statiki v (part ii)

Upload: george-karidis

Post on 12-Oct-2015

33 views

Category:

Documents


1 download

DESCRIPTION

STATIKI

TRANSCRIPT

  • E

    V

    ( )

    .

    2003

  • i

    7. A.....................................................................................1

    7.1 . .............................................. 1 7.2 ................................................................................... 4

    7.2.1 ......................................................... 4 7.2.2 . ................................................ 8

    7.3 .................. 8 7.3.1 .. ........... 9

    8. (PUSH-OVER ANALYSIS) ................................................................................................... 18

    8.1 ............................................... 18 8.1.1 . ..................................................................... 18 8.1.2 ........................................................... 21 8.1.3 - .......................................................... 21

    8.2 .. ......................................................... 23 8.2.1 .. ............................... 24

    8.2.2 - . ........................................................................... 25

  • ii

    9. ............................................ 35 9.1 .............. 36

    9.1.1 - ................................ 37 9.1.2 ........................... 40 9.1.3 ............................................ 44

    9.2 ............. 53 9.2.1 ............... 53 9.2.2 ................... 56 9.2.3 .. ................ 61

  • 1

    7

    7.1

    (mode superposition method), (direct integration method). / . , , . . 1. . , , ( 2000), , . , , .

    1 N. Lagaros, Y. Tsompanakis, M. Papadrakakis, Optimum design of structures with inelastic behavior under seismic loading, V. European Conference on Structural Dynamics, Munich, 2002.

  • 2

    - , . : ( q=1). H Pd

    d eP P / q= , eP q . , , . q . . q , , , . , , . q

    d 0

    e e u

    y u y

    P P Pq q qP P P

    = = = (7.1)

    d 0

    e e u u

    u u y y

    P U P Uq , qP U P U

    = = = = (7.2 ,) yP uP , yU , eU uU yP , eP uP , .

  • 3

    7.1 - -

    . () , () 1T 0.6> s u eU U (. 7.1), : 0q q= (7.3)

    1(0.1s T 0.6 s)< < (. 7.1). (. 7.1) :

    uu es

    UU U ,U2 1

    = = (7.4 ,)

    0 d 0

    q q 2 1 q q= < (7.5) sU uP .

  • 4

    () , q. 7.2

    : (i) () , (ii) , . , . , .

    7.2.1 () , .

    [M]{U(t)} [C]{U(t)} [K]{U(t)} {P(t)}+ + = (7.6)

    [M]{X(t)} [C]{X(t)} [K]{X(t)} {P(t)}+ + = (7.7)

  • 5

    {U(t)} [ ]{X(t)}= (7.8)

    T T[M] [ ] [M][ ], [C] [ ] [C][ ]= = (7.9 ,)

    { }T T[K] [ ] [K][ ], {P(t)} [ ] P(t)= = (7.10,) [], [C], [K] (N) , , , , {P(t)} . [] :

    2i i i[K]{ } [ ]{ } , i 1, N = = (7.11)

    }]}...{}{[{][ N21 = (7.13)

    21

    22 2

    2N

    [ ]

    =

    %

    (7.15) [ ]Tj i{ } M { } 0 , =

    [ ]Tj i{ } K { } 0 = j i , , (7.9) (7.10) :

    1122

    N N

    kmkm

    m k

    [K][M]

    == %% ,

    (7.12,)

    [ ]T 2j j j j j jm { } M { } , k m= = (7.15,) (7.7)

  • 6

    2 Tj j j jj

    {P(t)}x (t) x (t) { } , j 1, Nm

    + = = (7.16) { } [ ]T 1 2 NX(t) x (t) x (t) ... x (t)= (7.17) , Duhamel. {U(t)} [ ]{X(t)}= (7.18) () , (7.16), }U{ max,i . . (Square Root of the Sum of the Squares-SRSS):

    12 2 2 2max 1,max 2,max N,max{U } [{U } {U } ... {U } ]= + + + (7.19)

    . () : 1: m N

  • 7

    Tj j jm { } [M]{ } , j 1, m= = A (7.22) 3: jL Tj jL { } [M]{r}= (7.23) {r} . 4:

    j

    jj m

    L= (7.24) 5:

    j

    2jeff

    j m

    Lm = (7.25)

    6: m N<

  • 8

    7.2 7: S )T(a j

    j jT (. 7.2).

    8:

    j

    jj,max j j2j

    Sa(T ){U } { }= (7.27)

    9:

    SRSS 2 2 1/ 2max i,max 2,max ,max{U } [{U } {U } {U } ]= + + + A (7.28) }U{ max .

    7.2.2 () ( )1=A 1 totm m= . . .

  • 9

    7.3 , . . 2. . () (static push-over) . () (incremental dynamic analysis) . . . , /. . , , . - (, , , ). , ,

    2 M. Papadrakakis, N. Lagaros, V. Plevris, Optimum design of space frames under seismic loading, International Journal of Structural Stability and Dynamics, 2001

  • 10

    . , , (displacement-based seismic design method) (capacity spectrum method) . ATC-40 FEMA 273. . 7.2.1 , - P-U, , . P-U Sa-Sd.

    7.3 () , () ( P-U) : 1:

    ().

  • 11

    , , 5 8 . P-U (capacity curve) , P=Vb U (. 7.3). , , . 2: () -

    . ( n ndf (number of degrees of freedom) ) (capacity spectrum) . , . . . 2.1 { }1 ,

    1 1 .

    2.2 m -

    1 totm = a m (7.29)

    totm 1 . Freeman (1998)

  • 12

    ( ) ( )2 21 i 1i i i 1ii i = (m ) m (m ) , i = 1, n (7.30)

    i 1im , i , . 2.3

    2

    Sa = P/mSd = U/a

    (7.31, 7.32)

    2a .

    22 i 1i i 1ii ia = (m ) (m ) (7.33) 2.4 (Sa,Sd ) 2.5

    y y k = m Sa Sd

    T = 2 m k (7.34, 7.35)

    y y y y 2Sa = m , Sd = U a (. 7.4,).

    7.4 ()

    ()

  • 13

    3: . (Acceleration Displacement Response Spectrum-ADRS), (demand spectrum), , . . Priestley (1995) eff el u = + c (7.36) el ( el = 5% ), u u = 2( -1) () (7.37) u y = U U . uU yU (. 7.4). c (7.36) . c 0.60 , c 0.40 . (7.37) . , , ( )eff = 7 2 + 0.7 (7.38)

  • 14

    7.5 ()

    () 4:

    ADRS. (7.38) , ADRS, . (. 7.5). Sa, Sd :

    elSa = Sa (7.39)

    elSd = Sd (7.40)

    ADRS (Sa,Sd) (Sa,T)

    2

    2

    TSd = Sa4

    (7.41)

  • 15

    7.6 E ADRS Sa,Sd (. 7.5). 5: . : (. 7.6). 5.1 1T

    eff el = :

    ( )eff el i 1 el= Sd T , (7.42)

    5.2 , eqT , eff

    i y = Sd Sd (7.43)

    eq 1T = (7.44) ( )u eff el u = 2 -1 = + c (7.45 ,)

  • 16

    ( )eff = 7 2 + (7.46) 5.3 iSd ( eqT , eff ).

    iSd ADRS ( )eff . eqT eqT .

    5.4 (performance point).

    5.3 eqT ADRS ( )eff . d dE(Sa ,Sd ) . . E , , .

    - eff . eqT , . , , (. 7.7):

  • 17

    7.7 E 1. eff

    (7.45) (7.46) u u 2Sd U /= ( ) .

    2. ADRS( eff,u ) (7.39), (7.40), .

    3. ADRS( eff,u ).

    4. , ( 7.43) eff (7.45) , ADRS . . ,

    dSd . dSd dSa ,

  • 18

    d 2 dU Sd= (7.47) b 1 tot dV m Sa= (7.48) 1, 2 (7.30) (7.33).

  • 19

    8 (PUSH-OVER ANALYSIS)

    . () (static push-over analysis) . () (incremental dynamic analysis) . .

    8.1 H () , : (i) , (ii) , (iii) , (iv) - .

    8.2.1 o . . ,

    [ ]{ } [ ]{ }1 1 1K = M (8.1)

    1 minT = 2/ (8.2)

    1min = (8.3)

  • 20

    ( )1 min},{ { }1 min . . . , .

    8.1

    b 1 kk

    V = Sa w /g (8.4) kw k ( )n1k = , n 1 1Sa = Sa(T ) (. 7.2). . k

  • 21

    k

    k k 1bk

    k 1k

    wQ = V , k = 1,nw (8.5)

    { } 1 2 k n1 1 1 1 1 = (8.6) k=1,2,,n (. 8.1).

    8.2 () , () (. 8.2) nk

    k1 h/h= (8.7)

    kh k . Qk

    k k k bk k

    k

    w hQ = Vw h (8.8)

  • 22

    kw 8.2. (8.8) (8.5) , , -- . , .

    8.2.1

    . .

    8.2.1 -

    , , . . . ( 90%) (. 7.2.1). , , .

  • 23

    . - A : 1: mA

    [ ]{ } [ ]{ }K = (8.9)

    1 2 mT , T ,..., TA (8.10)

    { } { } { }1 2 m , ,..., A (8.10) 2:

    Tj j jm { } [M]{ } , j 1,= = Am (8.11)

    Tj jL { } [M]{r}= (8.12)

    j

    2jeff

    j m

    Lm = (8.13)

    3: A

    effj totj 1

    m m=

    A (8.14) 4: Sa(j), j 1,= A

    k b, j j k

    kV = Sa w /g , j 1,= A , k =1,n (8.15)

  • 24

    k

    k jkj b, jk

    k jk

    wQ V

    w= (8.16)

    ( ) 1/ 22k kjQ Q = j (8.17) 8.1.2 A m

    ( ) 1/22k km j,mj

    Q = Q , j = 1, A k =1,n (8.18)

    Qkm 1 4 m . 8.2 , . . .

    8.3

  • 25

    8.2.1 , (. 5 ) , . (. 8.3): 1 1:

    [ ]{ } [ ]{ }0 1 1 1 1,1 1,1K = , { } (8.19)

    . 1: Y

    b,1 1,1 k

    kV = Sa w /g (8.20)

    k

    k 1,1k1 b,1k

    i 1,1k

    wQ V , k = 1, n

    = w (8.21) { }T 1 2 n1 1 1 1Q Q Q Q = (8.22) 1:

    { } { }11 Qq = R (8.23)

    R .

    1: 1 [ ] { } { } i, j i, j0 1 1 1 1 1K U q = min ,= (8.24)

    j i .

    { } { }1 1 1P q= (8.25)

  • 26

    2, 3, , m -1 m 1: [ ]{ } [ ]{ }m-1 m m m 1,m 1, mK = M T , { } (8.26) 1:

    b,m 1,m k

    kV = Sa w /g (8.27)

    k

    k 1,mkm b, mk

    i 1,mk

    wQ V , k = 1, n

    w= (8.28)

    { }T 1 2 nm m m mQ Q , Q , ,Q = (8.29)

    { } { }mm Qq R= (8.30) 1:

    m

    [ ] { } { } ( ) ( )

    { } { } { }i, j i, j i, j i, j i, j

    m m m m p 3 m 3m 1 mi, j

    m m m m 1 m m

    U q M M M

    min P P Q

    = = + = = +K

    (8.31) 1m m= + m . 8.2.2 - . - .

  • 27

    . - -. 9.

    8.4 -

    8.5

    m

  • 28

    . - (. 8.4 8.5): 1: 1:

    [ ]{ } [ ]{ }

    { }0 1 1 1 1,1 1,1

    b,1 1

    K , { }

    V Q

    = (8.32)

    1:

    { }11 Q{q } R= (8.33) 2: - 2: }q{ 1

    1

    { } { } { }

    { } { } { }(0) (1) (1)0 1 1 1

    (1) (1) (1)1 1 1

    K U q U

    U U F

    =

    (8.34)

    { }(1)1F 1 (. 8.5 m ). ......

    A

    { } { } { } { }

    { } { } { }( 1) ( ) ( 1) ( )0 1 1 1 1

    ( ) ( ) ( )1 1 1

    K U q F U

    U U F

    =

    A A A A

    A A A (8.35)

    ......

  • 29

    j : { }(j)1 1 1 1{q } F {q } (8.36) 1 ( )2 61 10 ~ 10 =

    2: { }1 1 1 1m{q } (m ) q

    1 { } { } { } { }

    { } { } { }(0) (1) (0) (1)m-1 m 1 m m

    (1) (1) (1)m m m

    K U = q - F U

    U U F

    (8.37)

    ......

    A

    { } { } { } { }

    { } { } { }(0) ( ) ( -1) ( )m-1 m 1 m m

    ( ) ( ) ( )m m m

    K U q F U

    U U F

    =

    A A A

    A A A (8.38)

    ......

    j: { }

    { }(j)

    1 m1

    1

    m{q }- F

    m q (8.39)

    .

    8.6 . () 1, () m

  • 30

    8.7 , - (. 8.6), (. 8.7, 8.8 8.9):

    8.8

    i

  • 31

    1: 1:

    0 1 1 1 1,1 1,1b,1 1

    [K ]{ } [M]{ } T { }V {Q } =

    (8.40) 1:

    { } { }11 Qq R= (8.41) 2: -

    }q{ 1

    1:

    { } { } { }

    { } { } { }(0) (1) (1)0 1 1 1

    (1) (1) (1)1 1 1

    K U = q U

    U U F

    (8.42)

    ......

    A :

    { } { } { } { }

    { } { } { }( 1) ( ) ( 1) ( )0 1 1 1 1

    ( ) ( ) ( )1 1 1

    K U q F U

    U U F

    =

    A A A A

    A A A (8.43)

    ......

    j: ( j)

    1 11

    1

    {q } {F }{q } (8.44)

  • 32

    8.9

    m+1 3: 1 1i{q } (i 1){q } (.

    8.9)

    1:

    { } { } { } { }

    { } { } { }(0) (1) (0) (1)i-1 i 1 i i

    (1) (1) (1)i i i

    K U = i q - F U

    U U F

    (8.45)

    ...... A :

    { } { } { } { }

    { } { } { }( 1) ( ) ( 1) ( )i 1 1 1 1 i

    ( ) ( ) ( )i i

    K U q F U

    U U F

    =

    A A A A

    A A Ai

    i (8.46)

    ...... j : { }(j)1 1 1 1i{q } F {iq } (8.47)

  • 33

    4: (. 8.7 8.9)

    : T

    1 11 T

    1 1

    {q } {U }k ={U } {U }

    (8.48)

    : T

    1 ii T

    i i

    {q } { U }k{ U } { U }

    = (8.49)

    K : i 21

    k < k

    (8.50)

    2 ( )2 0.5 ~ 0.1 = . E 5 i m= . 3 1ii += .

    5: 1:

    (. 8.9)

    [ ]{ } [ ]{ }{ }

    { }

    m m+1 m+1 m+1

    1,m+1 1,m 1

    b,m+1 m+1

    K M

    T ,

    V Q+

    =

    (8.51)

    1:

    m+12{Q }{q }

    R= (8.52)

    6: -

    }q{ 2 (. 8.9)

    1: { } { } { }

    { } { } { }(0) (1) (1)m m+1 2 m+1

    (1) (1) (1)m+1 m+1 m+1

    K U = q U

    U U F

    (8.53)

    ......

  • 34

    A :

    { } { } { } { }( 1) ( ) ( -1) ( )m m+1 1 2 m+1 m+1K U mq + q F U = A A A A { } { } { }( ) ( ) ( )m+1 m+1 m+1U U F A A A (8.54) ......

    j: ( j)

    1 2 m 11

    1 2

    {mq q } {F }

    {mq q }++ + (8.55)

    7: ( ) ( )}q){1i(}q{m}q{i}q{m 2121 ++ (. 8.7)

    1:

    { } { }(0) (1) (0)m+i-1 m+i 1 2 m+1K U = m{q }+ i{q }- F (8.56) { } { } { } { }(1) (1) (1) (1)m+i m+1 m+i m+iU U U F ......

    A :

    { } { }( -1) ( ) ( -1)m+i-1 m+i 1 2 m+1K U = m{q }+ i{q }- F A A A (8.57) { } { } { } { }( ) ( ) ( ) ( )m+i m+i m+i m+iU U U F A A A A ...... j:

    { }{ }

    (j)1 2 m+i

    11 2

    mq + iq -{F }

    mq + iq (8.58)

  • 35

    8: .

    m+1:

    T

    2 mm T

    m m

    {q } {U }k ={U } {U }

    (8.59)

    :

    T

    2 m+im+i T

    m+i m+i

    {q } {U }k ={U } {U }

    (8.60)

    : 2m

    imk

    k + (8.61)

    5 m=n. 7 i=i+1.

    - . P-U (8.38) (8.56) / : (i) ( ), (ii) , (iii) (8.38) (8.56). . - - - (8.17) (816) j=1. , - - (8.18).

  • 36

  • 37

    9.

    H : (i) (concentrated plasticity), (. 5, ). (plastic node). (ii) (distributed plasticity) . P-U. . - , , , . , . , , . , . .

    9.1

  • 38

    9.1 , 9.1. (. 9.2).

    9.2

    0),,,,,,(f y312312332211 = 5, ,

    1 2 3 1 2 3 yf (F ,F ,F ,M ,M ,M , ) 0.= , . 9.3

    }{d , , :

    }{d}{d}{d plel += (9.1)

  • 39

    9.3 - (. 9.3)

    T pl

    d dE Hd d = = = (9.2,)

    TT

    el pl d dd = E (d + d ) = E +E H

    (9.3)

    T

    E H EE = = E 1-

    E + H E + H (9.4)

    TE E

    9.12 9.13. 9.1.1 -

    ,

  • 40

    . , - - . . Newton-Raphson (9.4) :

    9.4 Newton-Raphson . Newton-Raphson m+1 B 1: m-1[K ]

    m-1. B 2: 2: (. 9.1.3)

    (0)m-1 m-1K = [K ] (9.5)

  • 41

    2:

    { } { } { }(0) (1) (0)m-1 m m mK U = P - F (9.6) { } { }(1) (0) (1)m m mU = U + U (9.7) { } { }(1) (0) (1)m m mU = U + U (9.8) 2: { }(1)mF

    (. 9.1.2). .

    ...... B 3: A 3: ( -1)m-1K A 3:

    { } { } { }( -1) ( ) ( -1)m-1 m m mK U = P - F A A A (9.9) { } { }( ) ( -1) ( )m m mU = U + U A A A (9.10)

    { } { }( ) (0) ( )m m mU = U + U A A (9.11) 3: { }( )mF A ......

    j : { }

    { }( j)

    m m

    m

    {P } F

    P

    (9.12)

    2 610 10 . mj = :

    { } { } { }(0) (j)m+1 m+1 mU = U = U (9.13)

  • 42

    { } { } { }(0) ( j)mm 1 m 1F F F+ += = (9.14)

    }{}P{}P{ m1m +=+ (9.15)

    { } . m=m+1 1. 1= +A A 3.

    Newton-Raphson { }(j)mF (j-1)mK j m . 9.1.2 . - (beam-column) 1 2 . : . j m: 1:

    { } { } { }(j-1) (j) (j-1)m-1 m m mK U = P - F (9.16)

    2: { }(i)D i .

    { } { } { }(j) (j) (i)m mU U D , (9.17) m j.

  • 43

    3: 11A i 1,2 A (.

    9.5).

    9.5 4:

    (elastic prediction) A (. 9.6)

    11 11elp = E (9.18)

    ( ) ( ) ( )11 11(j) (j)(0)elp elp11 mm m = + (9.19)

    i 1,2.

  • 44

    9.6 j: () , () , () 5: A ,

    m, j, i , 1 2. 5: :

    ( ) ( ) ( )11 11 11(j) (j)(j)elp elpy mm m < = (9.20) 5: (. 9.6):

    ( ) ( )11 11(j)elp y ym-1m > < (9.21) ( )(j) (j)11 y T 11 m ym = + E [( ) - ] (9.22)

  • 45

    5: (. 9):

    ( )11 11(j)elp (0)y m ym > ( ) > (9.23) ( )(j) ( j) (0)11 11 m 1 T 11 m 11 mm ( ) E [( ) ( ) ] = + (9.24) 5: : ( ) ( )( j)(0) elp11 y 11 11 m 1m m ( ) > < (9.25) ( ) ( j) elp ( j)11 m 11 m( ) = (9.26)

    . 1 2 - j m A . , j m

    { } T(j) (j) (j) (j)1 2 3F = F F M , j 1,2 = (9.27) (. 9.5): 1 11F = t b , = 1, n A A A

    AA (9.28)

    3 11 3 3M = b t y M = M A A A A A AA

    (9.29)

    n . (. 9.7) ( )1 1 2 22 3 3 2F M M L F= + = (9.30)

  • 46

    9.7

    9.1.3 - (beam-column approach) (. , . , , 2002 , . , , 2000). - .

    9.8 -

    - . () - 9.8

    =

    66655655

    44kk

    FF0FF000F

    ]F[ (9.31)

  • 47

    ijF - (. - , . , , 1996):

    L L5 1 5 14 1 4 1

    44 550 0

    M (x )M (x )N (x )N (x )F dx , F dxEA EI

    = = (9.32 ,)

    L

    5 1 6 156 65

    0

    M (x )M (x )F F dxEI

    = = (9.33) 4(x1), 5(x1), 6(x1) - , 2 , . , [Fkk]

    2

    A 0 0 -A 0 0B C + BL 0 -B -C - BL

    D + 2CL + BL 0 -C -D - CL[K] =D A 0 0

    B CD

    (9.34)

    44F1A = , 66 56 55B F H C F H , D F H= = = (9.35)

    255 66 56H = F F - F 44 55 66 56F ,F ,F ,F .

  • 48

    . F44 k - 1P4 = , 9.9.

    L

    4 4 10

    P = N (x ) d (9.36)

    4 1 11 1 2 21 1A A A

    d dN (x ) (x )d E(x ) dA E(x )ddx dx = = = (9.37)

    9.9 (9.37) (9.32) 44F ,

    L

    4 1 4 1 10

    442

    A

    N (x )N (x )dxF

    E(x )dA=

    (9.38)

  • 49

    )x(E 2 2x .

    9.10

    (9.10). (9.38)

    L

    4 1 4 1 10

    N (x )N (x )dx L= (9.39) , (9.38)

    ( )12 2 2A

    E(x )dA E b x x += A A A AA

    (9.40)

    12 2x x t+ =A A A A (. 9.11) AA E,b

    E A ,

  • 50

    . , , 9.11, - , 1, 2, 7, 8 , 3, 4, 5, 6 .

    9.11

    . - - 566655 F,F,F k (. 9.10 9.12). 66F 1P6 =

    L

    6 6 10

    P M (x )d = (9.41)

    6 1 11 1 2 2 11 1 2A A

    M (x ) (x )x d E(x ) (x )x dA= = (9.42)

  • 51

    9.12

    9.13

    x3

    (. 9.13)

    2 211 11

    (x ) x(x ) ddx = = + (9.43)

    . (9.43) (9.42)

  • 52

    26 1 2 2 2 21 A A

    dM (x ) E(x )x dA E(x )x ddx

    = (9.44) d (9.44) (9.41) =66F

    L

    6 1 6 1 10

    662

    2 2 2 2A A

    M (x )M (x ) dxF

    E(x )x dA E(x )x dA=

    (9.45)

    L , 6P 1= (. 9.10):

    L

    6 1 6 1 10

    M (x )M (x ) dx L= (9.46) (. 9.11)

    ( )L 32 3 12 2 2 20

    E(x )x dA 1/ 3 E b (x ) x + = A A A AA (9.47)

    ( )L 22 12 2 2 20

    E(x )x dA 1/ 2 E b (x ) x + = A A A AA (9.48)

    9.12:

    4 1 11 1 2 11 1A A

    N (x ) (x ) dA E(x ) (x ) d 0= = = (9.49) (9.43) (9.49)

    0dA)x)(x(E1 2A

    2 =+ (9.50)

  • 53

    ( ) ( )( )

    2 212 2 2 2

    A1

    2 22A

    E(x )x dA 1/ 3 E b x x

    1/ 2 E b x xE(x ) dA

    +

    +

    = =

    A A A A

    AA A A A

    A

    (9.51)

    F55 . ...

    L

    5 5 10

    P M (x ) d = (9.52) . 55 5F (P 1)= =

    ( ) ( )L 5 1 5 1 1 3

    055

    2 22 2 2 2 2 2 2 2

    A A A A

    M x M x dxL / 3F

    E(x )x dA E(x )x dA E(x )x dA E(x )x dA= =

    (9.53) F56 ,F65

    ( ) ( )L 5 1 6 1 1 20

    56 652 2

    2 2 2 2 2 2 2 2A A A A

    M x M x dxL / 2F F

    E(x )x dA E(x )x dA E(x )x dA E(x )x dA= = =

    (9.54) + = yy 0= :

    3 3

    55 2 1 22 2 2

    2 2A

    L / 3 L / 3F1/ 3 E b (x ) (x )

    E(x )x dA+= =

    A A A AA (9.55)

  • 54

    66 2 1 22 2 2

    2 2A

    L LF1/ 3 E b (x ) (x )

    E(x )x dA+= =

    A A A AA (9.56)

    2 2

    56 2 1 22 2 2

    2 2A

    L / 2 L / 2F1/ 3 E b (x ) (x )

    E(x )x dA+= =

    A A A AA (9.57)

    ijk (9.34) (9.35),

    ( )144 2 21A 1/ F E b x xL += = A A A AA (9.58)

    4 42

    55 66 56 2 22 1 22

    2 22 2A

    L /12 L /12F F F1 E b (x ) (x )E(x )x dA 2

    + = = =

    A A A A

    A

    (9.59)

    ( ) ( )3 32 166 2 2 2 23 3A

    F 12 12 1B E(x )x dA E b x xH L L 3

    + = = = A A A AA (9.60) 2 3 1 356 2 2 2 22 2

    A

    F 6 6 1C E(x )x dA E b (x ) (x )H L L 3

    + = = = A A A AA

    (9.61)

    2 3 1 355 2 2 2 2A

    F 4 4 1D E(x )x dA E b (x ) (x )H L L 3

    + = = = A A A AA

    (9.62)

    [k] (9.34) .

  • 55

    9.2 9.2.1

    9.14 () 1, ()

    1 2

    . (. 9.14). 1 3 3r = , 1 , (. 4.3 , . , , 1996):

    [ ]22 23 25 26

    1 1

    32 1 33 1 35 36

    52 53 55 56

    62 63 65 66

    k 0 k k k0 c -c 0 0

    k -c k + c k kk =k 0 k k kk 0 k k k

    2 3 3 5 623356

    (9.63)

    c1 1 ijk . (9.63) .

  • 56

    [ ]{ } { }k = P , 2 5 6 0 = = = 3 1 = ,

    3 11

    3 1 33

    cr = =c + k

    (9.64)

    . , (9.14)

    22 23 25 26

    1 1

    32 1 33 1 35 36

    52 53 55 56

    2 2

    62 63 65 2 66 2

    k 0 k k 0 k0 c c 0 0 0

    k c k c k 0 kk

    k 0 k k 0 k0 0 0 0 c c

    k 0 k k c k c

    += +

    2 3 3 5 6 6233566

    (9.65)

    [ ]{ } { }k P = ( 3 6 ), 2 5 6 0 = = = 1 3 3r = 2 5 3 0 = = =

    2 6 6r = :

    3 11

    3 1 33

    6 22

    6 2 66

    crc k

    crc k

    = = += = +

    (9.66,)

    3 3 , 6 (9.63) (9.65), .

  • 57

    1, 1c cc ce ee eck k k k k

    = :

    [ ]22 25 26 23

    1 132 1 35 36

    52 55 56 53 33 1

    62 65 66 63

    0 22 23 32 1 23 0 25 23 35 0 26 23 36

    1 32 1 33 1 35 1 36

    0 52 53 32 1 0 55 53 35 0 560

    k 0 k k k0 c 0 0 c 1k k c k k

    k 0 k k k k ck 0 k k k

    k k k k c k k k k k k k k kc k c k c k c k1

    k k k k c k k k k k kk

    = = +

    = 53 36

    0 62 63 32 1 0 65 63 35 0 66 63 36

    k kk k k k c k k k k k k k k

    (9.67)

    0 3 1k k c= + . 1 2 3 6 (9.65) :

    22 25 23 261

    33 1 36 32 1 351 1

    63 66 2 62 65 252 55 53 56

    2 2

    k 0 k 0 k kk c k k c k 00 c 0 0 c 0

    kk k c k 0 k ck 0 k 0 k k

    0 0 0 c 0 c

    + = +

    1

    33 1 36 66 2 36

    63 66 2 63 33 166 2 33 36 63 1 66 1 2

    k c k k c k a b1k k c k k c c d(k c )k k k c k c c

    + + = =+ ++ + +

    (4x4) :

  • 58

    22 23 26 32 23 26 62 23 26 12

    1 32 1 62 2 2

    52 53 56 32 53 56 62 53 56 1

    2 32 2 62 1 2

    25 23 26 35 23 26 65 23 26 2

    1 35

    k

    k (k a k c)k (k b k d)k (k a k c)c

    c ak c bk c c a=

    k (k a k c)k (k b k d)k (k a k c)cc ck c dk c cc

    k (k a k c)k (k b k d)k (k b k d)cc ak

    + + + + + + + +

    + + ++ 1 65 1 2

    55 53 56 35 53 56 65 53 56 22

    2 35 2 65 2 2

    c bk c bck (k a k c)k (k b k d)k (k b k d)c

    c ck c dk c c d

    + + + +

    (9.68) r

    jr 1= , j(c )= , , r 0= , ( jc o= ). , , . 1 2, .. 9.2.2 r p ( ) ( ). ( yM ) pM . 9.15.

  • 59

    9.15

    . y . p y , u . M

    ( ) ( ) ( )( )( ) 12 22y p y p y p pM M M M = + (9.69) 0 = p = . . (9.15) ( 0) = (dM d ) = .

  • 60

    . , p dM 0= dM d 0 = . (9.70)

    ( ) ( ) ( )( ) ( )( )( )

    2p p

    T 12 222

    p p p p p

    M MydMk

    dM My M My

    = = (9.70)

    . . 1 2c , c dM d (9.64) (9.66) p

    133

    kp =k + k

    1

    1

    (9.71)

    266

    kp =k + k

    2

    2

    (9.72)

    c1 1Tk c1, c2 1 2T Tk ,k (9.67), (9.68) k .

    . . 1:

    .

  • 61

    ( )p 1, 0= = .

    2:

    .

    : dM / d . 3: j 1, 2= i

    . , , M My,> (9.69) , ( ) = :

    ( )( )

    12 2

    p p 2

    M My1

    M My

    = (9.73)

    4: (9.73) (9.70)

    - dM / d 1 2p , p ( 9.71, 9.72).

    % = ( )j ,100 1 p j 1,2 = (9.74)

    .

    5: ,

    (9.67, 9.68), .

    6:

    2.

  • 62

    . , My M Mp

    mMy M N 1.0Mp Mp Np

    + (9.75) . m (.. 2=m ) yNp A= .

    1mMyNy Np

    Mp = (9.76)

    M 0= (9.75).

    9.16

  • 63

    (9.16) 1m = ( ) . p 1 p 0 . M N , , Oy M y My s = Op M p Mp s = , . 1>s M N . M y M p (9.69) (9.70) - , . . My Mp . 9.2.3 (Federal Emergency Management Agency-FEMA) , , . ( 1=p ). (9.67), (9.68), ( )p 1< , . .

    r1

    y

    UU

    = (9.77)

  • 64

    ( ) ( )2 k k 1 k k 1 yU U U U = (9.78)

    Ur , Uy , kU k ( )k k 1 yU U k k -1 ( ) . Ur . : (i) IO (Immediate Occupancy), (ii) DC(Damage Control), (iii) LS (Life Safety), (iv) SC (Structural Collapse). 1

    9.17 .

    . 9.17 W : 14x257, 33x118, 24x68. 1T 1.01s= . y

    p 0.045 rad = , u . (9.75) 1=m .

  • 65

    1 Sa 0.0008g= .

    ab

    SV Wg

    = () W , , k

    k vk bQ C V= ()

    s

    k kk r

    i ii

    w hC , i 1 3w h

    = = ()

    kh k s . 1 = 2s . 9.18 . 9.18 .

    IO DC LSU 0.7%h, U 2.5%h U 5%h= = = .

    1:

    (kN)

    (kN)

    (Cvk)

    (kN)

    1 4688 11.556 0.068 0.786 2 4688 0.271 3.132

    11405071 0.661 7.639

  • 66

    2:

    (cm)

    1

    (k)

    yU 4.39= 1.00 1710.33 0.1184g IO IOU 8.32= 1.89 3154.09 0.2183g DC DCU 29.72= 6.77 5041.37 0.3489g LS LSU 59.44= 13.55 5326.28 0.3687g SS

    scU = 5339.09 0.3695g

    3:

    3 2 DC 15 15 LS 3 27

    9.18

  • 67

    9.19