slides 46 13 inv stoch

Upload: aniruddha123

Post on 09-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Slides 46 13 Inv Stoch

    1/14

    Assumptions for the ( Q, R) policy

    Probabilistic demand Demand is NOT deterministicbut probability distribution is known

    Lead time MIGHT NOT BE deterministicShortages MAY OCCURAll ordered units arrive at oncePurchasing cost is independent of the order quantity

  • 8/8/2019 Slides 46 13 Inv Stoch

    2/14

    A Probabilistic Inventory Model.

    Assumptions:Probabilistic lead-time demand ( D L)

    mean Q D L standard deviation W D

    L probability distribution fcn. P ( D L) / density fcn. f ( D L)

    cumulative distribution fcn. F ( D L)= P (lead-time demand

    Continuous review ( Q, R) system ( ( s, Q) system) fixed order size Q

    order point R (or s), i.e., variable order period

    Demand during stock-out periods is backlogged

    L De

  • 8/8/2019 Slides 46 13 Inv Stoch

    3/14

    Determination of theorder quantity Q ?

    H euristic approach:

    S imply use the EOQ(with or without quantity discounts)or the Economic Batch Size model

    => Robust and simple model

  • 8/8/2019 Slides 46 13 Inv Stoch

    4/14

    Inventory levels:

    Order point: R = E [ D L] + SS = Q D L + SS S afety stock: SS = R - Q D L or: SS = Z W D L

    Average inventory (approximations): Expected max. inventory on hand: SS + Q

    Expected min. inventory on hand: SS

    Average inventory on hand: SS + Q/2 = R - Q D L

    + Q/2

  • 8/8/2019 Slides 46 13 Inv Stoch

    5/14

    Determination of the order point R ?3 alternative models:

    1. S pecified probability of no stockout during lead time

    Fservice level:

    2. S pecified proportion of demand satisfied from inventoryon hand

    P service level:

    3 . Cost minimizationc s shortage cost

    Fu!e R F R D P L

    ? A? A

    P ud eman d

    shortunitso#1

  • 8/8/2019 Slides 46 13 Inv Stoch

    6/14

    0.0000.050

    0.1000.1500.2000.2500.3000.350

    10 11 12 13 14 15 16 17 18 19

    Lead time demand

    P r o b a b i l i t y

    Discrete probability distribution

    Lead timedemand Probability Cumulativeprobability10 0.025 0.02511 0.050 0.07512 0.150 0.22513 0.050 0.27514 0.150 0.425

    15 0.300 0.72516 0.150 0.87517 0.050 0.92518 0.050 0.97519 0.025 1.000

    17

    9.0

    9.0

    !ue

    !

    R

    R D P L

    F

    F service level

  • 8/8/2019 Slides 46 13 Inv Stoch

    7/14

    0 .0000 .0500 . 000 . 500 . 00

    0 . 500 . 000 . 50

    10 11 12 13 14 15 16 17 18 19

    L d ti d nd

    o b b

    i l i t

    T he expected number of shortagesduring lead time for a given order point R?

    R = 16: E (# shortages | R =16) == (17-16) P (17) + (18-16) P (18) + (19-16) P (19)

    = (1)0.05 + (2)0.05 + (3

    )0.025 = 0.225

    P service level

  • 8/8/2019 Slides 46 13 Inv Stoch

    8/14

    Expected number of shortages duringlead time E (S ):

    ? A

    ? A

    g

    g

    !

    !

    !

    R L L L

    R D L L

    dD D f R DS E

    D P R DS E L

    :ondistributiContinuous

    :ondistributiDiscrete

    )1(

    ? A

    L L

    L

    L L

    D D

    D

    D D L

    R Z

    Z N

    Z N S E

    N D

    W Q

    W

    W Q

    !

    !

    }

    and

    function'lossnormalUnit'

    theiswhere

    ,

    ,

    :demandtimelead

    ddistribute Normally

    P service level

  • 8/8/2019 Slides 46 13 Inv Stoch

    9/14

  • 8/8/2019 Slides 46 13 Inv Stoch

    10/14

    A maximal expected number of shortages? A

    ? A

    ? A ? A ? A

    ? A

    ? A ? A

    ee

    e

    ee

    e

    P P

    QS P QS

    QS P

    D

    S Q DS

    P D

    Q DS

    P

    E E

    P

    1:salesLost1

    1

    1:salesLost1

    year per d eman dyear per shortunitso#

    1

    P service level

  • 8/8/2019 Slides 46 13 Inv Stoch

    11/14

    0.0000.050

    0.1000.1500.2000.2500.3000.350

    10 11 12 13 14 15 16 17 18 19

    Lead time demand

    P r o b a b i l i t y

    Discrete probability distribution

    Lead timedemand Probability Cumulativeprobability10 0.025 0.02511 0.050 0.07512 0.150 0.22513 0.050 0.27514 0.150 0.425

    15 0.300 0.72516 0.150 0.87517 0.050 0.92518 0.050 0.97519 0.025 1.000

    Q = 100 P = 0.999=>

    E (S ) < 100(1-0.999) = 0.1

    E (S |R=19) = 0 E (S |R=18) = (1)0.025 = 0.025 E (S |R=17) = (1)0.05 + (2)0.025 = 0.1 E (S |R=16) = (1)0.05 + (2)0.05 + ( 3 )0.025 = 0.225

    => R = 17

    P service level

  • 8/8/2019 Slides 46 13 Inv Stoch

    12/14

    Order point R?3 . Cost minimization: A marginal cost approach

    Given a fixed order quantity Q,suppose R is increased to R + 1.

    Then:T he safety stock SS +1 = R+1 - Q D L increases by one (1) unit,causing an increase of the annual inventory holding cost by ch

    T he expected number of shortages E [S ] during the lead timedecreases by:

    causing a decrease of the

    annual shortage cost by:

    R F R D P D P L R D L L !e! " 11

    ? A R F Q

    Dc s 1

  • 8/8/2019 Slides 46 13 Inv Stoch

    13/14

    W hy increasing R decreases E (S ):

    ? A ? A ? A

    R D P D P D P R P

    D P D P R D

    D P R D R P R R

    D P R D D P R D RS E RS E

    L

    R D

    L

    R D

    L

    R D

    L

    R D

    L L

    R D

    L L

    R D

    L L

    R D

    L L

    L L

    L L

    L

    L L

    e

    -

    -

    ""

    ""

    "

    ""

    11

    11

    11

    1

    11

    1

    1

  • 8/8/2019 Slides 46 13 Inv Stoch

    14/14

    T he marginal cost approach

    T he order point R is increased as long asthe shortage cost decrease exceeds the holding cost increase:

    ? A

    ? A

    DcQc DcQc

    R F

    Dc

    Qc R F

    c R F Q

    Dc

    sh s

    h

    s

    h

    h s

    ee

    u

    u

    i1

    1

    1

    E

    E