solar neutrinos: current implications and future possibilities

61
Solar Neutrinos: Current Implications and Future Possibilities CENPA CENPA Center for Experimental Nuclear Physics and Astrophysics J. F. Wilkerson March 20, 2003 Fermilab -- NUHORIZONS - Solar neutrinos - Reactor antineutrinos - Future Possibilities -decay -decay SNO KamLAND solar neutrinos QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture

Upload: boyd

Post on 28-Jan-2016

51 views

Category:

Documents


0 download

DESCRIPTION

Solar Neutrinos: Current Implications and Future Possibilities. - Solar neutrinos - Reactor antineutrinos - Future Possibilities. SNO. KamLAND. solar neutrinos. b -decay. bb -decay. CENPA. J. F. Wilkerson March 20, 2003 Fermilab -- NUHORIZONS. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Solar Neutrinos: Current Implications and Future Possibilities

Solar Neutrinos: Current Implications and Future Possibilities

CENPACENPACenter for Experimental Nuclear Physics and Astrophysics

J. F. WilkersonMarch 20, 2003Fermilab -- NUHORIZONS

- Solar neutrinos

- Reactor antineutrinos

- Future Possibilities

-decay

-decay

SNO

KamLAND

solar neutrinos

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Page 2: Solar Neutrinos: Current Implications and Future Possibilities

1854 von Helmholtz postulates gravitational energy

Our “accelerator” - the Sun

“We do not argue with the critic who urges that the stars are not hot enough for this process; we tell him to go and find a hotter place.”

p + p 2H + e+ + e p + e- + p 2H + e

2H + p 3He +

3He + 3He 4He + 2p 3He + p + e+ + e

3He + 7Be +

7Be + e- 7Li + +e7Be + p 8B +

7Li + p + 8B 2 + e+ + e

SSM Energy Generation

1938 Bethe & Critchfield

p + p 2H + e+ + e

1920’s Eddington proposes p + p fusion

Page 3: Solar Neutrinos: Current Implications and Future Possibilities

1946 Pontecorvo,1949 Alvarez

37Cl + e 37Ar + e-

Using solar s’ to probe the Sun

p + p 2H + e+ + e p + e- + p 2H + e

2H + p 3He +

3He + 3He 4He + 2p 3He + p + e+ + e

3He + 7Be +

7Be + e- 7Li + +e7Be + p 8B +

7Li + p + 8B 2 + e+ + e

SSM Energy Generation

Page 4: Solar Neutrinos: Current Implications and Future Possibilities

1946 Pontecorvo,1949 Alvarez

37Cl + e 37Ar + e-

Using solar s’ to probe the Sun

“…to see into the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars...”

1960’s Ray Davis, builds Chlorine detector

John Bahcall, generates SSM & flux predictions

Page 5: Solar Neutrinos: Current Implications and Future Possibilities

Solar FluxMeasurement Results

flux ~ 6.5 • 1010/cm2/s

Page 6: Solar Neutrinos: Current Implications and Future Possibilities

Astrophysical Solutions?

p + p 2H + e+ + e p + e- + p 2H + e

2H + p 3He +

3He + 3He 4He + 2p 3He + p + e+ + e

3He + 7Be +

7Be + e- 7Li + +e7Be + p 8B +

7Li + p + 8B 2 + e+ + e

SSM Energy Generation Hata and Langacker

The data are incompatible with standard and non-standard solar models

(For a model independent analysis see Heeger and Robertson, PRL 77 (1996) 3720 )

Page 7: Solar Neutrinos: Current Implications and Future Possibilities

Super-KamiokandeElastic Scattering:x + e- x + e-

Data/SSM = 0.451 ± 0.005 (stat) (sys.)

+0.016- 0.014

ES = 2.32 ± 0.03 (stat) (sys.)

+0.08- 0.07(106

cm-2 s-1)

(hep-ex/0103032)

Page 8: Solar Neutrinos: Current Implications and Future Possibilities

Gallium Measurements71Ga + e 71Ge + e-

Two independent experiments

SAGE Data/SSM = 0.55 ± 0.05 GALLEX Data/SSM = 0.57 ± 0.05 Latest SAGE results (astro-ph/0204245)

SSM

Both Expts Performedsource tests

51Cr + e- 51V + e

Page 9: Solar Neutrinos: Current Implications and Future Possibilities

Gallium Measurements71Ga + e 71Ge + e-

Two independent experiments

SAGE Data/SSM = 0.55 ± 0.05 GALLEX Data/SSM = 0.57 ± 0.05 Latest SAGE results (astro-ph/0204245)

SSM

Both Expts Performedsource tests

51Cr + e- 51V + e

Page 10: Solar Neutrinos: Current Implications and Future Possibilities

Gallium Measurements71Ga + e 71Ge + e-

Two independent experiments

SAGE Data/SSM = 0.55 ± 0.05 GALLEX Data/SSM = 0.57 ± 0.05 Latest SAGE results (astro-ph/0204245)

SSM

SAGE Source TestR(mea/th)=0.95±.12±.03

Both Expts Performedsource tests

51Cr + e- 51V + e

Page 11: Solar Neutrinos: Current Implications and Future Possibilities

Beyond the Standard Model - mass & mixing

Vacuum Oscillations Small splittings in mass can lead to large observable phase differences in Q.M. amplitude.

Oscillation experiments yieldmass squared differences:

m122 m1

2 m 2

2

m232 m 2

2 m 3

2

m132 m 1

2 m 3

2

(See B. Kayser hep-ph/0104147 for a nice introduction)

If neutrinos have mass then the leptonmixing matrix (Maki-Nakagawa-Sakata-Pontecorvo, or MNSP) is no longer a

e

Ue1 Ue2 Ue3

U1 U2 U3

U1 U 2 U 3

1

2

3

trivial representation and flavor eigen-states are a mixture of mass eigenstates.

Then

e U e11 U e 2 2 U e 3 3

and the state evolves with time or distance

e Ue1e iE1 t1 Ue 2e

iE2t 2 Ue3e iE3t 3

where

E i2 p2 mi

2

Page 12: Solar Neutrinos: Current Implications and Future Possibilities

For simple case of mixing betweentwo mass eigenstates

P i j4Ui2

2U j2

2sin2 1.27m12

2 L

E

P i jsin2 2 sin2 1.27m2

(eV) L(km)

E (GeV)

Sensitivity of experiments to oscillations

m2 (eV2 )

1102 10-2 10-4 10-6 10-8 10-10

110-2 102 104 106 108 1010

Reactor [~MeV]

Atmospheric [~GeV]

Solar [~MeV]

L/E (km/GeV)

Accelerator [~GeV]

Page 13: Solar Neutrinos: Current Implications and Future Possibilities

For simple case of mixing betweentwo mass eigenstates

P i j4Ui2

2U j2

2sin2 1.27m12

2 L

E

P i jsin2 2 sin2 1.27m2

(eV) L(km)

E (GeV)

Sensitivity of experiments to oscillations

s in matter can acquire an effective mass through scattering (analogous to index of refraction for light in transparent media)

Matter Enhanced Oscillations (MSW)

MSW

m2 (eV2 )

1102 10-2 10-4 10-6 10-8 10-10

110-2 102 104 106 108 1010

Reactor [~MeV]

Atmospheric [~GeV]

Solar [~MeV]

L/E (km/GeV)

Accelerator [~GeV]

Page 14: Solar Neutrinos: Current Implications and Future Possibilities

Mikhevev, Smirnov, Wolfenstein Effect

s in matter can acquire an effective mass through scattering (analogous to index of refraction for light in transparent media)

Matter Enhanced Oscillations

Normal Matter contains many electrons, but no muons or taus, so ecan undergo both CC and NC scattering. Have QM two-state level crossing and flavor change.

MSW Oscillations are dependent on the energy and the density of the material, hence one can observe spectral energy distortions.

e

e

e

e xx

ee

W Z

Page 15: Solar Neutrinos: Current Implications and Future Possibilities

Kamiokande

Matter Enhanced Oscillations

SAGE & GALLEX

Homestake

LMA

LOW

SMA

MSW gives a dramatic extension of oscillation sensitivity to potential regions in m2

Solar data are consistent with the MSW hypothesis.

But only circumstantial evidence• Need definitive proof• Appearance measurement• Independent of SSM

Page 16: Solar Neutrinos: Current Implications and Future Possibilities

G. Milton, B. SurAtomic Energy of Canada Ltd., Chalk River Laboratories

S. Gil, J. Heise, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng,Y.I. Tserkovnyak, C.E. WalthamUniversity of British Columbia

J. Boger, R.L Hahn, J.K. Rowley, M. YehBrookhaven National Laboratory

R.C. Allen, G. Bühler, H.H. Chen*

University of California, Irvine 

I. Blevis, F. Dalnoki-Veress, D.R. Grant, C.K. Hargrove,I. Levine, K. McFarlane, C. Mifflin, V.M. Novikov, M. O'Neill,

M. Shatkay, D. Sinclair, N. StarinskyCarleton University

 T.C. Andersen, P. Jagam, J. Law, I.T. Lawson, R.W. Ollerhead,

J.J. Simpson, N. Tagg, J.-X. WangUniversity of Guelph

J. Bigu, J.H.M. Cowan, J. Farine, E.D. Hallman, R.U. Haq,J. Hewett, J.G. Hykawy, G. Jonkmans, S. Luoma, A. Roberge,

E. Saettler, M.H. Schwendener, H. Seifert, R. Tafirout,C.J. Virtue

Laurentian University 

Y.D. Chan, X. Chen, M.C.P. Isaac, K.T. Lesko, A.D. Marino,E.B. Norman, C.E. Okada, A.W.P. Poon, S.S.E Rosendahl,

A. Schülke, A.R. Smith, R.G. StokstadLawrence Berkeley National Laboratory

M.G. Boulay, T.J. Bowles, S.J. Brice, M.R. Dragowsky,M.M. Fowler, A.S. Hamer, A. Hime, G.G. Miller,

R.G. Van de Water, J.B. Wilhelmy, J.M. Wouters Los Alamos National Laboratory

J.D. Anglin, M. Bercovitch, W.F. Davidson, R.S. Storey*

National Research Council of Canada

J.C. Barton, S. Biller, R.A. Black, R.J. Boardman, M.G. Bowler,J. Cameron, B.T. Cleveland, X. Dai, G. Doucas, J.A. Dunmore,

H. Fergani, A.P. Ferrarris, K. Frame, N. Gagnon, H. Heron, N.A. Jelley, A.B. Knox, M. Lay, W. Locke, J. Lyon, S. Majerus, G. McGregor,M. Moorhead, M. Omori, C.J. Sims, N.W. Tanner, R.K. Taplin,M.Thorman, P.M. Thornewell, P.T. Trent, N. West, J.R. Wilson

University of Oxford

E.W. Beier, D.F. Cowen, M. Dunford, E.D. Frank, W. Frati,W.J. Heintzelman, P.T. Keener, J.R. Klein, C.C.M. Kyba, N. McCauley, D.S. McDonald, M.S. Neubauer, F.M. Newcomer, S.M. Oser, V.L Rusu,

S. Spreitzer, R. Van Berg, P. WittichUniversity of Pennsylvania

 R. Kouzes

Princeton University

E. Bonvin, M. Chen, E.T.H. Clifford, F.A. Duncan, E.D. Earle,H.C. Evans, G.T. Ewan, R.J. Ford, K. Graham, A.L. Hallin,

W.B. Handler, P.J. Harvey, J.D. Hepburn, C. Jillings, H.W. Lee,J.R. Leslie, H.B. Mak, J. Maneira, A.B. McDonald, B.A. Moffat,

T.J. Radcliffe, B.C. Robertson, P. SkensvedQueen’s University

D.L. WarkRutherford Appleton Laboratory, University of Sussex

R.L. Helmer, A.J. NobleTRIUMF

Q.R. Ahmad, M.C. Browne, T.V. Bullard, G.A. Cox, P.J. Doe,C.A. Duba, S.R. Elliott, J.A. Formaggio, J.V. Germani,

A.A. Hamian, R. Hazama, K.M. Heeger, K. Kazkaz, J. Manor, R. Meijer Drees, J.L. Orrell, R.G.H. Robertson, K.K. Schaffer,

M.W.E. Smith, T.D. Steiger, L.C. Stonehill, J.F. Wilkerson University of Washington

The SNO Collaboration

Page 17: Solar Neutrinos: Current Implications and Future Possibilities

The Sudbury Neutrino Observatory

NCxx

npd

ES -- ee x x

-Low Statistics -Dominant contribution (5/6) from e,, smaller (`1/6) contributions from & -Strong directional sensitivity

-Good sensitivity to e energy spectrum-Weak directional sensitivity 1-1/3cos()- e only.

- Measure total 8B flux from the sun.- Equal cross section for all types- 2.2 MeV Threshold, Integrated E > Eth

CC-epd e p

Page 18: Solar Neutrinos: Current Implications and Future Possibilities

Key signatures for unexpected Flavors

cc

es

=e

e + 0.154( +

cc

nc

e

e + + =

June 2001

April 2002

April 2002day nightvs

Measure total flux of solar neutrinos vs. the pure e flux

Direct Evidencefor flavor change

Potential signalFor oscillations

Page 19: Solar Neutrinos: Current Implications and Future Possibilities

The SNO Detector during Construction

Page 20: Solar Neutrinos: Current Implications and Future Possibilities

The SNO Detector during Construction

Page 21: Solar Neutrinos: Current Implications and Future Possibilities

The SNO Detector during Construction

Page 22: Solar Neutrinos: Current Implications and Future Possibilities

The SNO Detector during Construction

Page 23: Solar Neutrinos: Current Implications and Future Possibilities

Reactions in SNO

NCxx

npd

ES -- ee x x

-Low Statistics -Mainly sensitive to e,, some sensitivity to and -Strong directional sensitivity

-Good measurement of e energy spectrum-Weak directional sensitivity 1-1/3cos()- e only.

- Measure total 8B flux from the sun.- Equal cross section for all types- 2.2 MeV Threshold, Integrated E > Eth

CC-epd e p Produces Cherenkov

Light Cone in D2O

Produces CherenkovLight Cone in D2O

n captures on deuteron2H(n, )3HObserve 6.25 MeV

D2O Only Phase

Page 24: Solar Neutrinos: Current Implications and Future Possibilities

Extraction of CC, ES, NC Signals

To extract the CC, ES, NC signal SNO performs a Max-likelihood statistical separation of these signals based on distributions of the SNO observables.

Page 25: Solar Neutrinos: Current Implications and Future Possibilities

CC 1967.7 +61.9 +60.9

+26.4 +25.6ES 263.6

+49.5 +48.9NC 576.5#EV

EN

TS

Shape Constrained Signal Extraction Results

First result Eth of 6.75 MeV

Page 26: Solar Neutrinos: Current Implications and Future Possibilities

SNO NC in D2O Conclusions

ssm = 5.05+1.01-0.81

+0.44-0.43sno = 5.09 +0.46

-0.43

~ 2/3 of initial solar e are observed at SNO to be

Rule out null hypothesis - no flavor change -at 5.3 level.

Page 27: Solar Neutrinos: Current Implications and Future Possibilities

SNO Signal Extraction in CC, NC, ES

Etn = 5 MeV

e+ 0.15 (+) e

SSM

e+ +

CC shape unconstrained

NeutralCurrent (NC)

Elastic Scattering (ES)

ChargedCurrent (CC)

CC shape constrained

June 2001

ESSNO

CCSNO

NCSNO

April 2002

CCSNO

ESSNO

8B from CCSNO+ESSK

5.3

2.0

1.5

1.0

0.5

0.0

Neu

trin

o S

igna

l (SS

M B

P00)

cc(e) = 1.76 x106 cm-2s-1+0.06

-0.05

+0.09

-0.09

NC(e) = 5.09 x106 cm-2s-1+0.44

-0.43

+0.46

-0.43 es(e) = 2.39 x106 cm-2s-1+0.24

-0.23

+0.12

-0.12

Page 28: Solar Neutrinos: Current Implications and Future Possibilities

SNO Conclusions• First NC flux measurements - clear evidence that the majority of e produced in the Sun are transformed to and/or

• Null hypothesis - “No Weak Flavor Mixing” ruled out at 5.3 • Lowest Detection threshold yet for a real-time solar detector• Total 8B flux measurement agrees well with Solar Models• Data in good agreement with previous SNO - SK CC/ES result

• First measurements of the Day-Night Asymmetries

• SNO Data consistent with MSW oscillation interpretation• combined with global solar neutrino data favors LMA solution• “Dark side” solutions not allowed, indicating m2 > m1

nucl-ex/0204008, nucl-ex/0204009

Combining All Experimentaland Solar Model information

Page 29: Solar Neutrinos: Current Implications and Future Possibilities

Reactor e oscillation searches

1956 Reines & Cowan +enp e

Chooz hep-ex/9907037

Disappearance experiments

Page 30: Solar Neutrinos: Current Implications and Future Possibilities

Solar neutrino LMA implication

Reactor experiments optimum at ~180 km

Solar LMA best fitprediction

Page 31: Solar Neutrinos: Current Implications and Future Possibilities

G.A.Horton-Smith, R.D.McKeown, J.Ritter, B.Tipton,

P.VogelCalifornia Institute of Technology

C.E.Lane, T.MileticDrexel University

Y-F.WangIHEP, Beijing

T.TaniguchiKEK

B.E.Berger, Y-D.Chan, M.P.Decowski, D.A.Dwyer,

S.J.Freedman, Y.Fu, B.K.Fujikawa, K.M. Heeger,

K.T.Lesko,K-B.Luk, H.Murayama, D.R.Nygren,

C.E.Okada, A.W.Poon, H.M.Steiner, L.A.Winslow LBNL/UC Berkeley

S.Dazeley, S.Hatakeyama, R.C.SvobodaLouisiana State University

J.Detwiler, G.Gratta, N.Tolich, Y.UchidaStanford University

KamLAND CollaborationK.Eguchi, S.Enomoto, K.Furuno, Y.Gando, J.Goldman, H.Ikeda, K.Ikeda, K.Inoue, K.Ishihara, T.Iwamoto, T.Kawashima, Y.Kishimoto, M.Koga, Y.Koseki, T.Maeda, T.Mitsui, M.Motoki, K.Nakajima, H.Ogawa, K.Oki, K.Owada, I.Shimizu, J.Shirai, F.Suekane, A.Suzuki, K.Tada, O.Tajima, K.Tamae, H.WatanabeTohoku University

L.DeBraeckeleer, C.Gould, H.Karwowski, D.Markoff,

J.Messimore, K.Nakamura, R.Rohm, W.Tornow,

A.YoungTUNL

J.Busenitz, Z.Djurcic, K.McKinny, D-M.Mei, A.Piepke,

E.YakushevUniversity of Alabama

P.Gorham, J.Learned, J.Maricic, S.Matsuno,

S.PakvasaUniversity of Hawaii

B.D.Dieterle

University of New Mexico

M.Batygov, W.Bugg, H.Cohn, Y.Efremenko, Y.Kamyshkov, Y.NakamuraUniversity of Tennessee

Page 32: Solar Neutrinos: Current Implications and Future Possibilities

KamLAND - Kamioka LiquidScintillator Anti-NeutrinoDetector

16 complexes - 10% of world’s nuclear power

3 GW reactor: ~8 • 1020 e/s

L ~140 - 210 km

Page 33: Solar Neutrinos: Current Implications and Future Possibilities

KamLAND - Kamioka LiquidScintillator Anti-NeutrinoDetector

16 complexes - 10% of world’s nuclear power

3 GW reactor: ~8 • 1020 e/s

L ~140 - 210 km

Page 34: Solar Neutrinos: Current Implications and Future Possibilities

KamLAND first results (hep-ex/0212021)

• Data summary– 145.1 live days– Observed: 54– Expected: 86.8 ± 5.6– Background 1 ± 1

Measured survival probabilitydiffers from 1 by 4.1

Probability that result is consistent with no oscillation hypothesis < 0.05%

Page 35: Solar Neutrinos: Current Implications and Future Possibilities

Evidence of e oscillations

KamLAND with LMA shown Global fit(de Holanda and Smirnov)

hep-ph/0212270hep-ex/0212021

CL: 1, 90%, 95%, 99%, 3

CL: 95%

Page 36: Solar Neutrinos: Current Implications and Future Possibilities

Current situation

• Atm. , Solar & KamLAND provide compelling evidence for oscillations.

• LSND awaits confirmation by miniBoone.

• Big surprise - unlike quark sector (CKM), lepton sector has large mixing angles.

• Osc. Results yield a LOWER BOUND on m; tritium beta decay, astrophysical data set UPPER BOUND

e

s e

Solar & KamLAND

What’s next?

Page 37: Solar Neutrinos: Current Implications and Future Possibilities

physics - issues & questions• accurate determinations of ij, m2

ij

– especially 13

• CP violation phases• Majorana/Dirac character of the neutrinos• absolute scale of neutrino mass• magnetic and other neutrino moments• existence of, constraints on sterile neutrinos• inverted or regular hierarchy?• role of neutrinos in nucleosynthesis, supernova

explosions, BBN• lepton number violation• baryogenesis via leptogenesis

Page 38: Solar Neutrinos: Current Implications and Future Possibilities

Non-accelerator physics - future possibilities• Solar neutrinos

– More accurate determination of 12

– potential independent observation of oscillations• day/night effect• low energy 7Be & pp shape effects

– Astrophysics (pp flux, CNO cycle)

• Single -decay(endpoint measurement)– absolute scale of neutrino mass

• 0 -decay– Majorana/Dirac character of the neutrinos– absolute scale of neutrino mass– inverted or regular hierarchy?

• Atmospheric neutrinos - covered by Kearns• Reactor neutrinos - will be covered by Gratta

Page 39: Solar Neutrinos: Current Implications and Future Possibilities

Future Possibilities for Solar Neutrinos

Solar neutrinos - immediate future– SNO entering precision phase of experiment

• Salt measurements underway since June 2001• 3He proportional neutral current detectors (Fall 2003)• Some possibility of observing day/night effect - and hence

direct oscillation signature

Page 40: Solar Neutrinos: Current Implications and Future Possibilities

SNO - Current Status and Future Plans

Neutral Current Detectors

n 3He p t

The Salt Phase

n 35Cl 36Cl … e (E = 8.6 MeV)

•Higher n-capture efficiency

•Higher event light output

•Event isotropy differs from e-

•Running since June 2001

• Event by event separation• Different systematics

Page 41: Solar Neutrinos: Current Implications and Future Possibilities

Impact of precision SNO

de Holanda and Smirnovhep-ph/0212270

• Improved NC/CC measure-ment will yield an improved 12 value (red ---- lines)• D2O: unconstrained ~30%• Salt: perhaps 10-15%• NCD: potentially ~5 %

• Note KamLAND should improve on m12

• Possible chance to observe Day/Night asymmetry and hence direct oscillation siganl

Page 42: Solar Neutrinos: Current Implications and Future Possibilities

MSW and Day-Night Fluxes

Ax = 2*(N,X – D,X)

(N,X + D,X)

Certain MSW oscillation solutions predict s can change flavor while passing through the earth

Define Asymmetry

Page 43: Solar Neutrinos: Current Implications and Future Possibilities

Signal Extraction in e, total, Atotal = 0

e = 7.0 4.9 +- +1.3 -1.2

esk = 5.3 3.7 + -

+2.0 -1.7

Signal Extraction in CC, NC, ES.

cc = 14.0 6.3 +- +1.5 -1.4

nc = -20.4 16.9 +- +2.4 -2.5

SNO Ae and Atot Measurements

Page 44: Solar Neutrinos: Current Implications and Future Possibilities

Impact of precision SNO

de Holanda and Smirnovhep-ph/0212270

• Improved NC/CC measure-ment will yield an improved 12 value (red ---- lines)• D2O: unconstrained ~30%• Salt: perhaps 10-15%• NCD: potentially ~5 %

• Note KamLAND should improve on m12

• Possible chance to observe Day/Night asymmetry and hence direct oscillation siganl (blue -- lines)– limited by statistics– Depends on real solution

Page 45: Solar Neutrinos: Current Implications and Future Possibilities

Future Possibilities for Solar NeutrinosSolar neutrinos - immediate future

– SNO entering precision phase of experiment• Salt measurements underway since June 2001• 3He proportional neutral current detectors (Fall 2003)• Some possibility of observing day/night effect - and hence

direct oscillation signature– KamLAND solar and Borexino (2004?) real-time 7Be

( KamLAND initial backgrounds look promising for solar measurements)

• Independent confirmation of LMA solution• Confirmation of solar model, slight improvement on CNO limit

Next generation experiments (pp in real-time)

Page 46: Solar Neutrinos: Current Implications and Future Possibilities

Next generation Solar Neutrinos

Charged-Current Experiments:LENS, MOON

Goal: Measure e component of p-p (7Be)

with 1-3% (2-5%) accuracy

Elastic Scattering Experiments:CLEAN, HERON, TPC

XMASS (Japan)Goal: Measure e / , component of p-p (7Be)

with 1-3% (2-5%) accuracy

Projected

Page 47: Solar Neutrinos: Current Implications and Future Possibilities

Future Possibilities for Solar NeutrinosSolar neutrinos - immediate future

– SNO entering precision phase of experiment• Salt measurements underway since June 2001• 3He proportional neutral current detectors (Fall 2003)• Some possibility of observing day/night effect - and hence direct

oscillation signature– KamLAND solar and Borexino (2004?) real-time 7Be

( KamLAND initial backgrounds look promising for solar measurements)

• Independent confirmation of LMA solution• Confirmation of solar model, slight improvement on CNO limit

Next generation experiments (pp in real-time)• 12 to 1%• CPT- potentially more sensitive than kaon system• ~10 x improvement on neutrino magnetic moment sensitivity• Confirmation of solar model, slight improvement on CNO limit

“…to see into the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars...”

Page 48: Solar Neutrinos: Current Implications and Future Possibilities

The absolute scale of masses

• Addresses key issues in particle physics– hierarchical or degenerate neutrino mass spectrum

– understanding the scale of new physics beyond SM

– potential insight into origin of fermion masses

• Impacts cosmology and astrophysics– early universe, relic neutrinos (HDM), structure formation,

anisotropies of CMBR

– supernovae, r-process, origin of elements

– potential insight on understanding the origin of UHE cosmic rays

Page 49: Solar Neutrinos: Current Implications and Future Possibilities

sub-eV absolute mass measurements

e nµ nt

m1m2

m3m1

m 2m3

hierarchical degenerate

Given the surprise of large mixing in the lepton sector, there is limited theoretical insight into which scenario occurs in nature.

Page 50: Solar Neutrinos: Current Implications and Future Possibilities

Probes of absolute mass• Indirect methods

– Cosmology• CMB• Galaxy clusters• Lyman- forest• Galaxy large scale structure

– Astrophysics• UHE cosmic-rays• Supernovae generation mechanisms

– Neutrinoless -decay

• Direct techniques– time of flight (supernovae)– particle decay kinematics

Dec

ay P

roba

bilit

y

180001600014000120001000080006000400020000

Electron Energy (eV)

Kur

ie A

mpl

itude

Kur

ie A

mpl

itud

e

18.5818.5618.54

Energy (keV)

m = 10 eV

m = 0 eV

Page 51: Solar Neutrinos: Current Implications and Future Possibilities

Past: history of direct mass measurements ( flavor eigenstates)

100

101

102

103

104

Mas

s L

imit

(eV

, keV

, or

MeV

)

200019901980197019601950

Year

e (eV)

(keV)

(MeV)

e

points without error bars represent upper limits

me < 2.2 eV (95% CL)

(Mainz 2000)

m < 18.2 MeV (95% CL)

(ALEPH 1998)

m < 170 keV (90%CL)

(PSI 1996)

Page 52: Solar Neutrinos: Current Implications and Future Possibilities

Past: history of direct mass measurements ( flavor eigenstates)

100

101

102

103

104

Mas

s L

imit

(eV

, keV

, or

MeV

)

200019901980197019601950

Year

e (eV)

(keV)

(MeV)

e

points without error bars represent upper limits

me < 2.2 eV (95% CL)

(Mainz 2000)

m < 18.2 MeV (95% CL)

(ALEPH 1998)

m < 170 keV (90%CL)

(PSI 1996)

But oscillations with large mixing angles - forces one to considerdirect techniquesin terms of masseigenstates!

Page 53: Solar Neutrinos: Current Implications and Future Possibilities

-decay endpoint measurementEssentially a search for a distortion in the shapeof the b-spectrum in the endpoint energy region

dN(E) = K|M|2F(Z,R,E) peE (E0-E) |Uei |2 {(E0-E)2-mic4}1/2 dE2

i

For 3 mass spectrum, with degenerate states, the beta spectrum

simplifies to an “effective mass” : m2= |Uei |2 mi

Page 54: Solar Neutrinos: Current Implications and Future Possibilities

Karlsruhe Tritium Neutrino Experiment (KATRIN)

KATRIN

arXiv:hep-ex/0109033~ .2 eV sensitivity

Page 55: Solar Neutrinos: Current Implications and Future Possibilities

Crucial Challenge - measuring extremely rare decay rates:

T1/2 ~ 1026 - 1027 years

(0) relationship to neutrino mass

nuclear matrix elements uncertainty on mass ~ 2-3

0 -decay

m Uei

2mi

i1

3

i

n p e e

e n p e

(RH e ) (LH e )

0 G

0 M0

2m

2

Page 56: Solar Neutrinos: Current Implications and Future Possibilities

0 -decay - next generation

2.01.51.00.50.0Sum Energy for the Two Electrons (MeV)

Two Neutrino Spectrum Zero Neutrino Spectrum

1% resolution(2) = 100 * (0)

• probe lepton number violation and the charge conjugation properties of s• best sensitivity to neutrino massTheoretical caveats:

• Requires that neutrinos be Majorana particles

Key requirements for next generation experiments:• Sufficient mass, ~ 1 ton

• Extremely low backgrounds• Good energy resolution

Page 57: Solar Neutrinos: Current Implications and Future Possibilities

0 bb-decay status

Current situation is a bit “muddled”Heidelberg-Moscow Klapdor-Kleingrothaus et al. Eur. Phys. J. A12 147 (2001).

For 76Ge T1/2 > 1.9 1025 y (90% CL)

<m> < 0.39 eV (90% CL).

Klapdor-Kleingrothaus et al. (Klapdor-Kleingrothaus et al. Mod. Phys. Lett. 16

2409 (2001). reported a non-zero result with a best value of

1.5 1025 y (~2.2 )

<m> = 0.11 - 0.56 eV

See hep-ex/0202018 and hep-ph/020191for comments

Page 58: Solar Neutrinos: Current Implications and Future Possibilities

0 -decay prospectsNext Generation Double Beta Decay Experiments

Isotope Experiment Technique IsotopeMass (t)

Enriched Q(MeV)

ExpectedSensitivity

T1/20 (y)

48Ca CANDLES CaF2 crystals in liq. scint. ~1-3 No 4.27 1 x 1026

76Ge GEM Ge diodes in LN 1 Yes 2.04 7 x 1027

76Ge GENIUS Ge diodes in LN 1 86% 2.04 1 x 1028

76Ge MAJORANA Segmented Ge crystals .5 86% 2.04 3 x 1027

82Se, 100Mo,116Cd, 150Nd

NEMO3 drift chamber-scintillator .001, .007, .001, .001

Yes 3.0,3.0,2.8,3.4

4 x 1024

100Mo MOON Scint+Foils (or Bolometer) 34 No 3.03 1 x 1027

116Cd CAMEO CdWO4 - Borexino CTF ~1 Yes 2.8 > 1027

116Cd CWO CdWO4 ~1 Yes 2.8 1 x 1026

130Te COBRA CdZnTe or TeO2 semiconductors .01 No 2.6 1 x 1024

130Te CUORICINO Cryogenic TeO2 crystals .04 No 2.6 1 x 1024

130Te CUORE Cryogenic TeO2 crystals .75 No 2.6 2 x 1026

136Xe EXO Liquid Xe 1-10 Ye s 2.47 8 x 1026

136Xe Xe Xe in liquid scintillator 1.6 Yes 2.47 5 x 1026

136Xe XMASS liquid Xe (solar ) 10 No 2.47 3 x 1026

150Nd DCBA-II(2) foils and tracking chambers .02 Yes 3.37 2 x 1025

160 Gd GSO Gd2SiO5 :Ce crystal scint. in liq. scint. 2 No 1.73 2 x 1026

Page 59: Solar Neutrinos: Current Implications and Future Possibilities

The need for a national underground laboratory?

Compelling forefront science with a broad impact– the nature of neutrinos, astrophysics, supernova, dark matter,

nucleon decay, nuclear astrophysics, origin of elements, biology...

Opportunity to establish the world’s deepest and most extensive science laboratory within the United States aimed at the future generations of underground science experiments.– Shortage of space in existing facilities.– Several existing experiments would be “better” if deeper.– Success of SNO cleanliness demonstrates that one can build ultra

clean detectors deep underground.– New generation experiments will gain from depth.– Establishment would indicate a clear leadership role for the US in

underground science– Range of scientific fields and “cutting edge” research will facilitate

learning opportunities for K-Ph.D. students in a multitude of academic disciplines as well as affording excellent outreach opportunities to the American public.

Page 60: Solar Neutrinos: Current Implications and Future Possibilities

Making the Science Case for NUSEL

• Nuclear Science Advisory Committee (NSAC) Long Range Plan 2000 - 2001

• Committee on an Underground Scientific Laboratory 2000 - 2001 (Community committee, NSF & DOE)

• HEPAP Sub-panel on Long Range Planning 2000-2001

• NRC Committee on the Physics of the Universe (CPU) 2000-2002

• NRC - Neutrino Facilities Assessment Committee March - December 2002

Page 61: Solar Neutrinos: Current Implications and Future Possibilities

SummarySolar , reactor and atmospheric demonstrate that

neutrinos have mass and the Standard Model of Nuclear and Particle Physics is incomplete.– Unlike the Quark Sector where the CKM mixing angles are small, the

lepton sector exhibits large mixing– The masses and mixing may play significant roles in determining

structure formation in the early universe as well as supernovae dynamics and the creation of the elements

Future possibilities– Solar neutrinos

• improve 12 , further confirmation of LMA astrophysics

– Single beta decay - direct neutrino mass measurements• KATRIN should reach ~0.2 eV sensitivity

– 0 -decay - discovery potential of Majorana neutrinos• Next generation should reach 20-50 meV sensitivity