squeezed light for future gravitational wave detectors

51
S. Chelkowski Slide 1 WG1 Meeting, Birmingham 07/2008

Upload: claude

Post on 31-Jan-2016

54 views

Category:

Documents


0 download

DESCRIPTION

Squeezed light for future gravitational wave detectors. S. Chelkowski University of Birmingham 09.07.2008 WG1 Meeting, Hannover. Overview. Quantum noise in gravitational wave detectors Generation of squeezed states Using squeezing in a gravitational wave detector - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Squeezed light for future gravitational wave detectors

S. Chelkowski Slide 1WG1 Meeting, Birmingham 07/2008

Page 2: Squeezed light for future gravitational wave detectors

Overview Quantum noise in gravitational wave detectors

Generation of squeezed states

Using squeezing in a gravitational wave detector

Frequency dependent squeezing

Generation of squeezing in the gravitational wave frequency band

Best squeezing measurements so far

Squeezed light in GEO600

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 2

Page 3: Squeezed light for future gravitational wave detectors

A simple gravitational wave detector

3S. Chelkowski WG1 Meeting, Birmingham 07/2008

Page 4: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 4

Quantum noise limited sensitivity

Shot Noise Radiation Pressure Noise

factor 100 in power= factor 10 in sensitivity= factor 1000 in event rate

Page 5: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 5

Squeezed light enhanced interferometer

Page 6: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 6

Squeezed light enhanced interferometer

20dB of squeezing= factor 10 in sensitivity= factor 1000 in event rate

Page 7: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 7

Amplitude-Quadrature

Phase-Quadrature

Heisenberg uncertainty relation

An explanation of squeezing

coherent state

squeezed state

Page 8: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 8

Vacuum Noise

Page 9: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 9

Squeezed Vacuum

Page 10: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 10

• Strong interaction between seed- and pump field

• MgO:LiNbO3 – crystal as nonlinear material

• Phase matching via temperature

• Fractions in phase get amplified, out of phase deamplified

OPA - optical parametric amplification

1064nm532nm

Page 11: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 11

• MgO:LiNbO3 2 x 2.5 x 6.5mm• 7% doping• bikonvex or plane/konvex rc=8mm• coatings @ 1064 and 532nm

Side A: AR (R < 0.05%)Side B: HR (R > 99.98%)

• hemilithic Resonator @ 1064nm coupling mirror R = 96.7%Finesse = 180

FSR = 3.9GHz• phasematching temp. ~65°C• temp. stabilized via peltier elements

New oven design

Page 12: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 12

Dark Noise

Broadband squeezing up to 30MHz

Relaxation oscillation of the Laser

Vacuum noise

Squeezing results from a normal OPA

Page 13: Squeezed light for future gravitational wave detectors

Squeezing in a real gravitational wave detector

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 13

Page 14: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 14

GEO600

Page 15: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 15

Quantum noise in GEO600

Page 16: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 16

Reducing the quantum noise

Page 17: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 17

amplitude squeezing

Reducing the quantum noise

Page 18: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 18

Reducing the quantum noise

Page 19: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 19

Effect of a detuned filter cavity

Squeezed Vacuum Interaction with a cavity

Page 20: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 20

amplitude squeezing

+45°-45°

Reducing the quantum noise

Page 21: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 21

Reducing the quantum noise

Page 22: Squeezed light for future gravitational wave detectors

Frequency-dependent squeezed light

How can we create it?

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 22

Page 23: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 23

Chelkowski et al.,PRA 71, 013806 (2005)

Frequency-dependent squeezing

Detuned locked to +15MHz

Page 24: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 24

Chelkowski et al.,PRA 71, 013806 (2005)

Squeezing

Vacuum Noise

Anti-Squeezing

Phase quadrature

Amplitude quadrature

Frequency-dependent squeezing

Page 25: Squeezed light for future gravitational wave detectors

A rotating squeezing ellipse – FC detuning +15MHz

S. Chelkowski WG1 Meeting, Birmingham 07/2008 25

Chelkowski et al.,PRA 71, 013806 (2005)

Page 26: Squeezed light for future gravitational wave detectors

A rotating squeezing ellipse – FC detuning +15MHz

S. Chelkowski WG1 Meeting, Birmingham 07/2008 26

Chelkowski et al.,PRA 71, 013806 (2005)

Page 27: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 27

Chelkowski et al.,PRA 71, 013806 (2005)

+15 MHz -15 MHz

Angle of the squeezing ellipse

Page 28: Squeezed light for future gravitational wave detectors

Generation of squeezed light on the gravitational wave frequency

band

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 28

Page 29: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 29

Generic squeezing from an OPA

Dark Noise

broadband Squeezing up to 30MHz

Relaxation oscillation of the Lasers

Vacuum noise

Page 30: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 30

• Seed field carries technical noise from the laser.

• Technical noise is imprinted onto the squeezed field.

• Seed field is needed for the generation of error signals.

OPA – optical parametric amplification

Page 31: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 31

Seed field is a control field

Page 32: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 32

OPA without seed turns into an OPO

Page 33: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 33

Setup for low frequency squeezing

homodyne angle

squeezing angle

Page 34: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 34

Setup for low frequency squeezing

homodyne angle

squeezing angle

Page 35: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 35

Setup for low frequency squeezing

homodyne angle

squeezing angle

Page 36: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 36

Setup for low frequency squeezing

homodyne angle

squeezing angle

Page 37: Squeezed light for future gravitational wave detectors

Measured vacuum noise

37

vacuum noise for 176µWvacuum noise for 88µWvacuum noise for 44µW

3dB3dB

S. Chelkowski WG1 Meeting, Birmingham 07/2008

Page 38: Squeezed light for future gravitational wave detectors

Measured squeezed vacuum noise

38

vacuum noise for 88µW

squeezed vacuum noise

Chelkowski et al., PRA 75, 043814 (2007)

~6dB

S. Chelkowski WG1 Meeting, Birmingham 07/2008

Page 39: Squeezed light for future gravitational wave detectors

Squeezed vacuum enhanced Michelson interferometer

S. Chelkowski WG1 Meeting, Birmingham 07/2008 39

Page 40: Squeezed light for future gravitational wave detectors

Best squeezing measurements so far

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 40

Page 41: Squeezed light for future gravitational wave detectors

Optical layout

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 41

Vahlbruch et al. PRL 100, 033602 (2008)

Page 42: Squeezed light for future gravitational wave detectors

Measured squeezing

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 42

Vahlbruch et al. PRL 100, 033602 (2008)

Page 43: Squeezed light for future gravitational wave detectors

Squeezed light in GEO600

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 43

Page 44: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 44

GEO HF: Detuned Signal Recycling

Page 45: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 45

GEO HF: Tuned Signal Recycling

Page 46: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 46

Do we need a filter cavity?

Page 47: Squeezed light for future gravitational wave detectors

Conclusion

Squeezed light can be used to reduces the quantum noise in gravitational wave detectors

Reflection at a detuned cavity creates frequency dependent light

Without a filter cavity, tuned signal recycling is the best choice

All needed techniques for the implementation of squeezed light into a gravitational wave detector are developed

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 47

Page 48: Squeezed light for future gravitational wave detectors

Appendix

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 48

Page 49: Squeezed light for future gravitational wave detectors

49

GEO 600 Layout

GEO 600:

Page 50: Squeezed light for future gravitational wave detectors

50

3dB SQZ:

6dB SQZ:

GEO HF Layout: short 8m Filter Cavity

Page 51: Squeezed light for future gravitational wave detectors

51

3dB SQZ:

6dB SQZ:

GEO HF Layout: long 1200m Filter Cavity