statistics f5 2a f5 2a.pdfform5% % statistics2a% [email protected]% % 2% %...

30
Form 5 Statistics 2A [email protected] 1 Chapter 3: Statistics: Revision of calculation of the mean, median, range for discrete and continuous data. Also for grouped data in 2A. Revision of bar charts, pie charts, simple frequency distribution & histograms with equal intervals. Cumulative Frequency curves: Interpreting/ box plots/ estimate median, lower and upper quartile/ interquartile range. Independent Events and probability tree diagrams Understand and use histograms with unequal intervals Core (2A & 2B) Extension (2A) Collect, classify and tabulate statistical data (e.g. gather data from Information and Communication Technology (ICT) sources). Read, interpret and draw simple inferences from tables and statistical diagrams. Understand, use and construct, by both pencil and paper and ICT methods, bar charts, pie charts, simple frequency distributions and histograms with equal intervals. Calculate and interpret the range, mean, median and mode for discrete and continuous data. Use appropriate statistical functions on a calculator and a spreadsheet to calculate these statistics. Understand and use histograms with unequal intervals. Interpret and construct cumulative frequency curves. Interpret and construct box plots to illustrate or compare distributions with large data sets. Estimate the median, the lower and upper quartiles and the interquartile range from cumulative frequency curves. Calculate the mean, median and mode for grouped data. Identify the modal class from a grouped frequency distribution. 4.1: SEC Syllabus (2015): Mathematics Section 3.1: The mean, mode, median and range. The idea of an average is extremely useful, because it enables you to compare one set of data with another set by comparing just two values – their averages. There are several ways of expressing an average, but the most commonly used averages are the mean, mode, median and range. The mean The mean of a set of data is the sum of all the values in the set divided by the total number of values in the set. That is: Mean value = total amount ÷ number of figures Example: The ages of 11 players in a football team are: 21 23 20 27 25 24 25 30 21 22 28 What is the mean age of the team? Sum of all ages = 266 Total number in team = 11 Therefore, Mean age = 266 ÷ 11 = 24.2

Upload: others

Post on 23-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     1  

Chapter  3:  Statistics:      

• Revision  of  calculation  of  the  mean,  median,  range  for  discrete  and  continuous  data.  Also  for  grouped  data  in  2A.  

• Revision  of  bar  charts,  pie  charts,  simple  frequency  distribution  &  histograms  with  equal  intervals.  

• Cumulative  Frequency  curves:  Interpreting/  box  plots/  estimate  median,  lower  and  upper  quartile/  interquartile  range.  

• Independent  Events  and  probability  tree  diagrams  • Understand  and  use  histograms  with  unequal  intervals  

 Core  (2A  &  2B)   Extension  (2A)  

• Collect, classify and tabulate statistical data (e.g. gather data from Information and Communication Technology (ICT) sources).

• Read, interpret and draw simple inferences from tables and statistical diagrams.

• Understand, use and construct, by both pencil and paper and ICT methods, bar charts, pie charts, simple frequency distributions and histograms with equal intervals.

• Calculate and interpret the range, mean, median and • mode for discrete and continuous data. • Use appropriate statistical functions on a calculator

and a spreadsheet to calculate these statistics.

• Understand  and  use  histograms  with  unequal  intervals.  

• Interpret  and  construct  cumulative  frequency  curves.  

• Interpret  and  construct  box  plots  to  • illustrate  or  compare  distributions  with  

large  data  sets.    • Estimate  the  median,  the  lower  and  

upper  quartiles  and  the  interquartile  range  from  cumulative  frequency  curves.    

• Calculate  the  mean,  median  and  mode  for  grouped  data.  

• Identify  the  modal  class  from  a  grouped  frequency  distribution.  

4.1:  SEC  Syllabus  (2015):  Mathematics    Section  3.1:  The  mean,  mode,  median  and  range.    The   idea  of   an   average   is   extremely  useful,   because   it   enables   you   to   compare  one  set  of  data  with  another  set  by  comparing  just  two  values  –  their  averages.    There  are  several  ways  of  expressing  an  average,  but   the  most  commonly  used  averages  are  the  mean,  mode,  median  and  range.      The  mean  

The  mean  of  a   set  of  data   is   the  sum  of  all   the  values   in   the  set  divided  by   the  total  number  of  values  in  the  set.  That  is:        

Mean  value  =  total  amount  ÷  number  of  figures    Example:  The  ages  of  11  players  in  a  football  team  are:  21   23   20   27   25   24   25   30   21   22   28  What  is  the  mean  age  of  the  team?    Sum  of  all  ages  =  266  Total  number  in  team  =  11  Therefore,  Mean  age  =  266  ÷  11  =  24.2  

Page 2: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     2  

 Consolidation:  Find  the  mean  for  each  set  of  data:  

a) 7   8   3   6   7   3   8   5   4   9  

     

b) 47   3   23   19   30   22  

     

c) 1.53   1.51   1.64   1.55   1.48   1.62   1.58   1.65  

         The  Mode  

 The  mode  is  the  value  that  occurs  the  most  in  a  set  of  data.  That  is,  it  is  the  value  with  the  highest  frequency.  The  mode  is  a  useful  average  because  it  is  very  easy  to  find  and  it  can  be  applied  to  non-­‐numerical  data.  For  example,  you  can   find   the  modal  birthday  month  of  the  class.    Example:  What  is  the  mode  of  the  following?  

1,            1,              3,                7,                10,                13    Mode  =  1     Consolidation: What is the mode of the following?  

a)  3   4   7   3   2   4   5   3   4   6   8   4  

   

   b) 100   10   1000   10   100   1000   10   1000   100   1000

  100   10  

       

Page 3: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     3  

 c) The  frequency  table  shows  the  colours  of  eyes  of  the  students  in  a  class.  

    Blue   Brown   Green  Boys   4   8   1  Girls   8   5   2    

a. How  many  students  are  in  class?   ________________________________  

 b. What  is  the  modal  eye  colour  for:  

i. boys  

 

 

ii. girls  

 

 

 

iii. the  whole  class  

             

c. After   two   students   join   the   class   the   modal   eye   colour   for   the  whole  class  is  blue.  Which  of  the  following  statements  are  true?  

• Both  students  had  green  eyes  

• Both  students  had  brown  eyes  

• Both  students  had  blue  eyes  

• You  cannot  tell  what  their  eye  colours  were  

       

Page 4: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     4  

The  Median  

 The  median  is  the  middle  number  in  a  set  of  ordered  numbers.    To  find  the  Median:    

1. Arrange  the  numbers  in  order  from  smallest  to  largest  2. Find  the  middle  number  3. If  you  have  two  middle  numbers  find  the  mean  of  those  two  numbers  

OR    You  can  use  the  formula  to  find  the  position  of  the  median  number  :      

Median  =  ½  (n  +  1)    Example:  Find  the  median  of  the  following  numbers:                    1,              3,              7,              10,              13    Therefore  the  median  is  7    Example:  Let  us  find  the  median  of  the  following  set  of  numbers            18,              19,              21,              25,              27,              28    If  we  have   two  median  numbers  all  we  have   to  do   is   find   the  mean  of   the   two  numbers.  Therefore;    Sum  :=  21  +  25  =  46  Mean  :=  46  ÷  2  =  23    As  a  result,  23  is  the  median.        Consolidation: Find the median of the following numbers:

a)  14   8   6   16   4   12   10   4   18   16   6  

     

b) 10   6   5   7   13   11   14   6   13   15   4   15  

   

Page 5: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     5  

 

The  Range  

 The  range  for  a  set  of  data  is  the  highest  value  of  the  set  minus  the  lowest  value.  It   shows   the  spread   of   the   data.   It   is,   therefore,   used  when   comparing   two  or  more  sets  of  similar  data.  You  can  also  use  it  to  comment  on  the  consistency  of  two  or  more  sets  of  data.    

Range  =  Highest  value  –  Lowest  Value        Consolidation:  Find  the  range  of  the  following  set  of  data:  

a) 3   8   7   4   5   9   10   6   7   4  

     

b) 1   0   4   5   3   2   5   4   2   1   0      

   

c) In  a  golf  tournament,  the  club  chairperson  had  to  choose  either  Maria  or  Fay   to  play   in   the   first   round.   In   the  previous  eight   rounds,   their   scores  were  as  follows.  

Maria’s  Scores  :  75   92   80   73   72   88   86   90  Fay’s  Scores:   80   87   85   76   85   79   84   88    i. Calculate  the  mean  score  for  each  golfer  

     

ii. Find  the  range  of  each  golfer  

     

iii. Which   golfer  would   you   choose   to   play   in   the   tournament?   Explain  why.  

     Support  Exercise  Pg  263  Exercsie  17A  Nos  5,  7,  8,  9,  10  (Mean),  1,  2,  3,  4,  6  

Page 6: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     6  

Section   3.2:   Using   frequency   tables   to   find   the  mean,   mode,   median   and  

range.  

 When   a   lot   of   information   has   been   gathered,   it   is   often   convenient   to   put   it  together  in  a  frequency  table.  From  this  table  you  can  then  find  the  values  of  the  three  averages  and  the  range.    Example   1:  A  survey  was  done  on   the  number  of  people   in  each  car   leaving  a  shopping  centre.  The  results  are  summarized  in  the  table  below.        

Number   of   people   in   each  car  

1   2   3   4   5   6  

Frequency   45   198   121   76   52   13    For  the  number  of  people  in  a  car,  calculate:  

a) the  mode       b)   the  median     c)   the  mean  

 a) The  modal  number  of  people  in  a  car  is  easy  to  spot.  It  is  the  number  with  

the   largest   frequency,  which  is  198.  Hence,   the  modal  number  of  people  in  a  car  is  2.    

 

b) The  median  number  of  people  in  a  car  is  found  by  working  out  where  the  middle  of  the  set  of  numbers  is  located.    

First,   add  up   frequencies   to   get   the   total   number  of   cars   surveyed.  This  equals  to  505.    Next  calculate  the  middle  position:    (505  +  1)  ÷  2  =  253    Now  add  the  frequency  across  the  table  to  find  which  group  contains  the  253rd   item.   The   243rd   item   is   the   end   of   the   group   with   2   in   a   car.  Therefore,  the  243rd  item  must  be  in  the  group  with  3  in  a  car.  Hence,  the  median  number  of  people  in  a  car  is  3.        

 c) To  calculate  the  mean  number  of  people  in  a  car,  multiply  the  number  of  

people  in  the  car  by  the  frequency.  This  is  best  done  in  an  extra  column.  Add   these   to   find   the   total   number   of   people   and   divide   by   the   total  frequency  (the  number  of  cars  surveyed).  

Page 7: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     7  

Number  in  Car   Frequency   Number  in  these  cars  1   45   1  ╳  45  =  45  2   198   2  ╳  198  =  396  3   121   3  ╳  121  =  363    4   76   4  ╳  76  =  304  5   52   5  ╳  52  =  260  6   13   6  ╳  13  =  78  TOTAL   505   1446    Hence,  the  mean  number  of  people  in  a  car  is:    1446  ÷  505  =  2.9  (to  1  decimal  place)  

     Consolidation: Find   the   i.  mode,   ii.  median   and   iii.  mean   from  each   frequency  table  below.  

1. A   survey   of   the   shoe   size   of   all   boys   in   one   year   of   a   school   gave   these  results.  

Shoe  Size   4   5   6   7   8   9   10  Number   of  Students  

12   30   34   35   23   8   3  

 Mode:      Median:          Mean:  Shoe  Size   Frequency   Total  Shoe  Size  4      5      6      7      8      9      10      TOTAL              

Page 8: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     8  

2. A  school  did  a  survey  on  how  many  times  in  a  week  students  arrived  late  at  school.  These  are  the  findings.  

Number   of   times  late  

0   1   2   3   4   5  

Frequency   481   34   23   15   3   4    Mode:          Median:                  Mean:    Number  of  times  late   Frequency   Total  times  late  0      1      2      3      4      5      TOTAL                  

 Support  Exercise  Pg  267  Exercise  17B  Nos  1  –  6                    

Page 9: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     9  

 Section  3.3:  Frequency  Tables  with  Grouped  Data  

 Normally,  grouped  data  are  continuous  data,  which  is  data  that  can  have  any  value  within  a   range  of   values   (e.g.  height,  mass,   time).   In   these   situations,   the  mean  can  only  be  estimated,  as  you  do  not  have  all  the  information.      Discrete   data   is   data   that   consists   of   separate   numbers,   for   example,   goals  scored,  marks  in  a  test,  number  of  children  and  shoe  size.      In   both   cases,  when  using   a   grouped   table   to   estimate   the  mean,   first   find   the  midpoint  of  the  interval  by  adding  the  two  end-­‐values  and  then  dividing  by  two.      Example  1    Pocket  money,  p  ($)   0  <  p  ≤  1   1  <  p  ≤  2   2  <  p  ≤  3   3  <  p  ≤  4   4  <  p  ≤  5  Number  of  students   2   5   5   9   15    

a) Write  down  the  modal  class.  

b) Calculate  an  estimate  of  the  mean  weekly  pocket  money.  

 a) The  modal   class   is   easy   to   pick   out,   since   it   is   simply   the   one  with   the  

largest  frequency.  Here  the  modal  class  is  $4  to  $5.  

b) To   estimate   the   mean,   assume   that   each   person   in   each   class   has   the  ‘midpoint’  amount,  then  build  up  the  following  table.  

To   find   the  midpoint   value,   the   two   end-­‐values   are   added   together   and  then  divided  by  two.  

Pocket   money,   p  ($)  

Frequency  (f)   Midpoint  (m)   f  ×  m  

0  <  p  ≤ 1   2   0.5   2  × 0.5 = 1  1  <  p  ≤ 2   5   1.5   5  × 1.5 = 7.5  2  <  p  ≤ 3   5   2.5   5  × 2.5 = 12.5  3  <  p  ≤ 4   9   3.5   9  × 3.5 = 31.5  4  <  p  ≤ 5   15   4.5   15  × 4.5 = 67.5  Totals   Σf  =  36     Σ  (m  ×  f)  =  120      The  estimated  mean  will  be  120  ÷  36  =  $3.33  (rounded  to  the  nearest  cent)    Note:  You  cannot  find  the  median  or  range  from  a  grouped  table  since  you  do  not  know  the  actual  values.          

Page 10: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     10  

Example  2:  For  the  table  of  values  given  below,  find:    

i) the  modal  group  

ii)     an  estimate  for  the  mean.  x   0  <  x  ≤  10   10  <  x  ≤  20   20  <  x  ≤  30   30  <  x  ≤  40   40  <  x  ≤  50  Frequency   4   6   11   17   9    

i) The  modal  group:    

    ii)   Mean:  x   Frequency  (f)   Midpoint  (m)   f  ╳  m                                          Total   Σf  =     Σ  f  ╳  m  =    Mean  :           Consolidation  

1) Jason  brought  100  pebbles  back  from  the  beach  and  found  their  masses,  recording  each  mass  to  the  nearest  gram.  His  results  are  summarized   in  the  table  below:  

Mass  (m)   40  <  m  ≤  60   60  <  m  ≤  80   80  <  m  ≤  100   100  <  m  ≤  120   120  <  m  ≤  140     140  <  m  ≤  160  Frequency   5   9   22   27   26   11  

 i) Mode:  

 ii) Mean:  

Mass   Frequency  (f)   Midpoint  (m)   f  ╳  m                                                  Total          

   

Page 11: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     11  

 2) A  gardener  measured  the  heights  of  all  his  roses  to  the  nearest  centimeter  

and  summarized  his  results  as  follows:  

 

Height  (cm)   10-­‐14   15-­‐18   19-­‐22   23-­‐26   27-­‐40  Frequency   21   57   65   52   12      a) How  many  roses  did  the  gardener  have?  

     

b) What  is  the  modal  class  of  the  roses?  

     

c) What  is  the  estimated  mean  height  of  the  roses?  

Height  (cm)   Frequency  (f)   Midpoint  (m)   f  ╳  m  10-­‐14        15-­‐18        19-­‐22        23-­‐26        27-­‐40        Total          

         Support  Exercise  Pg  275  Exercise  17D  Nos  1  –  5                              

Page 12: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     12  

Section  3.4:  Drawing  and  Interpreting  Bar  Charts  

A  bar  chart  consists  of  a  series  of  bars  or  blocks  of  the  same  width,  drawn  either  vertically  or  horizontally  from  an  axis.    The  heights  and  lengths  of  the  bars  always  represent  frequencies.    Example  1:  The  grouped  frequency  table  below  shows  the  marks  of  24  students  in  a  test.  Draw  a  bar  chart  for  the  data.    Marks   1-­‐10   11-­‐20   21-­‐30   31-­‐40   41-­‐50  Frequency   2   3   5   8   6    

Frequency  

8                      7                      6                      5                      4                      3                      2                      1                      

 0  

  1-­‐10     11-­‐20  

  21-­‐30  

  31-­‐40  

  41-­‐50  

    Mark  Note:  

• Both  axes  are  labeled    

• The  class  intervals  are  written  under  the  middle  of  each  bar  

• The  bars  are  separated  by  equal  spaces  

   By   using   a   dual   bar   chart,   it   is   easy   to   compare   two   sets   of   related   data,   as  Example  2  shows.                              

Page 13: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     13  

Example  2    This  dual  bar  chart  shows  the  average  daily  maximum  temperature  for  England  and  Turkey  over  a  five-­‐month  period.    

Temperature  (°F)  

100                                    90                                    80                                    70                                    60                                    50                                    40                                    30                                 Key    20                                   England  10                                   Turkey  

  0   April     May     June     July     August             Month        In   which   month   was   the   difference   between   temperatures   in   England   and  Turkey  the  greatest?        Note:  You  must  always  include  a  key  to  identify  the  two  different  sets  of  data.    Consolidation    

1) For  her  survey  on  fitness,  Samina  asked  a  sample  of  people,  as  they  left  a  sports  centre,  which  activity  they  had  taken  part  in.  She  then  drew  a  bar  chart  to  show  her  data.  

Frequency  

20                        

18                        16                        14                        12                        10                        8                        6                        4                        2                        

  0  

Squash     Weight  Training     Badminto

n     Aerobics     Basketball     Swimmin

g  

    Activity  

Page 14: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     14  

 a. Which  was  the  most  popular  activity?  

   

b. How  many  tool  part  in  Samina’s  survey?  

       

 

2) The  frequency  table  below  shows  the  levels  achieved  by  100  students  in  their  A’  levels.  

Grade   F   E   D   C   B   A  Frequency   12   22   24   25   15   2    

a. Draw  a  suitable  bar  chart  to  illustrate  the  data.  

 

 

 

 

 

 

                       

b. What  fraction  of  the  students  achieve  a  Grade  C  or  Grade  B?  

     

Page 15: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     15  

3) This   table   shows   the   number   of   point   Mark   and   Joseph   were   each  awarded  in  eight  rounds  of  a  general  knowledge  quiz.  

Round   1   2   3   4   5   6   7   8  Mark   7   8   7   6   8   6   9   4  Joseph   6   7   6   9   6   8   5   6    

a. Draw  a  dual  bar  chart  to  illustrate  the  data.  

 

 

 

 

 

 

                       

b. Comment  on  how  well  each  of  them  did  in  the  quiz.  

         

Support  Exercise  Handout  

Page 16: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     16  

Section  3.5:  Interpreting  Pie  Charts  &  drawing  pie  charts  

 Pictograms,  bar  charts  and  line  graphs  are  easy  to  draw  but  they  can  be  difficult  to  interpret  when  there  is  a  big  difference  between  the  frequencies  or  there  are  only  a  few  categories.  In  these  cases,  it  is  often  more  convenient  to  illustrate  the  data  on  a  pie  chart.    In  a  pie  chart  the  whole  of  a  data  is  represented  by  a  circle  (the  ‘pie’)  and  each  category  of  it  is  represented  by  a  sector  of  the  circle.  The  angle  of  each  sector  is  proportional  to  the  frequency  of  the  category  it  represents.      So  a  pie  chart  cannot  show  individual  frequencies,  like  a  bar  chart  can,  it  can  only  show  proportions.    Calculating  the  frequency  that  each  sector  represents:    

1) Measure  angles  from  the  pie  chart  

2) Find  the  fraction  of  the  whole  circle    

3) Multiply   this   fraction   with   the   total   number   of   items   to   calculate   the  frequency.  

 Example  1:  A  chocolate  firm  asked  1440  students  which  type  of  chocolate  they  preferred.  The  pie  chart  showed  the  following  results:         Milk  Chocolate     -­‐   150°     White  Chocolate   -­‐   120°     Fruit  and  nut   -­‐   90°    This  information  can  be  recorded  into  a  table  and  the  frequencies  for  each  type  are  calculated.      

Chocolate   Angle   Working   Frequency  Milk     150°   150

360×1440  600  students  

White   120°   120360×1440  

480  students  

Fruit  and  Nut   90°   90360×1440  

360  students  

TOTAL   360°     1440  students    

Page 17: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     17  

Consolidation    

1) 300  passengers  have  boarded  a  train  at  Waterloo  Station  in  London.  The  following  angles  where  given  on  a  pie  chart:  

Southampton       -­‐   120°     Bournemouth     -­‐   90°  Parkstone     -­‐   36°     Branksome     -­‐   54°  Poole       -­‐   60° Town   Angle   Working   Frequency  

   

     

   

     

   

     

   

     

   

     

TOTAL          We  are  not  always  given  the  angle  of  the  sector;  we  could  be  given  the  frequency  and  asked  to  find  the  angle  of  the  sector.    Calculating  the  angle  that  each  frequency  represents    

1) Calculate  the  frequency  of  a  particular  sector  from  the  pie  chart  

2) Find  the  fraction  of  the  whole  frequency    

3) Multiply  this  fraction  with  the  total  degrees.  

                           Example  2:  The  following  table  shows  the  eye  colours  of  a  group  of  36  people.  Find  by  how  many  degrees  each  sector  is  going  to  be  represented  with.  

Page 18: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     18  

 

Colour  of  Eyes   Number  of  people   Working   Angle  

Brown   12   1236×360  

120°  

Blue   15   1536×360  

150°  

Green   6   636×360  

60°  

Other   3   336×360  

30°  

Total   36     360°      Example   3:  20  people  were   surveyed   about   their   preferred  drink.   The   replies  

are  shown  in  the  table  below:  

Drink   Tea   Coffee   Milk   Cola  

Frequency   6   7   4   3  

Show  the  results  on  a  pie  chart.  

 

• First  we  must  know  what  the  total  number  of  people  observed  were  if  you  

are  not  told  in  the  question.  

6  +  7  +  4  +  3  =  20  people  

• Second,  we  must  work  out  the  size  of  the  angle  which  will  represent  the  

drink  choice.  

Tea  :    620×360° = 108°  

Coffee:    720×360° = 126°  

Milk:    420×360° = 72°  

Cola:    320×360° = 54°  

 

•  Third,  draw  the  pie  chart  sector  by  sector.  

 

Page 19: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     19  

 Note:  

• You  should  always  label  the  sectors  of  the  pie  chart  

• You  should  always  write  the  angle  on  each  sector  of  the  pie  chart  

 

Tea,  108  

Coffee,  126  

Milk,  72  

Cola,  54  

Tea  

Coffee  

Milk  

Cola  

Page 20: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     20  

Consolidation    

1. Joseph  asked  180  boys  what  was  their  favourite  sport.  Here  are  the  results.  

 

Sport   Football   Rugby   Cricket   Basketball   Other  Frequency   74   25   18   37   26    

a) Draw  a  pie  chart  for  these  results  with  radius  6cm.    

               

                                     Joseph  also  asked  90  girls  for  their  favourite  sport.  In  a  pie  chart  showing  the  results,  the  angle  for  Tennis  was  84°.    b) How  many  of  the  girls  said  that  Tennis  was  their  favourite  sport?  

       Support  Exercise  Handout    

Page 21: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     21  

Section  3.6:  Frequency  density  and  histograms    Section  4.4  introduced  bar  charts.  All  the  bar  charts  drawn  in  section  4.4  had  class  intervals  of  equal  with  and  so  the  bars  were  of  equal  width.      Histograms  are  used  to  represent  unequal  class  intervals.  The  vertical  axis  is  labeled  frequency  density  where  the  frequency  density    =    !"#$%#&'(

!"#$$  !"#$!  

 Example  1:  The  table  gives  some  information  about  the  ages  of  the  audience  at  a  concert.    

Age  (x)  in  years   Frequency  0<  x  ≤  15   12  15<  x  ≤  25   66  25<  x  ≤  35   90  35<  x  ≤  40   45  40<  x  ≤  70   60  

 To  draw  a  histogram  to  represent  this  information:  

• Work  out  the  width  of  each  class  interval  (the  class  width)  • Divide  the  frequency  by  the  class  width  to  find  the  frequency  density  

which  gives  the  height  of  each  bar.      

Age  (x)  in  years   Frequency   Class  width  Frequency  density    =     𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚𝒄𝒍𝒂𝒔𝒔  𝒘𝒊𝒅𝒕𝒉

 0<  x  ≤  15   12   15  –  0  =  15   0.8  15<  x  ≤  25   66   25  –  15  =  10   6.6  25<  x  ≤  35   90   35  –  25  =  10   9  35<  x  ≤  40   45   40  –  35  =  5   9  40<  x  ≤  70   60   70  –  40  =  30   2  

                                 

Page 22: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     22  

 Rearranging,      Frequency  density  =      !"#$%#&'(

!"#$$  !"#$!  gives  

 Frequency  =  Frequency  density  ×  class  width    For  each  bar  the  ‘width’  is  the  class  width  and  the  ‘height’  is  the  frequency  density.  So  the  area  of  each  bar  gives  the  frequency      Consolidation:  Pg  349,  Ex.  21  E    Section  3.7:  Range  and  Interquartile  Range    In  section  4.1  the  range  was  already  described  as  a  measure  of  how  spread  out  numerical  data  is.  To  find  the  range  of  a  set  of  number,  work  out  the  difference  between  the  highest  and  the  lowest  number.      The  median  is  the  value  that  is  halfway  through  the  data:  ½(n+1)  th  number      The  lower  quartile  is  the  value  that  is  a  quarter  of  the  way  through  the  data:  ¼(n  +1)  th  number    The  upper  quartile  is  the  value  that  is  three  quarters  of  the  way  through  the  data:  ¾(n  +  1)  th  number    

Interquartile  range  =  upper  quartile  –  lower  quartile    

For  the  11  heights  in  order,    

1.68   1.74   1.78   1.80   1.81   1.82   1.83     1.88   1.88   1.97   2.05    

The  lower  quartile  is  the  ¼  (11  +  1)  =  3rd  number  =  1.78  The  upper  quartile  is  the  ¾(11  +  1)  =  9th  number  =  1.88    Interquartile  range  =  1.88  –  1.78  =  0.1  metres                      

Page 23: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     23  

Example  1:  The  table  shows  information  about  the  ages,  in  years,  of  junior  members  of  a  tennis  club.  

a) Find  the  range  of  their  ages  b) Find  the  interquartile  range  of  their  ages.    

     

Age  in  years   Frequency  9   30  10   40  11   19  12   38  13   11  14   18  15   13  

 a) Range  =  15  –  9  =  6  years  

   

b) Lower  quartile  is  the  ¼(169  +  1)  =  42½th  number.    The  42nd  and  43rd  ages  are  10  Therefore,  lower  quartile    =  10    Upper  quartile  is  the  ¾(169  +  1)  =  127½th  number.  The  127th  age  is  12  and  128th  age  is  13  Therefore,  upper  quartile  =  12.5    Interquartile  Range  =  12.5  –  10  =  2.5  years    Consolidation:  Pg  272,  Ex.  17C,  nos  1-­‐5    Section  3.8:  Cumulative  Frequency    The  grouped  frequency  table  shows  information  about  the  amount  of  time  160  students  spent  doing  homework  one  evening.    

Time  (x  minutes)   Frequency  0  <  x  ≤  10   4  10  <  x  ≤  20   12  20  <  x  ≤  30   46  30  <  x  ≤  40   68  40  <  x  ≤  50   20  50  <  x  ≤  60   10  

 Here  is  the  complete  cumulative  frequency  table.        

Page 24: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     24  

Time  (x  minutes)   Cumulative  Frequency  0  <  x  ≤  10   4  10  <  x  ≤  20   (4  +  12)  =  16  20  <  x  ≤  30   (16  +  46)  =  62  30  <  x  ≤  40   (62  +  68)  =  130  40  <  x  ≤  50   (130  +  20)  =  150  50  <  x  ≤  60   (150  +  10)  =  160  

 The  last  number  in  the  cumulative  frequency  column  is  160,  the  total  number  of  students.  A  cumulative  frequency  table  can  be  used  to  draw  a  cumulative  frequency  graph.      The  cumulative  frequency  for  the  interval  0  <  x  ≤  10  is  plotted  at  (10,4),  that  is,  at  the  top  end  of  the  interval  to  ensure  that  all  4  students  have  been  included.      The  remaining  points  are  plotted  (20,  16),  (30,  62),  (40,  130),  (50,  150),  (60,  160).                                          

   The  position  of  the  median  is  the  ½(n  +  1)th  student  =  ½(160  +  1)  =  80.5th  student.      When  finding  an  estimate  for  the  median  from  a  cumulative  frequency  graph  it  is  acceptable  to  use  the  ½nth.  Thus,  to  find  an  estimate  of  the  median  in  this  example  the  80th  student  is  used.      Estimates  of  the  lower  quartile  and  the  upper  quartile  can  also  be  read  off  a  cumulative  frequency  graph.    

Page 25: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     25  

Lower  quartile  =  ¼(160)  =  40th  value    Upper  quartile  =  ¾(160)  =  120th  value    The  estimates  of  the  lower  quartile  and  the  upper  quartile  from  a  cumulative  frequency  graph  can  be  used  to  find  an  estimate  for  the  interquartile  range.      

 • Lower  quartile  =  26  • Median  =  32  • Upper  Quartile  =  38  

 Interquartile  Range  =  38  –  26  =  12    Thus,  when  finding  estimates  from  cumulative  frequency  graph:    

• ½n  for  the  median  • ¼n  for  the  lower  quartile  • ¾n  for  the  upper  quartile  

Page 26: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     26  

Box  plots  (sometimes  called  box  and  whisker  diagrams)  are  diagrams  that  show  the  spread  of  a  set  of  data.  The  median,  lower  and  upper  quartiles  along  with  the  minimum  and  maximum  value  are  used  to  draw  a  box  plot.      For  the  above  example:    

• minimum  value  =  8  • maximum  values  =  57  • lower  quartile  =  26  • median  =  32  • upper  quartile  =  38  

 Here  is  the  box  plot  for  this  data.      

                                   

Page 27: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     27  

Consolidation:  The  grouped  frequency  table  gives  information  about  the  number  of  minutes  60  music  students  practiced  last  week.    

   

Minutes  (m)   Frequency  0<  x  ≤  15   3  15<  x  ≤  30   8  30<  x  ≤  45   12  45<  x  ≤  60   18  60<  x  ≤  75   8  75<  x  ≤  90   5  90<  x  ≤  105   4  105<  x  ≤  120   2  

 a) Complete  the  cumulative  frequency  table.  

 Minutes  (m)    Cumulative  Frequency  

0<  x  ≤  15      

15<  x  ≤  30      

30<  x  ≤  45      

45<  x  ≤  60      

60<  x  ≤  75      

75<  x  ≤  90      

90<  x  ≤  105      

105<  x  ≤  120      

   

b) Draw  a  cumulative  frequency  graph  for  your  table.    c) Use  your  graph  to  find  an  estimate  for  the  number  of  music  

students  who  practiced  for  i. Less  than  40  minutes  

       

ii. More  than  40  minutes          

Page 28: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     28  

d) Use  the  cumulative  frequency  graph  to  find  estimates  for  the  median,  lower  quartile  and  upper  quartile.  Hence,  find  the  interquartile  range.  

                         

e) Draw  a  box  plot  to  show  this  information.        

Consolidation:  Pg  337,  Ex.  21B,  Pg  341,  Ex.  21C,  Pg  344  Ex.  21D      

Section  3.9:  Comparing  Distributions    Box  plots  are  useful  for  comparing  the  distribution  of  data  sets.      Example:  80  seedlings  were  divided  into  2  groups.  Group  A  were  grown  in  a  greenhouse.  Group  B  were  grown  outside.    

  Group  A   Group  B  Shortest  Seedling  (cm)   1.6   0.3  Tallest  seedling  (cm)   4.4   3.8  

 After  a  period  of  time  the  heights  of  the  seedlings  were  measured.    The  heights  were  used  to  draw  two  cumulative  frequency  graphs.                            

Page 29: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     29  

a. Use  the  information  provided  in  the  table  and  the  cumulative  frequency  graphs  to  draw  a  box  plot  of  the  heights  of  seedlings  in  group  A  and  a  box  plot  of  the  heights  of  the  seedlings  in  group  B.    

    Group  A   Group  B  

Shortest  Seedling  (cm)   1.6   0.3  Tallest  seedling  (cm)   4.4   3.8  Lower  quartile   2.6   2.1  

Median   3.3   2.4  Upper  quartile   3.7   2.8  

 

   

Page 30: Statistics F5 2A F5 2A.pdfForm5% % Statistics2A% j.camenzulismc@gmail.com% % 2% % Consolidation:%Find%the%mean%for%each%set%of%data:% a) 7% 8% 3% 6% 7% 3% 8% 5% 4% 9% % % % b) 47%

Form  5     Statistics  2A  

[email protected]     30  

b. Compare  the  heights  of  the  seedlings  in  the  two  graphs.    The  heights  of  the  seedlings  in  group  B  are  more  spread  out  than  the  heights  of  the  seedlings  in  group  A.    The  seedlings  in  group  A  are  generally  taller  that  the  seedlings  in  group  B.    The  middle  50%  of  the  seedlings  in  group  A  have  a  wider  spread  than  the  middle  50%  of  the  seedlings  in  group  B.        Consolidation:  Pg  344,  21D