statistical signal processing (2009-2010) handout #8: hilbert...

12
1 Statistical Signal Processing Statistical Signal Processing (2009 (2009- 2010) 2010) Handout #8: Hilbert Handout #8: Hilbert- Huang Transform Huang Transform Jiandong Jiandong Wang Wang [email protected] [email protected] http:// http:// www.mech.pku.edu.cn/robot/teacher/wangjiandong www.mech.pku.edu.cn/robot/teacher/wangjiandong/ College of Engineering, Peking University College of Engineering, Peking University 2 Handout #8, Statistical Signal Processing (2009-2010) Outline A motivational example: Why Hilbert-Huang transform? Hilbert-Huang transform The Empirical Mode Decomposition (EMD) method Hilbert Spectral Analysis Comparison with Fourier transform and wavelet transform Further information

Upload: others

Post on 15-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Statistical Signal Processing (2009-2010) Handout #8: Hilbert …geogin.narod.ru/hht/link01/read1-10.pdf · 2013. 4. 2. · 2 3 Handout #8, Statistical Signal Processing (2009-2010)

1

Statistical Signal ProcessingStatistical Signal Processing(2009(2009--2010)2010)

Handout #8: HilbertHandout #8: Hilbert--Huang TransformHuang Transform

JiandongJiandong WangWang

[email protected]@pku.edu.cn

http://http://www.mech.pku.edu.cn/robot/teacher/wangjiandongwww.mech.pku.edu.cn/robot/teacher/wangjiandong//

College of Engineering, Peking UniversityCollege of Engineering, Peking University

2Handout #8, Statistical Signal Processing (2009-2010)

Outline

• A motivational example: Why Hilbert-Huang transform?

• Hilbert-Huang transform– The Empirical Mode Decomposition (EMD) method– Hilbert Spectral Analysis

• Comparison with Fourier transform and wavelet transform

• Further information

Page 2: Statistical Signal Processing (2009-2010) Handout #8: Hilbert …geogin.narod.ru/hht/link01/read1-10.pdf · 2013. 4. 2. · 2 3 Handout #8, Statistical Signal Processing (2009-2010)

2

3Handout #8, Statistical Signal Processing (2009-2010)

A motivational exampleA motivational example

• x(t) = cos(wt+0.3 sin(2wt))

See SSP_Handout8_HHT.m

4Handout #8, Statistical Signal Processing (2009-2010)

A motivational exampleA motivational example

• Wavelet transform cannot exactly reveal how the frequency is varying with time.

Page 3: Statistical Signal Processing (2009-2010) Handout #8: Hilbert …geogin.narod.ru/hht/link01/read1-10.pdf · 2013. 4. 2. · 2 3 Handout #8, Statistical Signal Processing (2009-2010)

3

5Handout #8, Statistical Signal Processing (2009-2010)

A motivational exampleA motivational example

• Hilbert-Huang transform deals with this problem successfully.

6Handout #8, Statistical Signal Processing (2009-2010)

HilbertHilbert--Huang TransformHuang Transform

• The HHT consists of the Empirical Mode Decomposition (EMD)method (from Norden E. Huang) and Hilbert Spectral Analysis(HSA) (from David Hilbert (1862-1943)).

• In particular, the HHT uses the EMD method to decompose a signal into so-called intrinsic mode functions (IMFs), and uses the HSA method to obtain instantaneous frequency data.

• The HHT provides a new method of analyzing nonstationaryand nonlinear time series data.

Why not use the HSA directly?

Page 4: Statistical Signal Processing (2009-2010) Handout #8: Hilbert …geogin.narod.ru/hht/link01/read1-10.pdf · 2013. 4. 2. · 2 3 Handout #8, Statistical Signal Processing (2009-2010)

4

7Handout #8, Statistical Signal Processing (2009-2010)

HilbertHilbert--Huang TransformHuang Transform

8Handout #8, Statistical Signal Processing (2009-2010)

HilbertHilbert--Huang Transform: The EMD methodHuang Transform: The EMD method

• The EMD method is based on a simple assumption that any data consists of different simple intrinsic modes of oscillations. Each intrinsic mode, linear or nonlinear, represents a simple oscillation, which will have the same number of extrema and zero crossings.

Page 5: Statistical Signal Processing (2009-2010) Handout #8: Hilbert …geogin.narod.ru/hht/link01/read1-10.pdf · 2013. 4. 2. · 2 3 Handout #8, Statistical Signal Processing (2009-2010)

5

9Handout #8, Statistical Signal Processing (2009-2010)

• Original data

HilbertHilbert--Huang Transform: The EMD methodHuang Transform: The EMD method

10Handout #8, Statistical Signal Processing (2009-2010)

• Identify all the local extrema, and connect all the local maxim (minima) by a cubic spline as shown the upper (lower) envelope.

HilbertHilbert--Huang Transform: The EMD methodHuang Transform: The EMD method

Page 6: Statistical Signal Processing (2009-2010) Handout #8: Hilbert …geogin.narod.ru/hht/link01/read1-10.pdf · 2013. 4. 2. · 2 3 Handout #8, Statistical Signal Processing (2009-2010)

6

11Handout #8, Statistical Signal Processing (2009-2010)

••

HilbertHilbert--Huang Transform: The EMD methodHuang Transform: The EMD method

The mean of the upper and lower envelope is designated asm1, and the difference

between the data x(t) and m1 is the first component h1 = x(t)−m1.

12Handout #8, Statistical Signal Processing (2009-2010)

••

1 1

1 2 2

k 1 k k

k 1

x ( t ) m h ,

h m h ,

. . . . .

. . . . .

h m h

.h c

.

Repeat the same process till the resulted component hk satisfies the require-ments for the intrinsic mode function (IMF): the number of extrema and the

number of zero-crossings much either equal or differ at most by one.

HilbertHilbert--Huang Transform: The EMD methodHuang Transform: The EMD method

Page 7: Statistical Signal Processing (2009-2010) Handout #8: Hilbert …geogin.narod.ru/hht/link01/read1-10.pdf · 2013. 4. 2. · 2 3 Handout #8, Statistical Signal Processing (2009-2010)

7

13Handout #8, Statistical Signal Processing (2009-2010)

•• Repeat the same process till the resulted component hk satisfies the require-ments for the intrinsic mode function (IMF): the number of extrema and the

number of zero-crossings much either equal or differ at most by one.

HilbertHilbert--Huang Transform: The EMD methodHuang Transform: The EMD method

14Handout #8, Statistical Signal Processing (2009-2010)

• Repeat the above steps to obtain all the IMF components till no more IMFs can be extracted.

HilbertHilbert--Huang Transform: The EMD methodHuang Transform: The EMD method

Page 8: Statistical Signal Processing (2009-2010) Handout #8: Hilbert …geogin.narod.ru/hht/link01/read1-10.pdf · 2013. 4. 2. · 2 3 Handout #8, Statistical Signal Processing (2009-2010)

8

15Handout #8, Statistical Signal Processing (2009-2010)

• Repeat the above steps to obtain all the IMF components till no more IMFs can be extracted.

1 1

1 2 2

n 1 n n

n

j nj 1

x( t ) c r ,

r c r ,

x( t ) c r

. . .

r c r .

.

HilbertHilbert--Huang Transform: The EMD methodHuang Transform: The EMD method

16Handout #8, Statistical Signal Processing (2009-2010)

HilbertHilbert--Huang Transform: The EMD methodHuang Transform: The EMD method

• To be able to analyze data from the nonstationary and nonlinear processes and reveal their physical meaning, the method has to be Adaptive.

• Adaptive requires a posteriori (not a priori) basis. But the present established mathematical paradigm is based on a prioribasis.

• Only a posteriori basis could fit the varieties of nonlinear and nonstationary data without resorting to the mathematically necessary (but physically nonsensical) harmonics.

Page 9: Statistical Signal Processing (2009-2010) Handout #8: Hilbert …geogin.narod.ru/hht/link01/read1-10.pdf · 2013. 4. 2. · 2 3 Handout #8, Statistical Signal Processing (2009-2010)

9

17Handout #8, Statistical Signal Processing (2009-2010)

HilbertHilbert--Huang Transform: The HSA methodHuang Transform: The HSA method

• The Hilbert transform of any real-valued signal is

Here PV indicates the principle value of the singular integral.

H [x (t)] = 1πPV

R∞−∞

x(τ)t−τ dτ

Let [α,β] be a real interval and let f be a complex-valued function defined on[α,β]. If f is unbounded near an interior point ζ of [α,β], the integral of f over[α,β] does not always exist. However, it may happen that the symmetric limit

lim²→0+

ÃZ ζ−²

α

f (x) dx+

Z β

ζ+²

f (x) dx

!

exists. If it does, it is called the principle value of f from α to β, and is denotedas

PV

Z β

α

f (x) dx

18Handout #8, Statistical Signal Processing (2009-2010)

HilbertHilbert--Huang Transform: The HSA methodHuang Transform: The HSA method

• With the Hilbert transform,

x (t) = A (t) cosΦ (t)where

A (t) =q(x (t))

2+ (H [x (t)])

2

• The instantaneous frequency is the time derivative of the phase.

ω = dΦ(t)dt

Hence, we have

x (t) = RenA (t) ei

Rω(t)dt

o

Φ (t) = arctan³H[x(t)]x(t)

´

Page 10: Statistical Signal Processing (2009-2010) Handout #8: Hilbert …geogin.narod.ru/hht/link01/read1-10.pdf · 2013. 4. 2. · 2 3 Handout #8, Statistical Signal Processing (2009-2010)

10

19Handout #8, Statistical Signal Processing (2009-2010)

HilbertHilbert--Huang Transform: The HSA methodHuang Transform: The HSA method

• Given the period of a wave as T ; the frequency is defined as1

.T

• The definition of instantaneous frequency is equivalent to defining velocity as

20Handout #8, Statistical Signal Processing (2009-2010)

HilbertHilbert--Huang Transform: The HSA methodHuang Transform: The HSA method

• To be able to analyze data from the nonstationary and nonlinear processes and reveal their physical meaning, the method has to be local.

• Locality requires differential operation to define properties of a function.

• Take frequency for example. The present established mathematical paradigm is based on Integral transform. But integral transform suffers the limitation of the uncertainty principle.

• Instantaneous Frequency offers a total different view for nonlinear data: instantaneous frequency with no need for harmonics and unlimited by uncertainty.

Page 11: Statistical Signal Processing (2009-2010) Handout #8: Hilbert …geogin.narod.ru/hht/link01/read1-10.pdf · 2013. 4. 2. · 2 3 Handout #8, Statistical Signal Processing (2009-2010)

11

21Handout #8, Statistical Signal Processing (2009-2010)

HilbertHilbert--Huang Transform: The HSA methodHuang Transform: The HSA method

• The HSA is the time-frequency representation of the original signal,

x (t) =Pnj=1 cj =

Pnj=1Re

nAj (t) e

iRω(t)dt

o

tω (t)

Pnj=1Re {Aj (t)}

22Handout #8, Statistical Signal Processing (2009-2010)

HilbertHilbert--Huang Transform: The computation flowchartHuang Transform: The computation flowchart

x (t) =Pnj=1Re

nAj (t) e

iRω(t)dt

oH [cj (t)] =

1πPV

R∞−∞

cj(τ)t−τ dτ

x (t) cj (t)

Page 12: Statistical Signal Processing (2009-2010) Handout #8: Hilbert …geogin.narod.ru/hht/link01/read1-10.pdf · 2013. 4. 2. · 2 3 Handout #8, Statistical Signal Processing (2009-2010)

12

23Handout #8, Statistical Signal Processing (2009-2010)

ComparisonComparison

noyesyesHarmonics

noyesyesUncertainty

yesyesnoNon-stationary

yesnonoNonlinear

Energy-time-frequency

Energy-time-frequency

Energy-frequencyPresentation

Differentiation:

Local

Convolution: Regional

Convolution: Global

Frequency

Adaptivea prioria prioriBasis

HilbertWaveletFourier

See SSP_Handout8_HHT.m for another example.

24Handout #8, Statistical Signal Processing (2009-2010)

Further informationFurther information

• N.E. Huang, A Plea for Adaptive Data Analysis: An Introduction to HHT (presented by Dr. Huang at PKU in the summer of 2008)

• C.M. Hsieh, Hilbert Huang Transform, 2007 (in Chinese).

• N.E. Huang, Introduction to the Hilbert-Huang transform and its related mathematical problems, Chapter 1 in Hilbert-Huang Transform and Its Applications, N.E. Huang and S. P. Shen (Eds), World Scientific Publishing Company 2005. (A short but well-written introductory-level article on HHT).

• A comprehensive website including Matlab program, papers, course materials at http://rcada.ncu.edu.tw/research1.htm