soc power estimation

25
SOC POWER ESTIMATION W A T MAHESH DANANJAYA

Upload: mahesh-dananjaya

Post on 15-Jul-2015

56 views

Category:

Engineering


1 download

TRANSCRIPT

Page 1: SOC Power Estimation

SOC POWER ESTIMATIONW A T MAHESH DANANJAYA

Page 2: SOC Power Estimation

POWER ESTIMATION

System Power

Dynamic Power

Switching Power Internal Power

Static power

Leakage Power

Page 3: SOC Power Estimation

SWICTHING POWER

โ€ข Power generated due to output changes, thus

charging and discharging the load capacitance.

โ€ข Switching power dissipates mainly depend on the,

โ€ข System Clock Frequency

โ€ข Activity Switching Frequency

โ€ขSwitching Power Calculation depends on the three factors

โ€ข ๐‘ช โˆ’ ๐‘ณ๐’๐’‚๐’… ๐‘ช๐’‚๐’‘๐’‚๐’„๐’Š๐’•๐’‚๐’๐’„๐’†

โ€ข ๐’‡ โˆ’ ๐‘บ๐’˜๐’Š๐’•๐’„๐’‰๐’Š๐’๐’ˆ ๐‘ญ๐’“๐’†๐’’๐’†๐’๐’„๐’š

โ€ข ๐‘ฝ โˆ’ ๐‘ซ๐’“๐’Š๐’—๐’Š๐’๐’ˆ ๐‘ฝ๐’๐’๐’•๐’‚๐’ˆ๐’†

๐‘ƒ๐‘† = ๐ถ โˆ— ๐‘‰2 โˆ— ๐‘“

Page 4: SOC Power Estimation

INTERNAL POWER

โ€ข Short circuit path has been created between power and ground at the

transition stage

โ€ข Thus the short circuit current is generated

โ€ข Both NMOS and PMOS transistors are conducting for a short period of

time

โ€ข Power dissipation due to this temporary short circuit path and the

internal capacitance is Internal Power

โ€ข Depends on some factors,

โ€ข Input edge time

โ€ข Slew Rate

โ€ข Internal Capacitances

๐‘ƒ๐ผ = ๐‘‰ โˆ— ๐ผ๐‘†๐ถ

Page 5: SOC Power Estimation

DYNAMIC POWER

โ€ข Dynamic power is the sum of switching power and internal

power

๐‘ท๐‘ซ = ๐‘ท๐‘บ + ๐‘ท๐‘ฐ

๐‘ท๐‘ซ = ๐‘ช โˆ— ๐‘ฝ๐Ÿ โˆ— ๐’‡ + ๐‘ท๐‘ฐ

๐‘ท๐‘ซ = ๐‘ช โˆ— ๐‘ฝ๐Ÿ โˆ— ๐’‡ + ๐‘ฝ โˆ— ๐‘ฐ๐‘บ๐‘ช

๐‘ท๐‘ซ โฉญ ๐‘ช๐’†๐’‡๐’‡ โˆ— ๐‘ฝ๐Ÿ โˆ— ๐’‡๐’”๐’˜๐’Š๐’•๐’„๐’‰

Page 6: SOC Power Estimation

STATIC POWER

โ€ข Due to non-idle characteristic of the transistor the

leakages can be taken place

โ€ข Static power is nothing, but leakage power

โ€ข There are two main types of leakages and their

subsidiaries

โ€ข ๐ผ๐‘‚๐น๐น โˆ’ Sub-threshold leakage (Drain Leakage Current)

โ€ข ๐ผ๐ท,๐‘ค๐‘’๐‘Ž๐‘˜ โˆ’ ๐‘†๐‘ข๐‘ โˆ’ ๐‘กโ„Ž๐‘Ÿ๐‘’๐‘ โ„Ž๐‘œ๐‘™๐‘‘ ๐ท๐‘Ÿ๐‘Ž๐‘–๐‘› ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก

โ€ข ๐ผ๐‘–๐‘›๐‘ฃ โˆ’ ๐‘…๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐ต๐‘–๐‘Ž๐‘ ๐‘’๐‘‘ ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก

โ€ข ๐ผ๐บ๐ผ๐ท๐ฟ โˆ’ ๐บ๐‘Ž๐‘ก๐‘’ ๐ผ๐‘›๐‘‘๐‘ข๐‘๐‘’๐‘‘ ๐ท๐‘Ÿ๐‘Ž๐‘–๐‘› ๐ฟ๐‘’๐‘Ž๐‘˜๐‘Ž๐‘”๐‘’

โ€ข ๐ผ๐บ๐ด๐‘‡๐ธ โˆ’ Gate Leakage Current

โ€ข ๐ผ๐‘‡๐‘ˆ๐‘๐‘๐ธ๐ฟ โˆ’ ๐บ๐‘Ž๐‘ก๐‘’ ๐‘‡๐‘ข๐‘›๐‘›๐‘’๐‘™๐‘–๐‘›๐‘”

โ€ข ๐ผ๐ป๐ถ โˆ’ ๐ป๐‘œ๐‘ก ๐ถ๐‘Ž๐‘Ÿ๐‘Ÿ๐‘–๐‘’๐‘Ÿ ๐ผ๐‘›๐‘—๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›

Page 7: SOC Power Estimation

LEAKAGE POWER

๐ผ๐ฟ๐ธ๐ด๐พ๐ด๐บ๐ธ

๐ผ๐‘‚๐น๐น

๐ผ๐ผ๐‘๐‘‰ ๐ผ๐ท,๐‘Š๐ธ๐ด๐พ ๐ผ๐บ๐ผ๐ท๐ฟ

๐ผ๐บ๐ด๐‘‡๐ธ

๐ผ๐‘‡๐‘ˆ๐‘๐‘๐ธ๐ฟ ๐ผ๐ป๐ถ

Page 8: SOC Power Estimation

LEAKAGE POWER

๐‘ฐ๐‘ณ๐‘ฌ๐‘จ๐‘ฒ๐‘จ๐‘ฎ๐‘ฌ = ๐ผ๐‘‚๐น๐น + ๐ผ๐บ๐ด๐‘‡๐ธ

๐‘ท๐‘บ = ๐‘ฝ โˆ— ๐‘ฐ๐’๐’†๐’‚๐’Œ

๐‘ฐ๐‘ฎ๐‘จ๐‘ป๐‘ฌ = ๐ผ๐ป๐ถ + ๐ผ๐‘‡๐‘ˆ๐‘๐‘๐ธ๐ฟ

๐‘ฐ๐‘ถ๐‘ญ๐‘ญ = ๐ผ๐‘–๐‘›๐‘ฃ + ๐ผ๐ท,๐‘ค๐‘’๐‘Ž๐‘˜ + ๐ผ๐บ๐ผ๐ท๐ฟ

Page 9: SOC Power Estimation

TRANSISTOR LEAKAGE MECHANISMS

โ€ข ๐ผ๐‘‚๐น๐น โˆ’ ๐ท๐‘Ÿ๐‘Ž๐‘–๐‘› ๐ฟ๐‘’๐‘Ž๐‘˜๐‘Ž๐‘”๐‘’ ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก โ€“ ๐‘†๐‘ข๐‘ โˆ’ ๐‘กโ„Ž๐‘Ÿ๐‘’๐‘ โ„Ž๐‘œ๐‘™๐‘‘ ๐ฟ๐‘’๐‘Ž๐‘˜๐‘Ž๐‘”๐‘’ ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก

(๐‘“๐‘™๐‘œ๐‘ค๐‘  ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘‘๐‘Ÿ๐‘Ž๐‘–๐‘› ๐‘ก๐‘œ ๐‘ ๐‘œ๐‘ข๐‘Ÿ๐‘๐‘’ ๐‘œ๐‘Ÿ ๐‘๐‘œ๐‘‘๐‘ฆ)

โ€ข ๐ผ๐ท,๐‘ค๐‘’๐‘Ž๐‘˜ โˆ’ ๐‘†๐‘ข๐‘ โˆ’ ๐‘กโ„Ž๐‘Ÿ๐‘’๐‘ โ„Ž๐‘œ๐‘™๐‘‘ ๐ท๐‘Ÿ๐‘Ž๐‘–๐‘› ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก

โ€ข ๐ผ๐‘–๐‘›๐‘ฃ โˆ’ ๐‘…๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐ต๐‘–๐‘Ž๐‘ ๐‘’๐‘‘ ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก

โ€ข ๐ผ๐บ๐ผ๐ท๐ฟ โˆ’ ๐บ๐‘Ž๐‘ก๐‘’ ๐ผ๐‘›๐‘‘๐‘ข๐‘๐‘’๐‘‘ ๐ท๐‘Ÿ๐‘Ž๐‘–๐‘› ๐ฟ๐‘’๐‘Ž๐‘˜๐‘Ž๐‘”๐‘’

โ€ข ๐ผ๐บ๐ด๐‘‡๐ธ โˆ’ ๐บ๐‘Ž๐‘ก๐‘’ ๐ฟ๐‘’๐‘Ž๐‘˜๐‘Ž๐‘”๐‘’ ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก

(๐ฟ๐‘’๐‘Ž๐‘˜๐‘Ž๐‘”๐‘’ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘‘๐‘Ÿ๐‘–๐‘๐‘๐‘™๐‘’ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘ข๐‘”โ„Ž ๐‘กโ„Ž๐‘’ ๐‘”๐‘Ž๐‘ก๐‘’๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘–๐‘ ๐‘ก๐‘œ๐‘Ÿ)

โ€ข ๐ผ๐‘‡๐‘ˆ๐‘๐‘๐ธ๐ฟ โˆ’ ๐บ๐‘Ž๐‘ก๐‘’ ๐‘‡๐‘ข๐‘›๐‘›๐‘’๐‘™๐‘–๐‘›๐‘”

โ€ข ๐ผ๐ป๐ถ โˆ’ ๐ป๐‘œ๐‘ก ๐ถ๐‘Ž๐‘Ÿ๐‘Ÿ๐‘–๐‘’๐‘Ÿ ๐ผ๐‘›๐‘—๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›

Page 10: SOC Power Estimation

SUB-THRESHOLD LEAKAGE CURRENT (๐‘ฐ๐‘ถ๐‘ญ๐‘ญ) โ€ข The sub-threshold leakage current of a transistor,๐ผ๐‘‚๐น๐น, is

defined as the drain current when ๐‘‰๐‘” โˆ’ ๐‘‰๐‘  = 0 and ๐‘‰๐ท โ‰ฅ 0. ๐ผ๐‘‚๐น๐น is

dependent on the various factors such as,

โ€ข ๐‘‰๐ท๐ท โˆ’ ๐‘†๐‘ข๐‘๐‘๐‘™๐‘ฆ ๐‘‰๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’

โ€ข ๐‘‰๐‘กโ„Ž โˆ’ ๐‘‡โ„Ž๐‘Ÿ๐‘’๐‘ โ„Ž๐‘œ๐‘™๐‘‘ ๐‘‰๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’

โ€ข Doping Concentration

โ€ข ๐‘‡๐‘‚๐‘‹ โˆ’ ๐บ๐‘Ž๐‘ก๐‘’ ๐‘‚๐‘ฅ๐‘–๐‘‘๐‘’ ๐‘‡โ„Ž๐‘–๐‘›๐‘’๐‘ ๐‘ 

โ€ข As we mentioned earlier ๐‘ฐ๐‘ถ๐‘ญ๐‘ญ is consist of 3 sub leakage

components.

โ€ข ๐ผ๐ท,๐‘ค๐‘’๐‘Ž๐‘˜ โˆ’ ๐‘†๐‘ข๐‘ โˆ’ ๐‘กโ„Ž๐‘Ÿ๐‘’๐‘ โ„Ž๐‘œ๐‘™๐‘‘ ๐ท๐‘Ÿ๐‘Ž๐‘–๐‘› ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก

โ€ข ๐ผ๐‘–๐‘›๐‘ฃ โˆ’ ๐‘…๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐ต๐‘–๐‘Ž๐‘ ๐‘’๐‘‘ ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก

โ€ข ๐ผ๐บ๐ผ๐ท๐ฟ โˆ’ ๐บ๐‘Ž๐‘ก๐‘’ ๐ผ๐‘›๐‘‘๐‘ข๐‘๐‘’๐‘‘ ๐ท๐‘Ÿ๐‘Ž๐‘–๐‘› ๐ฟ๐‘’๐‘Ž๐‘˜๐‘Ž๐‘”๐‘’

๐‘ฐ๐‘ถ๐‘ญ๐‘ญ = ๐ผ๐‘–๐‘›๐‘ฃ + ๐ผ๐ท,๐‘ค๐‘’๐‘Ž๐‘˜ + ๐ผ๐บ๐ผ๐ท๐ฟ

Page 11: SOC Power Estimation

๐‘ฐ๐’Š๐’๐’— โˆ’ ๐‘น๐’†๐’—๐’†๐’“๐’”๐’† ๐‘ฉ๐’Š๐’‚๐’”๐’†๐’… ๐‘ช๐’–๐’“๐’“๐’†๐’๐’•

โ€ข ๐‘ฐ๐’Š๐’๐’— is the current that flows through the reverse biased diode

between the drain and the p region of the transistor, and it is

dependent on the junction area between the Source/Drain terminal

and the body and exponentially dependent to the temperature.

โ€ข Leakage current for the inverse biased diode can be modelled as

follows where,

โ€ข ๐‘ˆ๐‘‡ โˆ’ ๐‘‡โ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘‰๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ (๐‘ƒ๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘ค๐‘Ÿ ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก ๐‘œ๐‘› ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’)

โ€ข ๐ผ๐‘† โˆ’ ๐‘…๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘†๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก (๐ผ๐‘›๐‘ก๐‘Ÿ๐‘–๐‘›๐‘ ๐‘–๐‘ ๐‘ƒ๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘‘๐‘’๐‘ฃ๐‘–๐‘๐‘’)

โ€ข ๐‘‰๐ท โˆ’ ๐‘‰๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐ท๐‘Ÿ๐‘Ž๐‘–๐‘› ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐ต๐‘œ๐‘‘๐‘ฆ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘–๐‘ ๐‘ก๐‘œ๐‘Ÿ

โ€ข ๐ฝ๐ผ๐‘๐‘‰ โˆ’ ๐‘†๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘ก๐‘œ๐‘–๐‘› ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐ท๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ

โ€ข ๐ด๐ท โˆ’ ๐ท๐‘–๐‘“๐‘“๐‘ข๐‘ ๐‘–๐‘œ๐‘› ๐ด๐‘Ÿ๐‘’๐‘Ž

๐‘ฐ๐‘ฐ๐‘ต๐‘ฝ = ๐‘ฐ๐‘บ(๐’† ๐‘ฝ๐‘ซ ๐‘ผ๐‘ป โˆ’ ๐Ÿ)

๐‘ฐ๐‘ฐ๐‘ต๐‘ฝ = ๐‘จ๐‘ซ โˆ— ๐‘ฑ๐‘ฐ๐‘ต๐‘ฝ

Page 12: SOC Power Estimation

๐‘ฐ๐‘ซ,๐’˜๐’†๐’‚๐’Œ โˆ’ SUB-THRESHOLD DRAIN CURRENT

โ€ข When,๐‘‰๐‘” < ๐‘‰๐‘กโ„Ž , ๐‘‰๐‘‘ โ‰ฅ 0.1 ๐‘Ž๐‘›๐‘‘ ๐‘‰๐‘  = ๐‘‰๐‘ = 0, transistor forms a weak

inversion layer. Transistor in a weak inversion has a constant voltage

across the semiconductor channel and the longitudinal electric field across

the channel is null. Thus there is no drift current generating inside.

Instead the leakage current ๐‘ฐ๐‘ซ,๐’˜๐’†๐’‚๐’Œ is generated by the diffusion of

majority carriers across the channel. We can mathematically model this

sub-threshold drain leakage ๐‘ฐ๐‘ซ,๐’˜๐’†๐’‚๐’Œ with the following factors.

โ€ข ๐‘ˆ๐‘‡ โˆ’ ๐‘‡โ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘‰๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ (๐‘ƒ๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘ค๐‘Ÿ ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก ๐‘œ๐‘› ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’)

โ€ข ๐‘ฐ๐ŸŽ โˆ’ ๐ผ๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™ ๐ท๐ถ ๐‘œ๐‘“๐‘“๐‘ ๐‘’๐‘ก ๐‘‘๐‘Ÿ๐‘Ž๐‘–๐‘› ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก

โ€ข It is paramount important to look at the exponential dependency of ๐‘ฐ๐‘ซ,๐’˜๐’†๐’‚๐’Œ

on ๐‘‰๐‘”๐‘  as well as the linear offset based on ๐‘‰๐ท๐‘†

๐‘ฐ๐‘ซ,๐’˜๐’†๐’‚๐’Œ =๐‘พ

๐‘ณร— ๐‘ฐ๐ŸŽ ร— ๐’† ๐‘ฝ๐’ˆ๐’”โˆ’ ๐‘ฝ๐’•๐’‰ (๐’Ž ๐‘ผ๐‘ป )

โˆ’๐Ÿร— (๐Ÿ โˆ’ ๐’†โˆ’๐‘ฝ๐‘ซ๐‘บ ร—๐’Žร—๐‘ผ๐‘ป

โˆ’๐Ÿ)

Page 13: SOC Power Estimation

๐‘ฐ๐‘ฎ๐‘ฐ๐‘ซ๐‘ณ โˆ’ GATE INDUCED DRAIN LEAKAGE

โ€ข Gate-induced drain leakage is generated when a large

enough gate to drain ๐‘‰๐‘”๐‘‘voltage is applied to produce a band to

band electron tunneling near the interface between the gate

oxide and the semiconductor of the drain.

Page 14: SOC Power Estimation

๐‘ฐ๐‘ฎ๐‘จ๐‘ป๐‘ฌ โˆ’ GATE LEAKAGE

โ€ข The gate leakage current is dribbling across the gate to and

from the channel, substrate, and diffusion terminal.

โ€ข This current avoid the treatment of the gate of a device as an

ideally insulated electrode. This gate leakage is basically

composed of two leakage components.

โ€ข ๐ผ๐‘‡๐‘ˆ๐‘๐‘๐ธ๐ฟ โˆ’ ๐บ๐‘Ž๐‘ก๐‘’ ๐‘‡๐‘ข๐‘›๐‘›๐‘’๐‘™๐‘–๐‘›๐‘”

โ€ข ๐ผ๐ป๐ถ โˆ’ ๐ป๐‘œ๐‘ก ๐ถ๐‘Ž๐‘Ÿ๐‘Ÿ๐‘–๐‘’๐‘Ÿ ๐ผ๐‘›๐‘—๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›

Page 15: SOC Power Estimation

๐‘ฐ๐‘ป๐‘ผ๐‘ต๐‘ต๐‘ฌ๐‘ณ โˆ’ GATE TUNNELING

โ€ข This leakage current is generated due to carriers tunneling

through the gate of the transistor. There are two major

different way of carrier tunneling.

โ€ข Fowler-Nordheim Tunneling

Tunneling into the conduction band of the dielectric. It

manifest itself as electron emission caused by the intense high

electric field.

โ€ข Direct Tunneling

Tunneling to or from the gate through the forbidden band

gap of the dielectric

Page 16: SOC Power Estimation

๐‘ฐ๐‘ฏ๐‘ช โˆ’ HOT CARRIER INJECTION

โ€ข This current is known as Hot Carrier Leakage which is

origin whenever a carrier gains enough kinetic energy and

overcome the gate potential barrier.

โ€ข This is more often happen to electrons since the voltage barrier

and effective mass of an electron is less than the one for holes.

Page 17: SOC Power Estimation

VARIOUS OTHER POWER

โ€ข Metastability

โ€ข Output of the flops are remains on the undefined states which s caused

by the violation of setup time and hold time.

โ€ข Set Up Time

โ€ข Amount of time that the input signal needs to be stable before clocking the

flop

โ€ข Hold Time

โ€ข Amount of time that input signal wants to be stable after clocking the flop

โ€ข Glitches

โ€ข Glitches are unwanted or undesired changes in signals which are

resilient (self correcting).

โ€ข caused by delays in lines and propagation delays of cells.

โ€ข Latchups

โ€ข LatchUps is a short circuit path between supply and the ground

Page 18: SOC Power Estimation

TECHNOLOGY SCALING AND POWER ESTIMATION โ€ข CMOS Device Scaling

โ€ข Gate Oxide Thickness (๐‘ป๐‘ถ๐‘ฟ) Scaling

โ€ข Channel Miniaturization

โ€ข Supply Voltage and Threshold Voltage (๐‘ฝ๐’…๐’… & ๐‘ฝ๐’•๐’‰ ) Scaling

โ€ข Doping Concentration

โ€ข Source Drain Punchthrough

Page 19: SOC Power Estimation

CMOS DEVICE SCALING

โ€ข Although the rate is slowing device scaling is slowing

down and deviating from the actual moorโ€™s law, technology

sand device scaling is happening so rapidly. Therefore

designers have potential of inexpensive doubling the number

of transistors every two years, which is possible thank to the

miniaturization of devices and the reduction of the cost of

computer power due to sales volume. Therefore designers

have to be careful about the stuff because in near future the

transistor miniaturization reaches atomic level. Some

challenges still remain for the future

โ€ข Photolithography

โ€ข Manufacturing Cost

โ€ข Increased power density

โ€ข ๐ผ ๐ผ current ratio

Page 20: SOC Power Estimation

GATE OXIDE THICKNESS (๐‘ป๐‘ถ๐‘ฟ) SCALING

โ€ข As long as semiconductor device is taking place, the gate oxide thickness and effective channel length is getting reduced. This thickness is one of the important parameter to FET and MOS devices where it is directly engaging with the MOS capacitance and all that.

According to some papers the relationship of the ๐‘ป๐‘ถ๐‘ฟ scaling can be

illustrated as ,

๐ฟ๐‘’๐‘“๐‘“ = 45 ร— ๐‘‡๐‘‚๐‘‹

๐ฟ๐‘’๐‘“๐‘“ โˆ’ ๐ธ๐‘“๐‘“๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐ถโ„Ž๐‘Ž๐‘›๐‘›๐‘’๐‘™ ๐ฟ๐‘’๐‘›๐‘”๐‘กโ„Ž

โ€ข This relationship is usually leads to good ๐‘‰๐‘” โˆ’ ๐ผ๐‘‘transfer behavior. With this device scaling and other restrictions, Gate Oxide Thickness is limited to some typical level and create a barrier. There are two

leakage components which are affected by the ๐‘ป๐‘ถ๐‘ฟ scaling,

โ€ข ๐ผ๐บ๐ผ๐ท๐ฟ โˆ’ ๐บ๐‘Ž๐‘ก๐‘’ ๐ผ๐‘›๐‘‘๐‘ข๐‘๐‘’๐‘‘ ๐ท๐‘Ÿ๐‘Ž๐‘–๐‘› ๐ฟ๐‘’๐‘Ž๐‘˜๐‘Ž๐‘”๐‘’

โ€ข ๐ผ๐‘‡๐‘ˆ๐‘๐‘๐ธ๐ฟ โˆ’ ๐บ๐‘Ž๐‘ก๐‘’ ๐ท๐‘–๐‘Ÿ๐‘’๐‘๐‘ก ๐‘‡๐‘ข๐‘›๐‘›๐‘’๐‘™๐‘–๐‘›๐‘”

Page 21: SOC Power Estimation

CHANNEL MINIATURIZATION

As long as technology scaling happens the effective channel is

reducing and short-channel effects are expected to worsen when

channel length is reduced.

DIBL โ€“ Drain Induced Barrier Lowering is one such effect.

In DIBL scenario where depletion region of the source or drain

extends into the channel of a MOSFET device, effectively reducing the

channel length. This reduction in depletion layer lowers the potential

barrier for electrons, which results in an observable lowering of ๐‘‰๐‘กโ„Ž,

and hence in an increase on the ๐‘ฐ๐‘ซ,๐’˜๐’†๐’‚๐’Œ current. And also channel

miniaturization reduces the junction area between the substrate and

the Source or Drain, effectively reducing the ๐‘ฐ๐’Š๐’๐’—. Channel

miniaturization is also closely related to scaling of the ๐‘ป๐‘ถ๐‘ฟ and

optimization is paramount importance for the best power

Page 22: SOC Power Estimation

SUPPLY VOLTAGE AND THRESHOLD VOLTAGE (๐‘ฝ๐’…๐’… & ๐‘ฝ๐’•๐’‰ ) SCALING

โ€ข ๐‘ฝ๐’…๐’… and ๐‘ฝ๐’•๐’‰ are two vital transistor characteristics.

โ€ข Design engineers typically scale the supply voltage ๐‘ฝ๐’…๐’… to

control dynamic power consumption and power density.

โ€ข In the same time reduction of ๐‘ฝ๐’…๐’… forces a dramatic reduction

in Threshold voltage (๐‘ฝ๐’•๐’‰) in order to raise the performance

gains.

โ€ข This reduction in ๐‘ฝ๐’•๐’‰ typically causes a relatively large increase

in ๐‘ฐ๐‘ถ๐‘ญ๐‘ญ, while the reduction of ๐‘ฝ๐’…๐’… reduces the leakage current

substantially.

Page 23: SOC Power Estimation

DOPING CONCENTRATION

โ€ข Electric field at a p-n junction strongly depends on the

junction doping. As long as technology and device scaling

continue, the doping concentration is rising, incrementing the

overall ๐‘ฐ๐’Š๐’๐’— and ๐‘ฐ๐‘ป๐‘ผ๐‘ต๐‘ต๐‘ฌ๐‘ณ. Device engineers smart enough build a

smart doping profiles for the channel and the transistor

terminals to maximize active current driving through the

channel while minimizing the idle current.

Page 24: SOC Power Estimation

SOURCE DRAIN PUNCHTHROUGH

โ€ข Punchthrough happens when the depletion regions from

the source and the drain join in the absence of a depletion

region induced by gate. Punchthrough happens when voltages

between the source and the body are above then nominal range

of ๐‘‰๐‘‘๐‘‘, since this is not the common case for digital circuits.

Therefore model punchthough is very important to ASIC

designers.

Page 25: SOC Power Estimation

EDA POWER ESTIMATION

โ€ข Mostly based on the tech libraries

โ€ข Based on two major calculations

โ€ข Activity

โ€ข The number of toggles per clock cycle on the signal, averaged

over many cycles

โ€ข Probability

โ€ข Percentage of the time that the signal will be high