spes project - unito.it · spes project selective production ... unknown shell-model interactions...

56
SPES Project Selective Production of Exotic Species Gianfranco Prete LNL-INFN On behalf of the SPES Collaboration XXI GIORNATE DI STUDIO sui RIVELATORI Scuola F. Bonaudi Torino, 10 - 13 Maggio 2011 Centro Congressi di Villa Gualino

Upload: buidang

Post on 06-Sep-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

SPES Project

Selective Production of Exotic Species

Gianfranco Prete LNL-INFN On behalf of the SPES Collaboration

XXI GIORNATE DI STUDIO sui RIVELATORI Scuola F. Bonaudi Torino, 10 - 13 Maggio 2011 Centro Congressi di Villa Gualino

ISOL FACILITY

SPES layout SPES è un Progetto Speciale dell’INFN per la realizzazione di una facility di Fasci di ioni ricchi di neutroni. SPES è il progetto per lo sviluppo della Fisica Nucleare in Italia. Ha un costo valutato di 45 Milioni di euro. Il sito per la realizzaizone del progetto sono i Laboratori Nazionali di Legnaro.

1. Develop a Neutron Rich ISOL facility delivering Radioactive Ion Beams at 10AMeV using the LNL linear accelerator ALPI as re-accelerator .

2. Make use of a Direct ISOL Target based on UCx and able to reach 1013 Fission/s to produce neutron rich exotic beams.

1. Apply the technology and the components of the ISOL facility to develop

applications in neutron production and medicine.

a

b d

g

Exotic nuclei

ISOL facility for Neutron rich nuclei by

U fission 1013 f/s

high purity beam Reacceleration up to

>10 MeV/u

Applications

Proton and neutron facility for applied

physics

Radioisotope produduction

& Medical applications

SPES strategy

SPES Facility Layout

the SPES facility inside LNL

ALPI Exp. Hall 3

Spes isol

~ 50 x 60 m2

Second generation facility for the productin of radioactive beams coupled to the ALPI-LINAC accelerator

Vedremo

Perchè è interessante costruire una infrastruttura di ricerca

che acceleri fasci instabili

Come funziona la produzione di fasci instabili

Quali sono le parti principali del sistema Qual’è lo stato del progetto

Super Heavy stability ???

114

184

2 proton Radioactivity Prevista negli anni 60

94 Ag 2006 GSI

45 Fe 2000, Ganil

Halo nuclei Borromean nuclei 11Li Pigmy resonance

Evolution of shell nuclear structure

?

terra incognita

36 Si

The r-process

New element

(g,n) photodisintegration

Equilibrium favors

“waiting point”

b-decay

Neutron number

Seed

Rapid neutron

capture

neutron capture timescale: ~ 0.2 ms

Comportamento dei nuclei lontani dalla valle di stabilita’

Neutron Drip Line

Quanti neutroni si possono aggiungere ad un nucleo composto da Z protoni?

Perchè l’abbondanza di elementi nelle stelle non è quella che si trova sulla Terra?

Elemental solar abundance

Numeri magici e evoluzione del modello a shell

Nuove intereazioni tra i livelli nucleari possono far cambiare i Numeri Magici

Stable nuclei: N/Z ≈ 1 - 1.5, Sp ≈ Sn ≈ 6 - 8 MeV Homogeneously mixed protons and neutrons Good mean-field description Good “single-particle” picture (magic numbers) Large gaps between major shells Empirical shell-model interactions

Very neutron-rich nuclei: N/Z ≈ 2 - 2.5, Sn << 1 MeV Diffuseness of neutron distribution (neutron skins & halos)

More states near the Fermi surface Breakdown of the single-particle description Redefinition or disappearance of magic numbers Unknown shell-model interactions

protons neutrons

Qualitative Difference Near the Neutron-Dripline

ProtonNeutron

Neutron skin

r

Neutron halo

r

p/n decoupling

Stable Nucleus

r

Pygmy resonance

Physics Domain with RIB

SPES

Target 206 Pb

Beam 132Xe 144Xe

144Xe 132Xe

neutron-rich radioactive beams and transfer reactions: a tool to investigate nuclei far from stability

Coupled channel calculations (Grazing). G. Pollarolo

Calcolo dell’Energia di legame per nuclei sferici con Modello a Shell

Il Modello a Shell prevede un minimo a Z=114 N=184 Previsioni diverse sono fatte con calcoli Hatree-Fock e Relativistic Mean Field Reazioni con fasci instabili possono raggiungere questa regione.

Usando fasci esotici di Kr, Rb, Sr è possibile popolare Nuclei Composti ricchi di neutroni con Z =118-120-126. (96Kr,98Rb, 98Sr)

Call for Letters of Intent: Reaccelerated radioactive beams

15 Nuclear Structure 9 Nuclear Reactions

0

2

4

6

8

10

12

14

16

7 B

e

17 F

56N

i

75-7

7C

u

79Z

n

81G

a

68,8

4G

e

86-9

0 S

e

88-9

2 K

r

90-9

4 R

b

92-9

8 S

r

86-1

02Y

128,1

32C

d

131In

131-1

34 S

n

133Sb

132-1

36 T

e

138-1

44 X

e

140-1

46 B

a

147C

e

International collaborations: Italy Bulgaria Hungary France Poland Spain Great Britain Turkey USA Slovakia Romania Croazia Russia India Germany Canada

* european collaborations

First Day Experiments

SPES2010 Workshop (LNL- November 15th-17th, 2010)

The goal is to improve the scientific collaborations around the SPES facility, defining priorities in the development of exotic beams and instrumentation.

Requested beams

(Next call will be prepared for 2012-13)

Instrumentation: 1 GARFIELD Low threshold 4p LCP-Fragment array - F. Gramegna

2 PRISMA Large acceptance spectrometer - A.M. Stefanini

3 8PLP 4p LCP-Fission Fragment array - M. Cinausero

4 RIPEN Neutron array - M. Cinausero

5 GALILEO g-array - C. Ur

6 TRACE Compact LCP array - D. Mengoni

7* AGATA High performance g-array - E. Farnea

8* FAZIA High performance LCP-Fragment array - G. Casini

9* NEDA New generation neutron array - J.J. Valiente Dobon

10* PARIS New generation high energy g-ray array - A. Maj

11 CHIMERA (partial) Low threshold 4p LCP-Fragment array – S.Pirrone

24

Nuclear Physics European Coordination Committee

Radioactive Ion Beam production methods

Direct target

2 step target (n-induced reactions)

Nuclear Physics European Coordination Committee

European In Flight facility

European ISOL facility

5/30/2011

Alberto Andrighetto 2005

ISOL Possible configurations:

1 STEP:

Direct beam on target

2 STEP:Proton-Nuetron converter

Production Target

UCx

Beam

n, γ

Converter

UCx

Beam

Multi MW power 100KW power

ISOL Roadmap in EUROPE

2014-2025

FROM 2025

SPIRAL – LNS - EXCYT

TODAY 1012 fission/s , 2 MeV/n (A=130)

1013-14 fission/s 10 MeV/n (A=130)

> 1015 fission/s 100 MeV/n (A=130) 3x 100 kW direct target 1x 5 MW 2-step target

SPES - ISOL facility layout: Level -1

Cyclotron

ISOL bunker2

ISOL bunker1 Application

bunker2

Application

bunker1 RIB transport to

PIAVE-ALPI or

RFQ-pre accelerator

Artistic view of the SPES isol facility

High Resolution

Mass Spectrometer

Charge Breeder

Beam Cooler

Il progetto SPES produce fasci radioattivi utilizzando la tecnica ISOL con Bersaglio diretto

Cosa succede nel bersaglio: Reazioni nucleari e produzione di elementi esotici sezione d’urto Estrazione dei prodotti di reazione tempi di effusione-diffusione Potenza assorbita Perdita di energia fascio primario Potenza dissipata termica del sistema Bersaglio-sorgente

Caratteristiche e parametri fondamentali del bersaglio diretto

Fascio primario: PROTONI Ep > 40MeV Bersaglio: UCx

Obiettivi: raggiungere 1013 fissioni/s Minimizzare i problemi di radioprotezione

Gianfranco Prete 2006

Experimental Fission Cross Section of 238U -> Ref:

- Phys Rev 111(1958) 886;

- Nucl Phys A175(1971) 177;

- Nucle. Sci. Eng. 136 (2000) 340

Cross Sections

238U Fission Cross Section

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Energy (MeV)

Cro

ss S

ection

(Bar

n)

neutron

proton

deuteron

Threshold energy

Alberto Andrighetto 2008

FISSION SPECTRA.

Mass Fission Spectra

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

75 85 95 105 115 125 135 145 155

Mass

Yie

ld (

1/s)

Uranium

Primary beam

(p, d, n, ….)

Fission reaction

ISOL production process

Release mechanisms:

In-grain diffusion

Inter-grain effusion

Free effusion/adsorption

Ionization

Operating temperature: At limit of melting

1+

Geometry Entrance window

Exit hole

(0.4 cm inner radius)

Container : Cylindrical tube (1 mm thick): radius 4 cm; length 24 cm

7 UCx Disks: radius 3 cm, 1 mm thick. Mass ~9 g; ( = 2.5 g/cm3)

3 Graphite Disks: radius 3 cm, 0.2 mm thick. ( = 1.75 g/cm3)

Graphite window: radius 4 cm, 0.4 mm thick.

Spacing Between disks: 2 cm

Exit cone length: 12 cm

7 Ucx disks +

3 graphite disks

GEANT4 Example One event 132Sn generated in the the first UCx disk.

Number of bounces:3485

The events originate with the thermal velocity in the region of the UCx disks with a probability given by mcnpx calculations. The beam shape is supposed to be uniform on the disks surfaces

When an atom strike the walls of the container or the disks it is emitted following the cosine law after the “sticking time”

• 1000 events

• Average number of bounces: 4161 + 195

• Average mean path: 166 + 7 m

Ion (T1/2) Teffusion (s)

132Sn (39.7s) 0.25 + 0.01

EFFUSION time evaluation

Numbers of collisions and Release time

Collisions spes ALTO (Parnne)

With container 103 104 105

between grains 104 105 107

With pills 102 103 105

N = 105 N = 107

Teff 0.1 1

Teff = walking time in the container

TSticking Sn = 10-6 sec

Tdiff Sn= 1sec (ISOLDE UCx material) It depends on the element and grain size

Release time = t = Tdiff + Teff + N x TSticking

tSPES = 1 + 0.1 + 0.1 = 1.2

tParnne= 1 + 1 + 10 = 12

22 + 22 tablets 2mmx15mm dia each

10 cm

ALTO target

SPIRAL2 Target ~ 30 times ALTO

SPES target

7 UCx disks + 3 graphite 1mm x 40 mm dia each

20cm

Total Release Fraction ISOLDE UCx

Average sticking time for Sn = 10-6s

tD = 1 s

Average in-powder mean free path 15 um

cono orizzontale

0

20

40

60

80

100

120

0.00 0.01 0.10 1.00 10.00 100.00

T1/2 (s)

TR

F (

%)

TD = 1 s

TD = 10 s

Half live of the extracted isotope

Target total release time

Effusion-diffusion effect on isotopes release

1-step: p 40 MeV 200mA on multi-slice direct target (30gr UCx)

Release times considered:

1-step 2 s proton induced fission

2-step 40 s neutron induced fission

Sn isotopes

1,00E+09

1,00E+10

1,00E+11

115 117 119 121 123 125 127 129 131 133 135 137

1-step

2-step

Sn isotopes

1,00E+05

1,00E+06

1,00E+07

1,00E+08

1,00E+09

110 115 120 125 130 135 140

1-step

2-step

data

In-target production from M.C.

Intensities evaluated considering

emission, ionization and acceleration

efficiencies

2-step: d 40 MeV 2mA on thick 12C converter + UCx target (800 gr) 1013 fissions/sec

N-rich N-rich “Data”Extrapolated from HRIBF

P = ε·σ · S· T4

Stefan-Boltzmann law

Stefan-Boltzmann Constant

Emissivity ε = 1 for black body, 0 for white body

Operando a 2000oC l’irraggiamento è il fenomeno principale di dissipazione della potenza perchè dipende dalla quarta potenza della temperatura.

Termica e dissipazione di potenza

Proton behaviour in the Target

Gianfranco Prete 2006

Stopping Power & Fission Cross Section for p-> UCx

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

2 6 10 14 18 22 26 30 34 38 42 46 50

Proton Energy (MeV)

Bar

n &

MeV

/dg*

cm2

.

Fission Cross Section

Stopping Power

For optimal configuration protons with high fission rate

are inside the Target, the rest inside the Dump

target Dump

40 MeV Multiple Target

Fission Fragments & Energy Loss in UC4

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7

Target Number

MeV

& Y

ield

Energy Loss (MeV)

Fission (per 1000 proton)

Power distribution: Direct target 7 disks 4 cm f ~1 mm thick

Energy loss UCx (30gr) 23 MeV 4.2 KW

(600 W each disk, ~140 W/gr)

Window energy loss 200 W

beam-dump 3.5 KW

Fission efficiency

100p per 1.5 Fission Fragments

~ 200 mA 1013 fissions/sec

Beam power = 40 MeV p x 200 mA = 8 KW

Proton beam

Ion source

40 MeV Multiple Target : Temperature distribution in the disks (R=3cm)

Gianfranco Prete 2006

disk thickness

[mm]

power [W]

Tmax [°C]

DT-max radial dir.

[°C]

DT-max logitudinal

dir. [°C]

window 0.4 189 2069 22 0

target 1 1.4 583 2167 31 36

target 2 1.4 595 2175 50 38

target 3 1.4 606 2180 68 41

target 4 1.3 570 2176 78 39

target 5 1.3 580 2186 88 40

target 6 1.3 589 2195 98 44

target 7 1.2 560 2194 101 41

dump 1 0.8 539 2136 68 3

dump 2 0.7 583 2142 68 3

dump 3 1.0 595 2145 70 4

ENEA calculations benchmarked with ANSYS

UCx Melting point: 2350 oC

Container fixed at 2000oC (Pa)

Temperature distribution

Evaluated stress in

the disks

Temperature distribution [°C] for different configurations

Spes configuration

Normal configuration

HRIBF

1:5 prototype SiC pellets diameter=15mm

container at 2000oC

Melting point: 2300oC Hexoloy SG SiC SaintGobain

Ansys calculation Power density 200W/gr

Operation current 10 mA Power density

100 W/gr

In-beam Test performed at HRIBF- ORNL (USA)

Target technological Challanges Macro Micro

Target Yield

Design

1

MNMX

X

Y

Z

Target SPES

.797E+07

.291E+08

.502E+08

.714E+08

.925E+08

.114E+09

.135E+09

.156E+09

.177E+09

.198E+09

FEB 11 2007

23:44:17

NODAL SOLUTION

STEP=1

SUB =1

TIME=1

SEQV (AVG)

DMX =.571E-03

SMN =.797E+07

SMX =.198E+09

Electro-Thermo- Mechanical Calculations

Choice of Materials

Depending on: T,

Grain size (mm), Specific surface area (SSA, m2g-1),

Interconnectivity degree, Gas permeability (Pa*m-1)

UCx working at T= 2000 °C, p=10-5 mbar

Melting point, Vapour pressure Creep resistance

Thermal conductivity Emissivity

1013 f/s

Ytarget= Φ · σ · N · ε release · ε ionization · ε transport

21

)2ln(

Treleaset

erelease

=

trelease = tdiffusion + teffusion + Ncollisons·t sticking

SPES Pellets Production THE PELLETS PRODUCTION CONSISTS IN TWO PHASES: 1) GREEN PELLETS PRODUCTION (Oxide and Graphite Pellet ) 2) THERMAL TREATMENT

PRODUCTION OF OXIDE PELLET Mixing & Cold Pressing

THERMAL TREATMENT Up to 2000°C (several days)

Dip. di Chimica Universita’ di Padova: tesi di laurea sulla produzione di pellets in LaCx (2006)

Development of Porous Structures Macroporous LaCx Mesoporous LaCx

La2(C2O4)3+14C 2LaC2 + 7C+6CO(g) +3CO2(g) La2O3 + 11 C 2LaC2 + 4C + 3CO( g )

graphite and /or nanotubes

Porosity (pores size 5-10 mm) formation due to:

1. La2(C2O4)3 decomposition in La2O3

2. Carbothermal reduction of La2O3

L. Biasetto et al.,J. Nucl. Mat. 378 (2008) 180-187 L. Biasetto et al.,submitted to J. Nucl. Mat. Oct. (2008)

Porosity formation due to:

1. MWCNTs 45-50 nm 2. Carbothermal reduction of La2O3(pores size 5-10 mm)

Dip. Ing.dei Materiali Università di Padova

LaCx UCx

13 mm

40 mm

40

m

m

13 mm

TEST MATERIAL FINAL GOAL

Carbides production and characterization

LabView software controlling the heating/cooling schedule

Engineering the shielding system

Ultra High Temperature Furnaces

1) Carburization and sintering of carbides

2) Carburization and sintering of UCx

3) Off-line tests on materials (UHT behaviour)

4) Development of measurement systems i.e. thermal conductivity and emissivity

Carbide developments

20 40 60 80 100

0,0

0,2

0,4

0,6

0,8

1,0

§ * **

*

**** *

**

*

*

Inte

nsi

ty

2

*

* aUC2 pdf # 84-1344

§

§ Graphite pdf #

SEM Characterization

1000 1100 1200 1300 1400 1500 1600

0.0

0.2

0.4

0.6

0.8

1.0

UCx from UO

2+nC

em

iss

ivit

y

T (°C)

UCx emissivity

UCx

LaCx Similar challanges without radioactivity of UCx

Emissivity measurement method

1000 1200 1400 1600 1800 20000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

SiCA (hexagonal, bulk)

SiCG (hexagonal, bulk)

SiC xycarb (cubic, porous)

Al2O3

Graphite (fine)

LaCx

T (°C)

Emissivity

Dual frequencies pyrometer

METHOD (published in EPJA ): - First the temperature is measured in bi-chromatic mode. - A the same T value, the pyrometer is switched in mono-cromatic mode. - The emissivity is tuned until the measured T in mono-chromatic mode matches the previous value.

Ionization Schemes - Induced by surfaces impact - Induced by photons - Induced by electron collisions

ION souces

Alberto Andrighetto 2008

Ion Sources efficiencies

Surface Ion source 1 2

H He 3 4 5 6 7 9 10

Li Be B C N O F Ne 11 12 13 14 15 16 17 18

Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 89 104 105 106 107 108 109 110 111 112

Fr Ra Ac Rf Db Sg Bh Hs Mt

8

Elements with bad volatility (NOT EXTRACTED)

Surface Ionization Method (Alkaline)

Laser beam

Laser Ion source

Photo Ionization Method

Plasma Ionization Method (Halogen)

ION sources

Main fission 238U fragments febiad Ion source

Surface ionization Ion Source

3D FEM

0

400

800

1200

1600

2000

2400

2800

200 250 300 350 400 450 500

T [

°C]

I [A]

EXPERIMENTAL VS FEM Temperature measured at POINT 1

EXPERIMENTAL

I=3OO A

I=4OO A I=5OO A

I=4OO A

T1= 1997°C

T2= 1766°C

SPES ISOL Front end

TIS

60 kV insulator Steerer & Electric quads

Beam profile, Faraday cup & emittance-meter

Test of SPES UC2 targets (test performed on March ’10 at HRIBF)

• Seven UC2 samples prepared by the SPES Target Group

• Densities in the range of 4.2 g/cm3

• Used the SPES design for target geometry

• Heated to 2000° C for about two weeks without any out-gassing or obvious change in structure (samples observed after the on-line test)

M.Manzolaro, L.Biasetto, S.Corradetti, D.Scarpa, M.Lollo, A.Andrighetto, P.Zanonato (UniPD), D.Stracener (ORNL)

SPES Target Preliminary data of HRIBF experiment

Experiment March 2010 For expected beam on target, data are scaled to:

200 microA proton current

2-5% transport efficiency

Expected beam on target

A clean experiment needs to separate the ISOBARS produced

Beam selection and identification

Beam: Isobaric mixed Beam: A=82

Reaction: 2H(82Ge,p)83Ge Direct reaction in inverse kinematic

82Ge

82Ge

• Identification of beam and beam-like particles by Ionization Chamber, total rates up to 105 particles per second.

• A = 82 beam was composed of several isotopes: stable 82Se (85%), 82Ge (15%) and a trace of 82As (<1%).

• HRIBF: 5x1011 f/s

First study of the level structure of the r-process nucleus 83Ge

ORNL-HRIBF J. S. Thomas et al. PHYSICAL REVIEW C 71, 021302 (2005)

81,929549725

81,916699401

48 Workshop LEA – SPES, 15-19 November 2010, LNL

What mass resolving power we need?

-50000

-40000

-30000

-20000

-10000

0

10000

20000

30000

40000

50000

10 20 30 40 50 60 70 80 Z

M/D

m

Cr, A=65

Ru, A=100

Ce, A=140

-550000

150000

-290000

HRMS physics design

1.3 mm

DM=2.5 10-5

3o order effects analysis Input parameters: Energy= 260 KeV D=4 mrad and DE= ± 1.3 eV Emittance=3p mm mrad Mass resolution: 1/40000 Expected after engineering design: 1/25000 (without RFQ cooler 1/8000)

A Scaled UP version of the separator

designed by Davids Cary at Argonne

• Bend=80° ρ=1.5 m, Bmax=1.2 T

• Energy 260 kV (1/132)

• (X,X’) emittance=2 p mmmrad

• (Y,Y’) emittance=4 p mmmrad

• Dipole Edge=28°

• Dm/M ~ 40.000

5.6

m

6.3 m

EQ1

EQ3

EQ2

Sx1 EQ1’

EQ2’

EQ3’

Sx2

Multipole

High resolution Mass Spectrometer is needed to separate beams of equal mass. The physics design of the spectrometer is completed.

ALPI superconductive linac

18 cryostats mounted. Each cryostat host 4 quarter wave RF cavities.

Superconducting linac based on Quarter Wave Resonators

ALPI upgrade: Upgrade LowBeta RF power 2 additional LowBeta Cryostats (CR1, CR2) New buncher New magnetic lenses (from 20 to 30 T/m)

ALPI as post accelerator for SPES radioactive beams

•Up-grading program started in 1999: changing cavity sputtering from Pb on Cu to Nb on Cu or bulk Neobium. •2003 Up graded to Veq ~ 40 MV •2009: Up graded to Veq ~ 48MV •2010-2012: Low Beta RF upgraded to 5MV/m •Additional 2 Low Beta cryostats for SPES configuration

Expected Energies: beyond 10 MeV/A for beams with A~130

Expected SPES energies

Coulomb barrier on Pb

After linac upgrade

Actual linac

Linac upgrade & high energy stripper

30% efficiency

58

Cyclotron operation principle

Beam hits foil

Electrons are removed

H– becomes H+

Positive charge curves the other way

H+ ions (protons) leave the cyclotron

Easy to add multiple exit ports

By putting the foil at different points, protons are

extracted at any of a wide range of energies.

Vacuum chamber

RF (10-20 MHz, 10-100 kV)

H- acceleration and stripper foil extraction

Lawrence (idea 1929, Nobel price1939)

Forza centripeta= forza di Lorentz

f = const indipendente dal raggio dell’orbita

59

Compact cyclotron today

Fixed and variable energy negative ion cyclotrons for the production of commonly used PET (positron emission tomography) radioisotopes; F-18, N-13, O-15, C-11 and Pd-103, as well as research isotopes.

60

Proton energy variable in the range

35-70 MeV

•Minimum current outside the cyclotron

two extraction lines

700 μA (~ 4.2*1015 p/s)

Total power consumption 270kVA

Magnet: Diameter 4.5 m Height 2.3 m Weight 200 t Magnetic field 1.6 Tesla

SPES cyclotron Proton driver with the two distribution magnets for the two extraction lines

SPES collaborations network

2010 2011 2012 2013 2014 2015

11.3 ME 9.4 ME 8.5ME 8.0 ME 5.1 ME 4.1 ME

Facility preliminary design completion

Prototype of ISOL Target and ion source

ISOL Targets construction and installation

Authorization to operate

And safety

Building’s Tender & Construction

Cyclotron Tender & Construction

Cyclotron Installation and commissioning

Neutron facility design

Neutron facility construction

Alpi preparation for post acceleration

Design of RIB transport & selection (HRMS,

Charge Breeder, Beam Cooler)

Construction and Installation of RIBs transfer

lines and spectrometer

Complete commissioning

SPES Schedule

Cyclotron operation UCx operation

CONCLUSIONI

Il Progetto SPES è stato approvato dall’INFN

Il bersaglio ISOL e la sorgente sono stati sviluppati e sono sotto test

E’ stato richiesta l’autorizzazione all’utilizzo della facility

Il contratto per la fornitura del ciclotrone è stato firmato a Novembre 2010

E’ stata assegnata la gara per la progettazione esecutiva dell’edilizia

Inizio lavori edilizia previsto per autunno 2012

Direct ISOL TARGET group

unit FTE task0 1 2 3 4 5 6 7 8 proj.leader

LNL 48 26,9 1,2 5,3 2,8 7,3 1,7 2,00 1,8 2,8 1,0 1,0

StaffLNL 31 14,2 0,7 3,0 0,8 2,3 1,7 0,7 0,5 2,5 1,0 1,0

total 67 35,4 1,4 5,3 3,3 11,9 2,9 2,5 2,3 3,3 1,5 1,0

PERSONNEL of project group

Grazie per l’attenzione !