Tue]

I e.g. “c-example” (potential in stat. Schrodinger equation)

−∆u + c u = 0 in Ω .

Identify c = c(x) from measurements of u in Ω.

Page 16: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Forward operator F

I EIT: F : σ 7→ Λσwhere Λσ : φ 7→ σ∂nφ and −∇(σ∇φ) = 0 in Ω .

I qTAT: F : σ 7→ σ|E|2

where ∇×(µ−1∇× E

)+ σ ∂

∂t E + ε ∂2

∂t2 E = J in Ω + bndy.cond.

I a-example: F : a 7→ uwhere −∇(a∇u) = 0 in Ω + boundary conditions

I c-example: F : c 7→ uwhere −∆u + c u = 0 in Ω + boundary conditions

forward operator F often involves solution of PDE,F is usually nonlinear and sometimes also nonsmooth

Page 17: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Forward operator F

I EIT: F : σ 7→ Λσwhere Λσ : φ 7→ σ∂nφ and −∇(σ∇φ) = 0 in Ω .

I qTAT: F : σ 7→ σ|E|2

where ∇×(µ−1∇× E

)+ σ ∂

∂t E + ε ∂2

∂t2 E = J in Ω + bndy.cond.

I a-example: F : a 7→ uwhere −∇(a∇u) = 0 in Ω + boundary conditions

I c-example: F : c 7→ uwhere −∆u + c u = 0 in Ω + boundary conditions

forward operator F often involves solution of PDE,F is usually nonlinear and sometimes also nonsmooth

Page 18: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Forward operator F

I EIT: F : σ 7→ Λσwhere Λσ : φ 7→ σ∂nφ and −∇(σ∇φ) = 0 in Ω .

I qTAT: F : σ 7→ σ|E|2

where ∇×(µ−1∇× E

)+ σ ∂

∂t E + ε ∂2

∂t2 E = J in Ω + bndy.cond.

I a-example: F : a 7→ uwhere −∇(a∇u) = 0 in Ω + boundary conditions

I c-example: F : c 7→ uwhere −∆u + c u = 0 in Ω + boundary conditions

forward operator F often involves solution of PDE,F is usually nonlinear and sometimes also nonsmooth

Page 19: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Forward operator F

I EIT: F : σ 7→ Λσwhere Λσ : φ 7→ σ∂nφ and −∇(σ∇φ) = 0 in Ω .

I qTAT: F : σ 7→ σ|E|2

where ∇×(µ−1∇× E

)+ σ ∂

∂t E + ε ∂2

∂t2 E = J in Ω + bndy.cond.

I a-example: F : a 7→ uwhere −∇(a∇u) = 0 in Ω + boundary conditions

I c-example: F : c 7→ uwhere −∆u + c u = 0 in Ω + boundary conditions

forward operator F often involves solution of PDE,F is usually nonlinear and sometimes also nonsmooth

Page 20: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Forward operator F

I EIT: F : σ 7→ Λσwhere Λσ : φ 7→ σ∂nφ and −∇(σ∇φ) = 0 in Ω .

I qTAT: F : σ 7→ σ|E|2

where ∇×(µ−1∇× E

)+ σ ∂

∂t E + ε ∂2

∂t2 E = J in Ω + bndy.cond.

I a-example: F : a 7→ uwhere −∇(a∇u) = 0 in Ω + boundary conditions

I c-example: F : c 7→ uwhere −∆u + c u = 0 in Ω + boundary conditions

forward operator F often involves solution of PDE,F is usually nonlinear and sometimes also nonsmooth

Page 21: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Forward operator F

I EIT: F : σ 7→ Λσwhere Λσ : φ 7→ σ∂nφ and −∇(σ∇φ) = 0 in Ω .

I qTAT: F : σ 7→ σ|E|2

where ∇×(µ−1∇× E

)+ σ ∂

∂t E + ε ∂2

∂t2 E = J in Ω + bndy.cond.

I a-example: F : a 7→ uwhere −∇(a∇u) = 0 in Ω + boundary conditions

I c-example: F : c 7→ uwhere −∆u + c u = 0 in Ω + boundary conditions

forward operator F often involves solution of PDE,F is usually nonlinear and sometimes also nonsmooth

Page 22: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Differentiating F

I large numbers of dependent and independent variables

I directional derivative of state u wrt. parameter often obeyssimilar PDEs to those for the state itself.e.g. a-example −∇(a∇u) = 0; v = ∂u(a; b) solves

−∇(a∇v) = ∇(b∇u)

I derivatives of (cost) functionals wrt. parameters can becomputed from adjoint PDEs derived “by hand”

I . . . but sometimes one would not want to set up and solvethose PDEs

I . . . and correspondence (F ′(a)∗)h = (F ′(a)h)∗ only holds forspecific discretizations [Emre Ozkaya, Tue]

Page 23: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Differentiating F

I large numbers of dependent and independent variables

I directional derivative of state u wrt. parameter often obeyssimilar PDEs to those for the state itself.e.g. a-example −∇(a∇u) = 0; v = ∂u(a; b) solves

−∇(a∇v) = ∇(b∇u)

I derivatives of (cost) functionals wrt. parameters can becomputed from adjoint PDEs derived “by hand”

I . . . but sometimes one would not want to set up and solvethose PDEs

I . . . and correspondence (F ′(a)∗)h = (F ′(a)h)∗ only holds forspecific discretizations [Emre Ozkaya, Tue]

Page 24: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Differentiating F

I large numbers of dependent and independent variables

I directional derivative of state u wrt. parameter often obeyssimilar PDEs to those for the state itself.e.g. a-example −∇(a∇u) = 0; v = ∂u(a; b) solves

−∇(a∇v) = ∇(b∇u)

I derivatives of (cost) functionals wrt. parameters can becomputed from adjoint PDEs derived “by hand”

I . . . but sometimes one would not want to set up and solvethose PDEs

I . . . and correspondence (F ′(a)∗)h = (F ′(a)h)∗ only holds forspecific discretizations [Emre Ozkaya, Tue]

Page 25: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Differentiating F

I large numbers of dependent and independent variables

I directional derivative of state u wrt. parameter often obeyssimilar PDEs to those for the state itself.e.g. a-example −∇(a∇u) = 0; v = ∂u(a; b) solves

−∇(a∇v) = ∇(b∇u)

I derivatives of (cost) functionals wrt. parameters can becomputed from adjoint PDEs derived “by hand”

I . . . but sometimes one would not want to set up and solvethose PDEs

I . . . and correspondence (F ′(a)∗)h = (F ′(a)h)∗ only holds forspecific discretizations [Emre Ozkaya, Tue]

Page 26: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Differentiating F

I large numbers of dependent and independent variables

I directional derivative of state u wrt. parameter often obeyssimilar PDEs to those for the state itself.e.g. a-example −∇(a∇u) = 0; v = ∂u(a; b) solves

−∇(a∇v) = ∇(b∇u)

I derivatives of (cost) functionals wrt. parameters can becomputed from adjoint PDEs derived “by hand”

I . . . but sometimes one would not want to set up and solvethose PDEs

I . . . and correspondence (F ′(a)∗)h = (F ′(a)h)∗ only holds forspecific discretizations [Emre Ozkaya, Tue]

Page 27: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

An Example: Ferroelectric Hysteresismicromechanical switching models, e.g. [Huber&Fleck 2001]:(

S

D

)=

(M∑I=1

([sE ]I [d]tI

[d]I [εσ]I

)ξI

)(σ

E

)+

M∑I=1

(SiI

PiI

)ξI

S. . . mechanical strain, D. . . dielectric displacementσ. . . mechanical stress, E. . . electric fieldSiI irreversible strains, Pi

I polarization

M . . . number of polarization directions ξI . . . volume fraction for variant I

ξI =K∑

J=1,J 6=I

(cJIψ(ξJ)− cIJψ(ξI )) . (1)

cIJ = φ(fIJ) fIJ = E ·∆Pi + σt∆Si (driving force)where ∆Pi = Pi

J − PiI ; ∆Si = Si

J − SiI .

ρu− DIV(

[cE ]effDIVTu− Si − [e]effgradϕ)

= 0 (2)

div([e]eff

(Bu− Si

)− [εS ]effgradϕ− Pi

)= 0 , (3)

Page 28: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Inverse Problems as Operator Equations

Page 29: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Nonlinear ill-posed problems

nonlinear operator equation

F (x) = y

!! from now on x is not space variable but parameter function= independent variables

Page 30: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Nonlinear ill-posed problems

nonlinear operator equation

F (x) = y

F : D(F )(⊆ X )→ Y . . . nonlinear operator;F not continuously invertible;

X , Y . . . Hilbert/Banach spaces;

y δ ≈ y . . . noisy data, ‖y δ − y‖ ≤ δ. . . noise level.

regularization necessary

Page 31: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Regularization of Inverse Problems

• unstable operator equation: F (x) = y with F : x 7→ y

• solution x = F−1(y) does not depend continuously on yi.e.,

(∀(yn), yn → y 6⇒ xn := F−1(yn)→ F−1(y)

)

• only noisy data y δ ≈ y available (measurements): ‖y δ − y‖ ≤ δ

• making∥∥F (x)− y δ

∥∥ small 6⇒ good result for x!

Page 32: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Regularization of Inverse Problems

• unstable operator equation: F (x) = y with F : x 7→ y

• solution x = F−1(y) does not depend continuously on yi.e.,

(∀(yn), yn → y 6⇒ xn := F−1(yn)→ F−1(y)

)• only noisy data y δ ≈ y available (measurements): ‖y δ − y‖ ≤ δ

• making∥∥F (x)− y δ

∥∥ small 6⇒ good result for x!

Page 33: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Regularization of Inverse Problems

• unstable operator equation: F (x) = y with F : x 7→ y

• solution x = F−1(y) does not depend continuously on yi.e.,

(∀(yn), yn → y 6⇒ xn := F−1(yn)→ F−1(y)

)• only noisy data y δ ≈ y available (measurements): ‖y δ − y‖ ≤ δ

• making∥∥F (x)− y δ

∥∥ small 6⇒ good result for x!

Page 34: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Regularization of Inverse Problems

• unstable operator equation: F (x) = y with F : x 7→ y

• solution x = F−1(y) does not depend continuously on yi.e.,

(∀(yn), yn → y 6⇒ xn := F−1(yn)→ F−1(y)

)• only noisy data y δ ≈ y available (measurements): ‖y δ − y‖ ≤ δ

• making∥∥F (x)− y δ

∥∥ small 6⇒ good result for x!

Page 35: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

An ExampleIdentification of a source term x in a 1-d differential equation y ′′ = x , δ = 1%

exact and noisy data y , yδ exact x vs x with∥∥F (x)− yδ

∥∥ = 1.e − 14

exact and noisy data y , yδ exact x vs x with∥∥F (x)− yδ

∥∥ = 2δ

Page 36: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Regularization of Inverse Problems

• unstable operator equation: F (x) = y with F : x 7→ y

• solution x = F−1(y) does not depend continuously on yi.e.,

(∀(yn), yn → y 6⇒ xn := F−1(yn)→ F−1(y)

)• only noisy data y δ ≈ y available (measurements): ‖y δ − y‖ ≤ δ

• making∥∥F (x)− y δ

∥∥ small 6⇒ good result for x!

• regularization means approaching solution along stable path:given (yn), yn → y construct xn := Rαn(yn) such thatxn = Rαn(yn)→ x = F−1(y)

• regularization parameter choice:trade-off between approximation (small α) and stability (large α)

Page 37: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Regularization of Inverse Problems

• unstable operator equation: F (x) = y with F : x 7→ y

• solution x = F−1(y) does not depend continuously on yi.e.,

(∀(yn), yn → y 6⇒ xn := F−1(yn)→ F−1(y)

)• only noisy data y δ ≈ y available (measurements): ‖y δ − y‖ ≤ δ

• making∥∥F (x)− y δ

∥∥ small 6⇒ good result for x!

• regularization means approaching solution along stable path:given (yn), yn → y construct xn := Rαn(yn) such thatxn = Rαn(yn)→ x = F−1(y)

• regularization parameter choice:trade-off between approximation (small α) and stability (large α)

Page 38: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Regularization of Inverse Problems

• unstable operator equation: F (x) = y with F : x 7→ y

• solution x = F−1(y) does not depend continuously on yi.e.,

(∀(yn), yn → y 6⇒ xn := F−1(yn)→ F−1(y)

)• only noisy data y δ ≈ y available (measurements): ‖y δ − y‖ ≤ δ

• making∥∥F (x)− y δ

∥∥ small 6⇒ good result for x!

• regularization means approaching solution along stable path:given (yn), yn → y construct xn := Rαn(yn) such thatxn = Rαn(yn)→ x = F−1(y)

• regularization parameter choice:trade-off between approximation (small α) and stability (large α)

Page 39: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Reference to noise level

Recall: We wish to solve

F (x) = y given y with∥∥∥y − y δ

∥∥∥ ≤ δ(measurement noise level)

I accuracy requirements for forward evaluation:‖F (x)− Fh(x)‖ ∼ δ to avoid loss of information during inversion.

I On the other hand it does not make sense to make the datamisfit

∥∥F (x)− y δ∥∥ smaller than the noise level δ.

discrepancy principle for choosing α = α∗:∥∥∥F (xδα∗)− y δ∥∥∥ ∼ δ

Page 40: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Reference to noise level

Recall: We wish to solve

F (x) = y given y with∥∥∥y − y δ

∥∥∥ ≤ δ(measurement noise level)

I accuracy requirements for forward evaluation:‖F (x)− Fh(x)‖ ∼ δ to avoid loss of information during inversion.

I On the other hand it does not make sense to make the datamisfit

∥∥F (x)− y δ∥∥ smaller than the noise level δ.

discrepancy principle for choosing α = α∗:∥∥∥F (xδα∗)− y δ∥∥∥ ∼ δ

Page 41: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Reference to noise level

Recall: We wish to solve

F (x) = y given y with∥∥∥y − y δ

∥∥∥ ≤ δ(measurement noise level)

I accuracy requirements for forward evaluation:‖F (x)− Fh(x)‖ ∼ δ to avoid loss of information during inversion.

I On the other hand it does not make sense to make the datamisfit

∥∥F (x)− y δ∥∥ smaller than the noise level δ.

discrepancy principle for choosing α = α∗:∥∥∥F (xδα∗)− y δ∥∥∥ ∼ δ

Page 42: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Parameter identification in a PDE as anonlinear operator equation

F (x) = y

F . . . forward operator: F (x) = (C S)(x) = C (u)where u = S(x) solves

D(x , u) = f . . . PDE

Hilbert spaces X , V , Y : x ∈ XS→ u ∈ V

C→ y ∈ Y

Page 43: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Regularization Methods

Page 44: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Tikhonov Regularization

Minimize jα(x) =∥∥F (x)− y δ

∥∥2+ α ‖x‖2 over x ∈ X ,

or equivalently

Minimize Jα(x , u) =∥∥C (u)− y δ

∥∥2+ α ‖x‖2 over x ∈ X , u ∈ V

under the constraint D(x , u) = f

(one shot formulation)

PDE constrained optimization [Johannes Lotz, Mon], [Andrea Walther, Tue]

Page 45: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Tikhonov Regularization

Minimize jα(x) =∥∥F (x)− y δ

∥∥2+ α ‖x‖2 over x ∈ X ,

or equivalently

Minimize Jα(x , u) =∥∥C (u)− y δ

∥∥2+ α ‖x‖2 over x ∈ X , u ∈ V

under the constraint D(x , u) = f

(one shot formulation)

PDE constrained optimization [Johannes Lotz, Mon], [Andrea Walther, Tue]

Page 46: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Tikhonov Regularization

Minimize jα(x) =∥∥F (x)− y δ

∥∥2+ α ‖x‖2 over x ∈ X ,

or equivalently

Minimize Jα(x , u) =∥∥C (u)− y δ

∥∥2+ α ‖x‖2 over x ∈ X , u ∈ V

under the constraint D(x , u) = f

(one shot formulation)

PDE constrained optimization [Johannes Lotz, Mon], [Andrea Walther, Tue]

Page 47: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Tikhonov Regularization with the Discrepancy Principle

Minimize jα(x) =∥∥∥F (x)− y δ

∥∥∥2+ α ‖x‖2 over x ∈ X ,

Choice of α: discrepancy principle (fixed constant τ ≥ 1)∥∥∥F (xδα∗)− y δ∥∥∥ = τδ

nonlinear 1-d equation φ(α) = 0 for α;evaluation of φ requires minimization of Tikhonov functional

Convergence analysis:

[Engl& Hanke& Neubauer 1996] and the references therein

Page 48: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Tikhonov Regularization and AD

I different levels on which AD might be used(as valid generally in PDE constrained optimization)

I tangential stiffness matrix in FEM solution of nonlinear PDEsfor forward evaluation of F ;

I gradients (Hessians) of cost function Jα and equalityconstraints (=PDE) wrt. parameter x and state u in one shotformulation of Tikhonov regularization;

I gradients (Hessians) of reduced cost function jα wrt.parameter x

I derivative of discrepancy function φ wrt. α.

I convergence with optimal rates requires(F ′(x)∗)h = (F ′(x)h)∗ + O(δ2)when solving via discretized version of Euler equationF ′(x)∗(F (x)− y δ) + α(x − x0) = 0

Page 49: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Tikhonov Regularization and AD

I different levels on which AD might be used(as valid generally in PDE constrained optimization)

I tangential stiffness matrix in FEM solution of nonlinear PDEsfor forward evaluation of F ;

I gradients (Hessians) of cost function Jα and equalityconstraints (=PDE) wrt. parameter x and state u in one shotformulation of Tikhonov regularization;

I gradients (Hessians) of reduced cost function jα wrt.parameter x

I derivative of discrepancy function φ wrt. α.

I convergence with optimal rates requires(F ′(x)∗)h = (F ′(x)h)∗ + O(δ2)when solving via discretized version of Euler equationF ′(x)∗(F (x)− y δ) + α(x − x0) = 0

Page 50: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Further aspects of Tikhonov RegularizationI problem adapted regularization terms, e.g.:

I total variation for sharp edges in imagesI l1 for sparsity

I problem adapted data misfit terms, e.g.:I Kullback-Leibler divergence for modelling Poisson noiseI l1 for robustness wrt. outliers

potential nonsmoothness! [Kamil A. Khan, Mon], [Markus Beckers, Tue], [Andreas Griewank, Tue], [Sabrina Fiege, Tue]. . .

I other parameter choice rules, e.g. a priori choice, generalizedcross-validation, L-curve, balancing principles, quasioptimality, . . .

I stochastic noise modelsI relation to Bayesian estimation via MAP estimatorI iterated Tikhonov regularizationI . . .

Page 51: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Further aspects of Tikhonov RegularizationI problem adapted regularization terms, e.g.:

I total variation for sharp edges in imagesI l1 for sparsity

I problem adapted data misfit terms, e.g.:I Kullback-Leibler divergence for modelling Poisson noiseI l1 for robustness wrt. outliers

potential nonsmoothness! [Kamil A. Khan, Mon], [Markus Beckers, Tue], [Andreas Griewank, Tue], [Sabrina Fiege, Tue]. . .

I other parameter choice rules, e.g. a priori choice, generalizedcross-validation, L-curve, balancing principles, quasioptimality, . . .

I stochastic noise models

I relation to Bayesian estimation via MAP estimatorI iterated Tikhonov regularizationI . . .

Page 52: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Further aspects of Tikhonov RegularizationI problem adapted regularization terms, e.g.:

I total variation for sharp edges in imagesI l1 for sparsity

I problem adapted data misfit terms, e.g.:I Kullback-Leibler divergence for modelling Poisson noiseI l1 for robustness wrt. outliers

potential nonsmoothness! [Kamil A. Khan, Mon], [Markus Beckers, Tue], [Andreas Griewank, Tue], [Sabrina Fiege, Tue]. . .

I other parameter choice rules, e.g. a priori choice, generalizedcross-validation, L-curve, balancing principles, quasioptimality, . . .

I stochastic noise modelsI relation to Bayesian estimation via MAP estimator

I iterated Tikhonov regularizationI . . .

Page 53: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Further aspects of Tikhonov RegularizationI problem adapted regularization terms, e.g.:

I total variation for sharp edges in imagesI l1 for sparsity

I problem adapted data misfit terms, e.g.:I Kullback-Leibler divergence for modelling Poisson noiseI l1 for robustness wrt. outliers

potential nonsmoothness! [Kamil A. Khan, Mon], [Markus Beckers, Tue], [Andreas Griewank, Tue], [Sabrina Fiege, Tue]. . .

I other parameter choice rules, e.g. a priori choice, generalizedcross-validation, L-curve, balancing principles, quasioptimality, . . .

I stochastic noise modelsI relation to Bayesian estimation via MAP estimatorI iterated Tikhonov regularizationI . . .

Page 54: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Further aspects of Tikhonov RegularizationI problem adapted regularization terms, e.g.:

I total variation for sharp edges in imagesI l1 for sparsity

I problem adapted data misfit terms, e.g.:I Kullback-Leibler divergence for modelling Poisson noiseI l1 for robustness wrt. outliers

potential nonsmoothness! [Kamil A. Khan, Mon], [Markus Beckers, Tue], [Andreas Griewank, Tue], [Sabrina Fiege, Tue]. . .

I other parameter choice rules, e.g. a priori choice, generalizedcross-validation, L-curve, balancing principles, quasioptimality, . . .

I stochastic noise modelsI relation to Bayesian estimation via MAP estimatorI iterated Tikhonov regularizationI . . .

Page 55: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Literature on Tikhonov regularization

I stability and convergence: [Seidman&Vogel 1989]

I convergence rates [Engl&Kunisch&Neubauer 1989] [Neubauer 1999]

[Hofmann&Scherzer 1998]

I analysis in Banach space: [Burger&Osher 2004],[Hofmann&BK&Poschl&Scherzer 2007] [BK&Hofmann 2010],[Hein&Hofmann&Kindermann&Neubauer&Tautenhahn 2009], [. . . ]

I adaptive discretization based on goal oriented error estimators[BK&Kirchner&Vexler 2011], [Don Estep, Thu]

I . . .

Page 56: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Gradient type methodsGradient descent for the minimization of

min 12 ‖F (x)− y‖2 over D(F ) :

xδk+1 = xδk + ωδkF′(xδk )∗(y δ − F (xδk ))

I Landweber iteration: ωδk ≡ 1

I steepest descent and minimal error method:

ωδk :=‖sδk‖

2

‖F ′(xδk )sδk‖2 , ωδk :=

‖yδ−F (xδk )‖2

‖sδk‖2 ,

where sδk = F ′(xδk )∗(y δ − F (xδk )).

I iteratively regularized Landweber

xδk+1 = xδk + F ′(xδk )∗(y δ − F (xδk ))+βk(x0 − xδk )

Page 57: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Gradient type methods with the Discrepancy Principle

xδk+1 = xδk + ωδkF′(xδk )∗(y δ − F (xδk ))

I stopping index k∗ acts as a regularization parameter

I discrepancy principle:∥∥∥y δ − F (xδk∗)∥∥∥ ≤ τδ < ∥∥∥y δ − F (xδk )

∥∥∥ , 0 ≤ k < k∗ ,

k∗ ∼ δ−1

Page 58: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Literature on gradient type methods

I Landweber for nonlinear inverse problems[Hanke&Neubauer&Scherzer 1995]

I steepest descent and minimal error method [Scherzer 1996],[Neubauer&Scherzer 1995]

I iteratively regularized Landweber [Scherzer 1998]

I generalization to Banach space setting:[Schopfer&Louis&Schuster 2006, Schopfer&Schuster&Louis 2008, BK

&Schopfer&Schuster 2009]

I . . .

Page 59: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Newton type methods

F ′(xδk )(xδk+1 − xδk ) = y δ − F (xδk )

formulation as least squares problem:

minx∈D(F )

∥∥∥y δ − F (xδk )− F ′(xδk )(x − xδk )∥∥∥2

ill-posedness apply Tikhonov regularization:Levenberg-Marquardt method:

minx∈D(F )

∥∥∥y δ − F (xδk )− F ′(xδk )(x − xδk )∥∥∥2

+ αk

∥∥∥x − xδk

∥∥∥2

Iteratively regularized Gauss-Newton method (IRGNM)

minx∈D(F )

∥∥∥y δ − F (xδk )− F ′(xδk )(x − xδk )∥∥∥2

+ αk ‖x − x0‖2

Both methods differ by choice of sequence αk and convergence analysis.

Page 60: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Newton type methods

F ′(xδk )(xδk+1 − xδk ) = y δ − F (xδk )

formulation as least squares problem:

minx∈D(F )

∥∥∥y δ − F (xδk )− F ′(xδk )(x − xδk )∥∥∥2

ill-posedness apply Tikhonov regularization:Levenberg-Marquardt method:

minx∈D(F )

∥∥∥y δ − F (xδk )− F ′(xδk )(x − xδk )∥∥∥2

+ αk

∥∥∥x − xδk

∥∥∥2

Iteratively regularized Gauss-Newton method (IRGNM)

minx∈D(F )

∥∥∥y δ − F (xδk )− F ′(xδk )(x − xδk )∥∥∥2

+ αk ‖x − x0‖2

Both methods differ by choice of sequence αk and convergence analysis.

Page 61: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Newton type methods

F ′(xδk )(xδk+1 − xδk ) = y δ − F (xδk )

formulation as least squares problem:

minx∈D(F )

∥∥∥y δ − F (xδk )− F ′(xδk )(x − xδk )∥∥∥2

ill-posedness apply Tikhonov regularization:Levenberg-Marquardt method:

minx∈D(F )

∥∥∥y δ − F (xδk )− F ′(xδk )(x − xδk )∥∥∥2

+ αk

∥∥∥x − xδk

∥∥∥2

Iteratively regularized Gauss-Newton method (IRGNM)

minx∈D(F )

∥∥∥y δ − F (xδk )− F ′(xδk )(x − xδk )∥∥∥2

+ αk ‖x − x0‖2

Both methods differ by choice of sequence αk and convergence analysis.

Page 62: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Newton type methods

F ′(xδk )(xδk+1 − xδk ) = y δ − F (xδk )

formulation as least squares problem:

minx∈D(F )

∥∥∥y δ − F (xδk )− F ′(xδk )(x − xδk )∥∥∥2

ill-posedness apply Tikhonov regularization:Levenberg-Marquardt method:

minx∈D(F )

∥∥∥y δ − F (xδk )− F ′(xδk )(x − xδk )∥∥∥2

+ αk

∥∥∥x − xδk

∥∥∥2

Iteratively regularized Gauss-Newton method (IRGNM)

minx∈D(F )

∥∥∥y δ − F (xδk )− F ′(xδk )(x − xδk )∥∥∥2

+ αk ‖x − x0‖2

Both methods differ by choice of sequence αk and convergence analysis.

Page 63: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Levenberg-Marquardt

xδk+1 = xδk + (F ′(xδk )∗F ′(xδk ) + αk I )−1F ′(xδk )∗(y δ − F (xδk )) ,

Choice of αk :∥∥∥y δ − F (xδk )− F ′(xδk )(xδk+1(αk)− xδk )∥∥∥ = q

∥∥∥y δ − F (xδk )∥∥∥

for some q ∈ (0, 1) inexact Newton method.

Choice of stopping index k∗: discrepancy principle:∥∥∥y δ − F (xδk∗)∥∥∥ ≤ τδ < ∥∥∥y δ − F (xδk )

∥∥∥ , 0 ≤ k < k∗ ,

k∗ ∼ log(δ−1)

[Hanke 1996]

Page 64: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Levenberg-Marquardt

xδk+1 = xδk + (F ′(xδk )∗F ′(xδk ) + αk I )−1F ′(xδk )∗(y δ − F (xδk )) ,

Choice of αk :∥∥∥y δ − F (xδk )− F ′(xδk )(xδk+1(αk)− xδk )∥∥∥ = q

∥∥∥y δ − F (xδk )∥∥∥

for some q ∈ (0, 1) inexact Newton method.

Choice of stopping index k∗: discrepancy principle:∥∥∥y δ − F (xδk∗)∥∥∥ ≤ τδ < ∥∥∥y δ − F (xδk )

∥∥∥ , 0 ≤ k < k∗ ,

k∗ ∼ log(δ−1)[Hanke 1996]

Page 65: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Levenberg-Marquardt

xδk+1 = xδk + (F ′(xδk )∗F ′(xδk ) + αk I )−1F ′(xδk )∗(y δ − F (xδk )) ,

Choice of αk :∥∥∥y δ − F (xδk )− F ′(xδk )(xδk+1(αk)− xδk )∥∥∥ = q

∥∥∥y δ − F (xδk )∥∥∥

for some q ∈ (0, 1) inexact Newton method.

Choice of stopping index k∗: discrepancy principle:∥∥∥y δ − F (xδk∗)∥∥∥ ≤ τδ < ∥∥∥y δ − F (xδk )

∥∥∥ , 0 ≤ k < k∗ ,

k∗ ∼ log(δ−1)[Hanke 1996]

Page 66: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Iteratively regularized Gauss-Newton method (IRGNM)

xδk+1 = xδk+(F ′(xδk )∗F ′(xδk )+αk I )−1(F ′(xδk )∗(y δ−F (xδk ))+αk(x0−xδk )) .

a-priori choice of αk :

αk > 0 , 1 ≤ αk

αk+1≤ r , lim

k→∞αk = 0 ,

for some r > 1.

(a-priori or) a posteriori choice of k∗∥∥∥y δ − F (xδk∗)∥∥∥ ≤ τδ < ∥∥∥y δ − F (xδk )

∥∥∥ , 0 ≤ k < k∗ ,

k∗ ∼ log(δ−1)

[Bakushinski 1992], [Bakushinski&Kokurin 2004];[BK&Neubauer&Scherzer 1997], [Hohage 1997], [BK& Neubauer&Scherzer 2008]

Page 67: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Iteratively regularized Gauss-Newton method (IRGNM)

xδk+1 = xδk+(F ′(xδk )∗F ′(xδk )+αk I )−1(F ′(xδk )∗(y δ−F (xδk ))+αk(x0−xδk )) .

a-priori choice of αk :

αk > 0 , 1 ≤ αk

αk+1≤ r , lim

k→∞αk = 0 ,

for some r > 1.

(a-priori or) a posteriori choice of k∗∥∥∥y δ − F (xδk∗)∥∥∥ ≤ τδ < ∥∥∥y δ − F (xδk )

∥∥∥ , 0 ≤ k < k∗ ,

k∗ ∼ log(δ−1)[Bakushinski 1992], [Bakushinski&Kokurin 2004];[BK&Neubauer&Scherzer 1997], [Hohage 1997], [BK& Neubauer&Scherzer 2008]

Page 68: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Iteratively regularized Gauss-Newton method (IRGNM)

xδk+1 = xδk+(F ′(xδk )∗F ′(xδk )+αk I )−1(F ′(xδk )∗(y δ−F (xδk ))+αk(x0−xδk )) .

a-priori choice of αk :

αk > 0 , 1 ≤ αk

αk+1≤ r , lim

k→∞αk = 0 ,

for some r > 1.

(a-priori or) a posteriori choice of k∗∥∥∥y δ − F (xδk∗)∥∥∥ ≤ τδ < ∥∥∥y δ − F (xδk )

∥∥∥ , 0 ≤ k < k∗ ,

k∗ ∼ log(δ−1)[Bakushinski 1992], [Bakushinski&Kokurin 2004];[BK&Neubauer&Scherzer 1997], [Hohage 1997], [BK& Neubauer&Scherzer 2008]

Page 69: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Further Literature on Newton type methods

I generalization to regularization methods Rα(F ′(x)) ≈ F ′(x)†

in place of Tikhonov [BK 1997], [Rieder 2001]

xδk+1 = x0 + Rαk(F ′(xδk ))(y δ − F (xδk )− F ′(xδk )(x0 − xδk )) .

I continuous version (artificial time) [BK&Neubauer&Ramm 2002]

I projected version for constrained problems [BK&Neubauer 2006]

I analysis with stochastic noise [Bauer&Hohage&Munk 2009]

I analysis in Banach space [Bakushinski&Konkurin 2004], [BK&

Schopfer&Schuster 2009], [BK& Hofmann 2010]

I preconditioning [Egger 2007], [Langer 2007]

I quasi Newton methods [BK 1998]

Page 70: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Iterative Regularization and AD

I require Jacobian-vector products F ′(x)vand adjoint-vector products F ′(x)∗w

I convergence with optimal rates requires(F ′(x)∗)h = (F ′(x)h)∗ + O(δ2)

I meaning of adjoint ∗: contains transpose but depending onchoice of spaces might additionally involve [Don Estep, Thu]

I solution of PDEs (Sobolev spaces)I nonsmoothness (Lp spaces, p 6= 2)

Page 71: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Iterative Regularization and AD

I require Jacobian-vector products F ′(x)vand adjoint-vector products F ′(x)∗w

I convergence with optimal rates requires(F ′(x)∗)h = (F ′(x)h)∗ + O(δ2)

I meaning of adjoint ∗: contains transpose but depending onchoice of spaces might additionally involve [Don Estep, Thu]

I solution of PDEs (Sobolev spaces)I nonsmoothness (Lp spaces, p 6= 2)

Page 72: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Iterative Regularization and AD

I require Jacobian-vector products F ′(x)vand adjoint-vector products F ′(x)∗w

I convergence with optimal rates requires(F ′(x)∗)h = (F ′(x)h)∗ + O(δ2)

I meaning of adjoint ∗: contains transpose but depending onchoice of spaces might additionally involve [Don Estep, Thu]

I solution of PDEs (Sobolev spaces)I nonsmoothness (Lp spaces, p 6= 2)

Page 73: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Kaczmarz methods

Page 74: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Kaczmarz methods for systems of nonlinear operatorequations

Fi (x) = yi , i = 0, . . . ,N − 1 ,

noisy data‖y δi − yi‖ ≤ δ , i = 0, . . . ,N − 1 ,

e.g. x . . . coefficient in a PDE,F(x) = (F0(x), . . . ,FN−1(x)). . . discr. Dirichlet-to Neumann map

Kaczmarz methods (algebraic reconstruction technique):cyclic iteration over subproblems [Kaczmarz’93], [Natterer ’97]

+ perform iterations for several smaller subproblems Fi (x) = yiinstead of one large problem F(x) = y

+ easy to implement especially if Fi are similar

Page 75: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Kaczmarz methods for systems of nonlinear operatorequations

Fi (x) = yi , i = 0, . . . ,N − 1 ,

noisy data‖y δi − yi‖ ≤ δ , i = 0, . . . ,N − 1 ,

e.g. x . . . coefficient in a PDE,F(x) = (F0(x), . . . ,FN−1(x)). . . discr. Dirichlet-to Neumann map

Kaczmarz methods (algebraic reconstruction technique):cyclic iteration over subproblems [Kaczmarz’93], [Natterer ’97]

+ perform iterations for several smaller subproblems Fi (x) = yiinstead of one large problem F(x) = y

+ easy to implement especially if Fi are similar

Page 76: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Kaczmarz methods for systems of nonlinear operatorequations

Fi (x) = yi , i = 0, . . . ,N − 1 ,

noisy data‖y δi − yi‖ ≤ δ , i = 0, . . . ,N − 1 ,

e.g. x . . . coefficient in a PDE,F(x) = (F0(x), . . . ,FN−1(x)). . . discr. Dirichlet-to Neumann map

Kaczmarz methods (algebraic reconstruction technique):cyclic iteration over subproblems [Kaczmarz’93], [Natterer ’97]

+ perform iterations for several smaller subproblems Fi (x) = yiinstead of one large problem F(x) = y

+ easy to implement especially if Fi are similar

Page 77: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Kaczmarz methods for systems of nonlinear operatorequations

Fi (x) = yi , i = 0, . . . ,N − 1 ,

noisy data‖y δi − yi‖ ≤ δ , i = 0, . . . ,N − 1 ,

e.g. x . . . coefficient in a PDE,F(x) = (F0(x), . . . ,FN−1(x)). . . discr. Dirichlet-to Neumann map

Kaczmarz methods (algebraic reconstruction technique):cyclic iteration over subproblems [Kaczmarz’93], [Natterer ’97]

+ perform iterations for several smaller subproblems Fi (x) = yiinstead of one large problem F(x) = y

+ easy to implement especially if Fi are similar

Page 78: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Landweber iteration for a single operator equation

xδk+1 = xδk − F′(xδk )∗(F(xδk )− yδ)

Discrepancy principle:stop the iteration as soon as ‖F(xδk )− yδ‖ ≤ τδ[Hanke Neubauer Scherzer ’94]

Page 79: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Landweber Kaczmarz iteration

xδk+1 = xδk − F ′[k](xδk )∗(F[k](x

δk )− y δ[k])

[k] = k modN

Discrepancy principle:stop the iteration as soon as ‖F[k](x

δk )− y δ[k]‖ ≤ τδ

[Kowar Scherzer ’04]

Page 80: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Loping Landweber Kaczmarz

xδk+1 = xδk − ωkF′[k](x

δk )∗(F[k](x

δk )− y δ[k])

ωk :=

1 if ‖F[k](x

δk )− y δ[k]‖ ≥ τδ

0 otherwise.

Discrepancy principle:stop the iteration as soon as ‖Fi (xδk )− y δi ‖ ≤ τδ ∀i ∈ 0, . . . ,N − 1i.e., kδ∗ := minjN ∈ IN : xδjN = xδjN+1 = · · · = xδjN+N[Haltmeier Leitao Scherzer’07], [De Cesaro Haltmeier Leitao

Scherzer’08], [Haltmeier’09]

Page 81: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Levenberg-Marquardt for a single operator equation

xδk+1 = xδk − (F′(xδk )∗F′(xδk ) + αk I )−1F′(xδk )∗(F(xδk )− y δ)

Choice of αk : (inexact Newton) ρ ∈ (0, 1)‖F′(xδk )(xδk+1(α)− xδk ) + F(xδk )− y δ‖ = ρ‖F(xδk )− y δ‖Discrepancy principle:stop the iteration as soon as ‖F(xδk )− yδ‖ ≤ τδ[Hanke’96], [Rieder’99], [Hanke’09]

Page 82: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Levenberg-Marquardt Kaczmarz iteration

xδk+1 = xδk + (F ′[k](xδk )∗F ′[k](x

δk ) + αk I )

−1F ′[k](xδk )∗(y δ[k] − F[k](x

δk ))

Choice of αk : (inexact Newton) ρ ∈ (0, 1)‖F ′[k](x

δk )(xδk+1(α)− xδk ) + F[k](x

δk )− y δ[k]‖ = ρ‖F[k](x

δk )− y δ[k]‖

Discrepancy principle:stop the iteration as soon as ‖F[k](x

δk )− y δ[k]‖ ≤ τδ

[Burger BK’04] (also IRGN-Kaczmarz), [Baumeister BK Leitao’09]

Page 83: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Example 1

Reconstruction from Dirichlet-Neumann Map:Estimate space-dependent coefficient q ≥ 0

−∆u + qu = 0, in Ω,

u = f on ∂Ω,

from N Dirirchlet-Neumann pairs (fi ,∂ui∂ν |∂Ω).

Ω = (0, 1)2

fi ≈ δ(· − x i ) , x i uniformly spaced on ∂ΩN = 20q∗ = 3 + 5 sin(πx) sin(πy)q0 ≡ 3

Page 84: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Results with Levenberg-Marquardt-Kaczmarz

Difference q∗ − qk at iterates 1, 2, 3, 5, 10, and 100.

Page 85: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Convergence with exact data

Semi-logarithmic plot of error (left) and residual (right) vs.iteration number

Page 86: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Semiconvergence with noisy data

Semi-logarithmic plot of error (left) and residual (right) vs.iteration number, δ = 1%

Page 87: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Loping Levenberg-Marquardt Kaczmarz iteration

xδk+1 = xδk +ωk(F ′[k](xδk )∗F ′[k](x

δk ) +αI )−1F ′[k](x

δk )∗(y δ[k]−F[k](x

δk ))

ωk :=

1 if ‖F[k](x

δk )− y δ[k]‖ ≥ τδ

0 otherwise.

Discrepancy principle:stop the iteration as soon as ‖Fi (xδk )− y δi ‖ ≤ τδ ∀ii.e., kδ∗ := minjN ∈ IN : xδjN = xδjN+1 = · · · = xδjN+N[Baumeister BK Leitao’09]

Page 88: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Inverse doping problem for semiconductorsReconstruct γ in

div (µnγ∇u) = 0 in Ωu = −U(x) on ∂ΩD

∇u · ν = 0 on ∂ΩN

div (µp1γ∇v) = 0 in Ω

v = U(x) on ∂ΩD

∇v · ν = 0 on ∂ΩN

from N Dirirchlet-Neumann pairs (Ui ,Λ(Ui ))where Λ(U) =

∫Γ1

(µnγuν − µpγ−1vν) ds,u, v . . . concentration of electrons and holesµn, µp . . . mobility of electrons and holes

C(x) = γ(x)− γ−1(x)− λ2∆(ln γ(x))

Ω = (0, 1)2, N = 9, xi uniformly spaced in [0, 1], i = 0, . . .N − 1Γ1 := (x , 1) ; x ∈ (0, 1) , Γ0 := (x , 0) ; x ∈ (0, 1) ,∂ΩN := (0, y) ; y ∈ (0, 1) ∪ (1, y) ; y ∈ (0, 1) .

Ui (x) :=

1, |x − xi | ≤ 2−4

0, elsei = 0, . . . ,N − 1 ,

Page 89: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Inverse doping problem for semiconductorsReconstruct γ in

div (µnγ∇u) = 0 in Ωu = −U(x) on ∂ΩD

∇u · ν = 0 on ∂ΩN

div (µp1γ∇v) = 0 in Ω

v = U(x) on ∂ΩD

∇v · ν = 0 on ∂ΩN

from N Dirirchlet-Neumann pairs (Ui ,Λ(Ui ))where Λ(U) =

∫Γ1

(µnγuν − µpγ−1vν) ds,u, v . . . concentration of electrons and holesµn, µp . . . mobility of electrons and holes

C(x) = γ(x)− γ−1(x)− λ2∆(ln γ(x))

Ω = (0, 1)2, N = 9, xi uniformly spaced in [0, 1], i = 0, . . .N − 1Γ1 := (x , 1) ; x ∈ (0, 1) , Γ0 := (x , 0) ; x ∈ (0, 1) ,∂ΩN := (0, y) ; y ∈ (0, 1) ∪ (1, y) ; y ∈ (0, 1) .

Ui (x) :=

1, |x − xi | ≤ 2−4

0, elsei = 0, . . . ,N − 1 ,

Page 90: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Exact coefficient and PDE solution for one voltage source

exact coefficient γ to be identified (left);typical voltage source Ui and corresponding solution u (right)

Page 91: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Exact coefficient and initial guess

exact coefficient γ to be identified (left);initial guess (right)

Page 92: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Comparison of loping Levenberg-Marquardt-Kaczmarz withLandweber-Kaczmarz

Numerical experiment with noisy data (5%):error obtained with l-LMK after 24 cycles (left);error obtained with l-LWK after 205 cycles (right)

Page 93: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Comparison of loping Levenberg-Marquardt-Kaczmarz withLandweber-Kaczmarz

Numerical experiment with noisy data (5 per cent):number of non-loped inner steps in each cycle for l-LMK (solidred) and l-LWK (dashed blue), respectively.

Page 94: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Expectation Maximization (EM) algorithms

Page 95: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

EM (Richardson-Lucy) algorithm for linear problems

for image reconstruction with nonnegativity constraints:[Bertero 1998], [Natterer&Wuebbeling 2001], [Dempster&Laird&Rubin 1977]

F : L1(Ω)→ L1(Σ) linear operator with F ∗1 = 1 (scaling)

xδk+1 = xδkF∗(

y δ

Fxδk

) multiplicative fixed-point scheme. well-suited for multiplicative noise models (e.g. Poisson models)

F , F ∗ positivity preserving, xδ0 ≥ 0, y δ ≥ 0 ⇒ ∀k ∈ IN : xδk ≥ 0

Page 96: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Derivation

(EM) xδk+1 = xδkF∗(

y δ

Fxδk

)is descent method for the functional

J(x) :=

∫Σ

[y δ log

(y δ

Fx

)− y δ + Fx

]dσ ,

Kullback-Leibler divergence (relative entropy) between Fx and y δ.optimality condition

x

(−F ∗

(y δ

Fx

)+ F ∗1

)= 0 .

with operator scaling F ∗1 = 1 (EM)

[Multhei&Schorr89], [Natterer&Wuebbeling 2001], [Resmerita&Engl&Iusem

2007], [Bissantz&Mair&Munk]

Page 97: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

EM algorithm for nonlinear problems

nonlinear operator F : L1(Ω)→ L1(Σ), no scaling fixed-pointequation

xF ′(x)∗1 = xF ′(x)∗(y δ

Fx

).

nonlinear EM algorithm

xδk+1 =xδk

F ′(xδk )∗1F ′(xδk )∗

(y δ

F (xδk )

).

[Haltmeier&Leitao&Resmerita 2009]

Page 98: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Conclusions/Outlook

I derivatives are needed at different levels: solution of nonlinearPDE models, minimization of Tikhonov functional, evaluationof Jacobians and their adjoints in iterative methods, . . .

I complexity of models often prohibitive for derivativecomputation via adjoint PDE (“by hand”);

I regularization methods require (F ′(x)∗)h = (F ′(x)h)∗+O(δ2);

I nonsmoothness (Lipschitz continuity, piecewise C1) often playsa role;

Page 99: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Thank you for your attention!

Page 100: Inverse Problems - Applications and Solution Strategies · 2014. 12. 10. · Inverse Problems - Applications and Solution Strategies Inverse Problems Determine causes for identi cation

Inverse Problems - Applications and Solution Strategies

Thank you for your attention!

26th IFIP TC7 Conference 2013 on

System Modelling and Optimization

September 9-13, 2013, Klagenfurt, Austria

http://ifip2013.uni-klu.ac.at/