sounding the troposphere by leo-leo occultation: …wegc...16-20 september 2002 opac-1, graz,...

24
16-20 September 2002 OPAC-1, Graz, Austria 1 Sounding the Troposphere by LEO-LEO Occultation: A Simulation Retrieval System and Performance Analysis Results Stephen Leroy 1 , Chi O. Ao Jet Propulsion Laboratory California Institute of Technology 1 Done in part while visiting the Danish Meteorological Institute

Upload: others

Post on 10-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

16-20 September 2002 OPAC-1, Graz, Austria 1

Sounding the Troposphere by LEO-LEO Occultation: A Simulation Retrieval System

and Performance Analysis Results

Stephen Leroy1, Chi O. AoJet Propulsion Laboratory

California Institute of Technology

1Done in part while visiting the Danish Meteorological Institute

16-20 September 2002 OPAC-1, Graz, Austria 2

Inheritance and Requirements

GPS Occultation • All operational experience in

level 2 retrieval gained from GPS occultation

• Unresolved problems: negative-refractivity bias, horizontal gradients, nonphysical retrievals

• Unresolveable issues: wet-dry ambiguity (though no need to resolve for NWP)

To ACE+• Make a system which is a first

draft retrieval system and performance analysis system

• Simulate multipath, diffraction, high-accuracy amplitude

• Simulate systematic and random noise: stability and power issues

• Retrieve physically-constrained geophysical parameters (T, p, pw, ρcloud, rrain, O3, u, gain)

16-20 September 2002 OPAC-1, Graz, Austria 3

Steps in Performance AnalysisGPS Occultation1. Atmospheric parameters (T, p, pw)

to real index of refraction (n)2. Simulate bending using Abel

transform / multiplane diffraction integrals

3. Geometry to simulate phase4. Superimpose noise on s/c

measurement of phase5. Invert to real index of refraction

using geometry / Egorov, then Abel transform

6. Obtain atmospheric parameters by assuming T or pw or by variational assimilation

Intersatellite Link Occ’n 1. Atmospheric parameters (T, p, pw,

ρcloud, rrain, O3, u) to complex n2. Simulate bending and attenuation

using Abel transforms3. Simulate phase using inverse

canonical transform4. Superimpose noise on receiver

measurements of correlation products (open-loop)

5. Invert to complex n profiles using forward canonical transform, Abel transforms

6. Obtain physically constrained atmospheric parameters using linearly constrained least squares

16-20 September 2002 OPAC-1, Graz, Austria 4

The simulation-retrieval system

NCEP AnalysisComplex

refractivityprofile

Simulatedobservation

Bending, attenuation

profiles

Complex refractivity

profile

Profile ofgeophysical

variables

MPMInverse

canonical transform

Add noise, systematicand random

Integrate bending;

absorptionLevel 2 retrieval

Bending, attenuation

profiles

Abel integrals

Forward canonical transform

Complexelectric

field

16-20 September 2002 OPAC-1, Graz, Austria 5

The simulation-retrieval system

NCEP AnalysisComplex

refractivityprofile

Simulatedobservation

Bending, attenuation

profiles

Complex refractivity

profile

Profile ofgeophysical

variables

MPMInverse

canonical transform

Add noise, systematicand random

Integrate bending;

absorptionLevel 2 retrieval

Bending, attenuation

profiles

Abel integrals

Forward canonical transform

Complexelectric

field

16-20 September 2002 OPAC-1, Graz, Austria 6

SimDistribution (115 occ’ns)

Properties:•Multiple transmitters

•Multiple receivers

•Mutual occ’ns

•Oblate Earth

•NetCDF output

•Circular orbits

•Variable inclination, altitude, ascending node, anomaly

16-20 September 2002 OPAC-1, Graz, Austria 7

SimNCEPAtmosphere

0.00 0.05 0.10 0.15 0.20Attenuation (dB/km)

0

5

10

15

Alti

tude

(km

)

0.00 0.05 0.10 0.15 0.20Attenuation (dB/km)

0

5

10

15

Alti

tude

(km

)

0.00 0.05 0.10 0.15 0.20Attenuation (dB/km)

0

5

10

15

Alti

tude

(km

)

0.00 0.05 0.10 0.15 0.20Attenuation (dB/km)

0

5

10

15

Alti

tude

(km

)

0.00 0.05 0.10 0.15 0.20Attenuation (dB/km)

0

5

10

15

Alti

tude

(km

)0.00 0.05 0.10 0.15 0.20

Attenuation (dB/km)

0

5

10

15

Alti

tude

(km

)

Properties•Uses NCEP analysis starting at any time

•Millimeter-wave Propagation Model

•User-selected frequencies

•Accounts for clouds, rain (future: ozone, wind)

•NetCDF input/output

Occultation 56: 15.34E, -0.11N, 22.914hrs

180 200 220 240 260 280 300 320Temperature (K)

0

10

20

30

40

Alti

tude

(km

)

0 2 4 6 8 10 12 14Specific Humidity (g/kg)

0

10

20

30

40

Alti

tude

(km

)

0 50 100 150 200Cloud Liquid Water (mg/m3)

0

10

20

30

40

Alti

tude

(km

)

0 5 10 15 20Ozone (mg/m3)

0

10

20

30

40A

ltitu

de (

km)

0 50 100 150 200Integrated Bending (m)

6330

6340

6350

6360

6370

6380

Impa

ct P

aram

eter

(km

)0 20 40 60 80 100

Attenuation (dB)

6330

6340

6350

6360

6370

6380

Impa

ct P

aram

eter

(km

)

16-20 September 2002 OPAC-1, Graz, Austria 8

The simulation-retrieval system

NCEP AnalysisComplex

refractivityprofile

Simulatedobservation

Bending, attenuation

profiles

Complex refractivity

profile

Profile ofgeophysical

variables

MPMInverse

canonical transform

Add noise, systematicand random

Integrate bending;

absorptionLevel 2 retrieval

Bending, attenuation

profiles

Abel integrals

Forward canonical transform

Complexelectric

field

16-20 September 2002 OPAC-1, Graz, Austria 9

The Inverse Canonical TransformMethods of simulating observations1. Raytracing (1-D, 2-D, 3-D)

– Ideal for computing phase– Difficult to simulate amplitude– Handles multipath, but not guaranteed

to find all rays– Cannot handle diffraction– 2-D and 3-D version handle spherically

nonsymmetric structures2. Multiplane (2-D)

– Computes phase, amplitude very precisely

– Handles multipath, find all rays– Handles diffraction completely– Handles along-track asymmetric in

atmosphere– Very expensive at high frequency

Forward canonical transform• Given phase and amplitude, compute

bending angle and atmospheric attenuation

• 1-Dimensional• Accounts for multipath and diffraction• Does not handle spherically

nonsymmetric structures• Computationally inexpensive, two FFTs• The canonical transform has an analytic

inverse which produces phase and amplitude from atmospheric bending and attenuation

(Gorbunov, 2000)

16-20 September 2002 OPAC-1, Graz, Austria 10

The Canonical Transform

Complex field ux(y), Fourier transform ux(η)

Impact parameter pOrientation angle ξ

Attenuation –ln A(p)

′′=Φ ∫

ppdpikpApu )(exp)()( ξ

x

16-20 September 2002 OPAC-1, Graz, Austria 11

The Inverse Canonical Transform, cont’d

The forward canonical transform (from Gorbunov) transforms from y,ky coordinates to p,ξ coordinates:

The inverse canonical transform transforms from p,ξcoordinates to y,ky :

( ) ( )[ ] ( )ηηηηηπ xx uxpikdkpu ~1arcsinexp1

2)( 24/12 −−−=Φ ∫

[ ]dpikppueu xikx

x ηηη η arcsinexp)()1()(~ 214/32 −Φ−= ∫−−

16-20 September 2002 OPAC-1, Graz, Austria 12

Abel Transform Integrals

′′=Φ ∫

ppdpikpApu )(exp),(),( ξυυ

−−−

−=Φ ∫∫∞∞

minmin

ln)(2)(

)(2exp),( 22

22 rr

rrr

ri drdr

ndprnikprndrrnnkpu υυ

Forward model for attenuation!(Need corrections

for some geometriceffects)

Forward model for bending!

(Need correction forincident ray orientation)

16-20 September 2002 OPAC-1, Graz, Austria 13

Example simulationOccultation 1: 356.73E, 73.30N, 0.218hrs

180 200 220 240 260 280 300 320Temperature (K)

0

10

20

30

40

Alti

tude

(km

)

0 2 4 6 8 10 12 14Specific Humidity (g/kg)

0

10

20

30

40

Alti

tude

(km

)

0 50 100 150 200Cloud Liquid Water (mg/m3)

0

10

20

30

40

Alti

tude

(km

)

0 5 10 15 20Ozone (mg/m3)

0

10

20

30

40

Alti

tude

(km

)

0 50 100 150 200Integrated Bending (m)

6390

6400

6410

6420

6430Im

pact

Par

amet

er (

km)

0 20 40 60 80 100Attenuation (dB)

6390

6400

6410

6420

6430

Impa

ct P

aram

eter

(km

)

16-20 September 2002 OPAC-1, Graz, Austria 14

Example simulation, cont’d

0.0

0.2

0.4

0.6

0.8A

mpl

itude

0 5 10 15 20Time (s)

0

500

1000

1500

Pha

se (

m)

16-20 September 2002 OPAC-1, Graz, Austria 15

The simulation-retrieval system

NCEP AnalysisComplex

refractivityprofile

Simulatedobservation

Bending, attenuation

profiles

Complex refractivity

profile

Profile ofgeophysical

variables

MPMInverse

canonical transform

Add noise, systematicand random

Integrate bending;

absorptionLevel 2 retrieval

Bending, attenuation

profiles

Abel integrals

Forward canonical transform

Complexelectric

field

16-20 September 2002 OPAC-1, Graz, Austria 16

Adding Error

Sources of error:• Gain drift dg/dt in dB/s• Signal-to-noise ratio, σ = (vs/c/dy)1/2 / SNR

)(10)()( 2110/ innyuyu tg

trueobs ++⋅= σ&

16-20 September 2002 OPAC-1, Graz, Austria 17

The simulation-retrieval system

NCEP AnalysisComplex

refractivityprofile

Simulatedobservation

Bending, attenuation

profiles

Complex refractivity

profile

Profile ofgeophysical

variables

MPMInverse

canonical transform

Add noise, systematicand random

Integrate bending;

absorptionLevel 2 retrieval

Bending, attenuation

profiles

Abel integrals

Forward canonical transform

Complexelectric

field

16-20 September 2002 OPAC-1, Graz, Austria 18

Abelian inversions

Inversion for real part of refractivity

Inversion for imaginary part of refractivity

∫∞

−′′′

=pr

pppdppn

22

)(1)(ln επ

∫∞

−′′′

=pi

pppdampp

dpd

drdp

kppn

22

)ln(1)(π

16-20 September 2002 OPAC-1, Graz, Austria 19

The simulation-retrieval system

NCEP AnalysisComplex

refractivityprofile

Simulatedobservation

Bending, attenuation

profiles

Complex refractivity

profile

Profile ofgeophysical

variables

MPMInverse

canonical transform

Add noise, systematicand random

Integrate bending;

absorptionLevel 2 retrieval

Bending, attenuation

profiles

Abel integrals

Forward canonical transform

Complexelectric

field

16-20 September 2002 OPAC-1, Graz, Austria 20

Retrieval of geophysical variables

Constraints, such as hydrostatic equilibrium, nonnegative water vapour, etc., must satisfy H(x)=0.

( ) ( ) 212 xJHxJdOxJd δδλδδχ HMPMT

MPM ++−−= −

Minimize χ2 with respect to data and constraints:

Solution: Factorize( ) T

HHHT

H eλeJJ =

Remove the constraint space described by the eigenvectors eH from the retrieval space (JO-1JT). Then retrieval can be done for each level, starting from the top of the atmosphere. Same as linearly constrained least squares: Minimize

Topmost layer: 0DVAR using a climatology of pressure and temperature.

Subsequent layers: linearly constrained least squares, hydrostatic equilibrium mandatory.

Added generality: make it possible to retrieve a subset of geophysical variables; use up to 10 frequencies, but subset by frequency and real/imaginary part for each level.

( ) ( )xJdOxJd δδχ MPMT

MPM −−= −12 subject to 0=∇⋅ Hxδ

16-20 September 2002 OPAC-1, Graz, Austria 21

Boundary layer χ2

Bending and absorption

Absorption only

16-20 September 2002 OPAC-1, Graz, Austria 22

Example level 2 retrieval w/ errors

-60 -40 -20 0 20 40 60Pressure error (Pa)

0

10

20

30

40

Hei

ght (

km)

-10 -5 0 5 10Temperature error (K)

-0.10 -0.05 0.00 0.05 0.10Specific humidity error (g/kg)

16-20 September 2002 OPAC-1, Graz, Austria 23

Example (unrelated) level 2 retrieval

-20 -10 0 10 20 30Pressure error (Pa)

0

10

20

30

40H

eigh

t (km

)

-10 -5 0 5 10Temperature error (K)

0

10

20

30

40

Hei

ght (

km)

-1.0 -0.5 0.0 0.5 1.0Water vapor pressure error (K)

0

10

20

30

40

Hei

ght (

km)

-0.02 -0.01 0.00 0.01 0.02Specific humidity error (g/kg)

0

10

20

30

40

Hei

ght (

km)

-20 -10 0 10 20 30Pressure error (Pa)

0

10

20

30

40

Hei

ght (

km)

-10 -5 0 5 10Temperature error (K)

-0.02 0.00 0.02Specific humidity error (g/kg)

16-20 September 2002 OPAC-1, Graz, Austria 24

Summary/Work-to-be-done

• Complete forward and inverse canonical transform• Include line parameterizations for ozone• Series of runs at 10.3, 17.2, 22.6 GHz• Series of runs with a “calibration tone” (3-5 GHz)• Try different gain drifts (0.01-0.10 dB/30s) with and

without calibration tone to determine how much the calibration tone helps

• Different SNRs (100-1000) with different sets of frequencies to determine sensitivity in the presence of clouds