Transcript
Page 1: Squeezed light for future gravitational wave detectors

S. Chelkowski Slide 1WG1 Meeting, Birmingham 07/2008

Page 2: Squeezed light for future gravitational wave detectors

Overview Quantum noise in gravitational wave detectors

Generation of squeezed states

Using squeezing in a gravitational wave detector

Frequency dependent squeezing

Generation of squeezing in the gravitational wave frequency band

Best squeezing measurements so far

Squeezed light in GEO600

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 2

Page 3: Squeezed light for future gravitational wave detectors

A simple gravitational wave detector

3S. Chelkowski WG1 Meeting, Birmingham 07/2008

Page 4: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 4

Quantum noise limited sensitivity

Shot Noise Radiation Pressure Noise

factor 100 in power= factor 10 in sensitivity= factor 1000 in event rate

Page 5: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 5

Squeezed light enhanced interferometer

Page 6: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 6

Squeezed light enhanced interferometer

20dB of squeezing= factor 10 in sensitivity= factor 1000 in event rate

Page 7: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 7

Amplitude-Quadrature

Phase-Quadrature

Heisenberg uncertainty relation

An explanation of squeezing

coherent state

squeezed state

Page 8: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 8

Vacuum Noise

Page 9: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 9

Squeezed Vacuum

Page 10: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 10

• Strong interaction between seed- and pump field

• MgO:LiNbO3 – crystal as nonlinear material

• Phase matching via temperature

• Fractions in phase get amplified, out of phase deamplified

OPA - optical parametric amplification

1064nm532nm

Page 11: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 11

• MgO:LiNbO3 2 x 2.5 x 6.5mm• 7% doping• bikonvex or plane/konvex rc=8mm• coatings @ 1064 and 532nm

Side A: AR (R < 0.05%)Side B: HR (R > 99.98%)

• hemilithic Resonator @ 1064nm coupling mirror R = 96.7%Finesse = 180

FSR = 3.9GHz• phasematching temp. ~65°C• temp. stabilized via peltier elements

New oven design

Page 12: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 12

Dark Noise

Broadband squeezing up to 30MHz

Relaxation oscillation of the Laser

Vacuum noise

Squeezing results from a normal OPA

Page 13: Squeezed light for future gravitational wave detectors

Squeezing in a real gravitational wave detector

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 13

Page 14: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 14

GEO600

Page 15: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 15

Quantum noise in GEO600

Page 16: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 16

Reducing the quantum noise

Page 17: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 17

amplitude squeezing

Reducing the quantum noise

Page 18: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 18

Reducing the quantum noise

Page 19: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 19

Effect of a detuned filter cavity

Squeezed Vacuum Interaction with a cavity

Page 20: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 20

amplitude squeezing

+45°-45°

Reducing the quantum noise

Page 21: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 21

Reducing the quantum noise

Page 22: Squeezed light for future gravitational wave detectors

Frequency-dependent squeezed light

How can we create it?

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 22

Page 23: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 23

Chelkowski et al.,PRA 71, 013806 (2005)

Frequency-dependent squeezing

Detuned locked to +15MHz

Page 24: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 24

Chelkowski et al.,PRA 71, 013806 (2005)

Squeezing

Vacuum Noise

Anti-Squeezing

Phase quadrature

Amplitude quadrature

Frequency-dependent squeezing

Page 25: Squeezed light for future gravitational wave detectors

A rotating squeezing ellipse – FC detuning +15MHz

S. Chelkowski WG1 Meeting, Birmingham 07/2008 25

Chelkowski et al.,PRA 71, 013806 (2005)

Page 26: Squeezed light for future gravitational wave detectors

A rotating squeezing ellipse – FC detuning +15MHz

S. Chelkowski WG1 Meeting, Birmingham 07/2008 26

Chelkowski et al.,PRA 71, 013806 (2005)

Page 27: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 27

Chelkowski et al.,PRA 71, 013806 (2005)

+15 MHz -15 MHz

Angle of the squeezing ellipse

Page 28: Squeezed light for future gravitational wave detectors

Generation of squeezed light on the gravitational wave frequency

band

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 28

Page 29: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 29

Generic squeezing from an OPA

Dark Noise

broadband Squeezing up to 30MHz

Relaxation oscillation of the Lasers

Vacuum noise

Page 30: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 30

• Seed field carries technical noise from the laser.

• Technical noise is imprinted onto the squeezed field.

• Seed field is needed for the generation of error signals.

OPA – optical parametric amplification

Page 31: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 31

Seed field is a control field

Page 32: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 32

OPA without seed turns into an OPO

Page 33: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 33

Setup for low frequency squeezing

homodyne angle

squeezing angle

Page 34: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 34

Setup for low frequency squeezing

homodyne angle

squeezing angle

Page 35: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 35

Setup for low frequency squeezing

homodyne angle

squeezing angle

Page 36: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 36

Setup for low frequency squeezing

homodyne angle

squeezing angle

Page 37: Squeezed light for future gravitational wave detectors

Measured vacuum noise

37

vacuum noise for 176µWvacuum noise for 88µWvacuum noise for 44µW

3dB3dB

S. Chelkowski WG1 Meeting, Birmingham 07/2008

Page 38: Squeezed light for future gravitational wave detectors

Measured squeezed vacuum noise

38

vacuum noise for 88µW

squeezed vacuum noise

Chelkowski et al., PRA 75, 043814 (2007)

~6dB

S. Chelkowski WG1 Meeting, Birmingham 07/2008

Page 39: Squeezed light for future gravitational wave detectors

Squeezed vacuum enhanced Michelson interferometer

S. Chelkowski WG1 Meeting, Birmingham 07/2008 39

Page 40: Squeezed light for future gravitational wave detectors

Best squeezing measurements so far

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 40

Page 41: Squeezed light for future gravitational wave detectors

Optical layout

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 41

Vahlbruch et al. PRL 100, 033602 (2008)

Page 42: Squeezed light for future gravitational wave detectors

Measured squeezing

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 42

Vahlbruch et al. PRL 100, 033602 (2008)

Page 43: Squeezed light for future gravitational wave detectors

Squeezed light in GEO600

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 43

Page 44: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 44

GEO HF: Detuned Signal Recycling

Page 45: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 45

GEO HF: Tuned Signal Recycling

Page 46: Squeezed light for future gravitational wave detectors

S. Chelkowski WG1 Meeting, Birmingham 07/2008 46

Do we need a filter cavity?

Page 47: Squeezed light for future gravitational wave detectors

Conclusion

Squeezed light can be used to reduces the quantum noise in gravitational wave detectors

Reflection at a detuned cavity creates frequency dependent light

Without a filter cavity, tuned signal recycling is the best choice

All needed techniques for the implementation of squeezed light into a gravitational wave detector are developed

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 47

Page 48: Squeezed light for future gravitational wave detectors

Appendix

S. Chelkowski WG1 Meeting, Birmingham 07/2008 Slide 48

Page 49: Squeezed light for future gravitational wave detectors

49

GEO 600 Layout

GEO 600:

Page 50: Squeezed light for future gravitational wave detectors

50

3dB SQZ:

6dB SQZ:

GEO HF Layout: short 8m Filter Cavity

Page 51: Squeezed light for future gravitational wave detectors

51

3dB SQZ:

6dB SQZ:

GEO HF Layout: long 1200m Filter Cavity


Top Related