sk hwt 08 fretting ss08

27
Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue 1 Fretting and Fretting Fatigue 1 www.uni-due.de/wt Universität Duisburg-Essen Lotharstr 1, 47057 Duisburg, Germany Werkstofftechnik Materials Science & Engineering Fretting Wear and Fretting Fatigue We would expect all four major wear mechanisms! SF-TCR-AB-AD Fretting and Fretting Fatigue 2 www.uni-due.de/wt Universität Duisburg-Essen Lotharstr 1, 47057 Duisburg, Germany Werkstofftechnik Materials Science & Engineering Fretting Wear from Sulzer Innotec, Switzerland Apperance of Fretting on IN718 at 500°C and 100 Hz. Predominantly severe tribochemical reactions The dovetails of turbine blades are subjected to fretting; predominantly by surface fatigue Apperance of Fretting on a 12% Cr-Steel; predominantly by surface fatigue from MPA Stuttgart, Germany

Upload: swamy-babu

Post on 26-Oct-2014

46 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

1

Fretting and Fretting Fatigue1 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear andFretting Fatigue

We would expect all four major wear mechanisms!SF-TCR-AB-AD

Fretting and Fretting Fatigue2 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear

from Sulzer Innotec, Switzerland

Apperance of Fretting on IN718 at 500°C and 100 Hz. Predominantly

severetribochemical

reactions

The dovetails of turbine blades are subjected to fretting;

predominantly by surface fatigue

Apperance of Fretting on a 12% Cr-Steel; predominantly

by surface fatigue

from MPA Stuttgart, Germany

Page 2: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

2

Fretting and Fretting Fatigue3 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

from Hartmann, PhD Thesis TU Berlin 2005

shaft/hub coupling after fretting test

Area of Slip

shaft coupling fretting failurewashers/disc and bolts/discs

from Falk Corp.. Wilwaukee, WI, USA 2004

Fretting and Fretting Fatigue4 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Fatiguecyclic normal force (bulk) +

cyclic tangential force (surface)

Frettingcyclic tangential force (surface)

from Venkatesh et al. 2001

from Alfredson et al. 2004

Page 3: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

3

Fretting and Fretting Fatigue5 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: The Elastic Hertz-Mindlin* Approach

*R.D.Mindlin et al. Trans. ASME Ser. E, J.Appl.Mech. 20 (1953) 327-344 compiled in M.Kalin; Fretting Wear Mechanisms in Contact of Steel and Silicon Nitride Ceramics. Ph.D.Thesis, University of Ljubljana, Slovenia, 1999

E2RF²)1(3a Nν−

=size of contact area: a

distribution of normal pressure: p(r)

²a²r

1²a2

F3)r(p

N−

π=

distribution of shear traction under smallcyclic tangential force FT leading to microslipcorona: τ(r)

²r²aa2F)r( T

−π=τ

Fretting and Fretting Fatigue6 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: The Elastic Hertz-Mindlin* Approach

*R.D.Mindlin et al. Trans. ASME Ser. E, J.Appl.Mech. 20 (1953) 327-344 compiled in M.Kalin; Fretting Wear Mechanisms in Contact of Steel and Silicon Nitride Ceramics. Ph.D.Thesis, University of Ljubljana, Slovenia, 1999

Now

for

but μ for static friction

Thus for slip occursaar)r(p)r(

ar)r(

≤=μ≤τ

=∞→τ

3N

T

FF

1aaμ

−∗=

Page 4: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

4

Fretting and Fretting Fatigue7 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: The Elastic Hertz-Mindlin* Approach

*R.D.Mindlin et al. Trans. ASME Ser. E, J.Appl.Mech. 20 (1953) 327-344 compiled in M.Kalin; Fretting Wear Mechanisms in Contact of Steel and Silicon Nitride Ceramics. Ph.D.Thesis, University of Ljubljana, Slovenia, 1999

Surface traction within the slip corona or annulusfor a´≤ r ≤ a

Surface traction within the stick zone for r ≤ a´

²a²r1

²a2F3)r( N

−πμ

⎥⎦

⎤⎢⎣

⎡−−−

πμ

=τ´²a²r1

aa

²a²r1

²a2F3)r( N

Fretting and Fretting Fatigue8 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Transition: Stick – Partial Slip

R.D.Mindlin et al. Trans. ASME Ser. E, J.Appl.Mech. 20 (1953) 327-344K.C.Johnson, Contact Mechanics (1992)

3N

T

FF1aaμ

−∗=

Stick: a´= a

if FT very smallor μFN very big

Partial slip:0 < a´< a

if 0 < FT < μFN

Influence of the applied tangential force FT

FN=const, FT increasing

Page 5: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

5

Fretting and Fretting Fatigue9 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Transition: Stick – Partial Slip – Gross Slip

*R.D.Mindlin et al. Trans. ASME Ser. E, J.Appl.Mech. 20 (1953) 327-344 compiled in M.Kalin; Fretting Wear Mechanisms in Contact of Steel and Silicon Nitride Ceramics. Ph.D.Thesis, University of Ljubljana, Slovenia, 1999

3N

T

FF1aaμ

−∗=

Stick: a´= a

if FT very smallor μFN very big

Partial slip:0 < a´< a

if 0 < FT < μFN

Gross slip:a´= 0

if FT=μFN

Influence of the applied tangential force FT

Fretting and Fretting Fatigue10 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear Displacement: The Elastic Hertz-Mindlin* Approach

*R.D.Mindlin et al. Trans. ASME Ser. E, J.Appl.Mech. 20 (1953) 327-344 compiled in M.Kalin; Fretting Wear Mechanisms in Contact of Steel and Silicon Nitride Ceramics. Ph.D.Thesis, University of Ljubljana, Slovenia, 1999

The elastic deformation of ball and flat results in tangential displacement δ

with

⎥⎥⎥

⎢⎢⎢

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

μ−−

μ=δ 3

2

N

T32N

F

F11

R²E

F

2k3

( )( )( )

3²13

2221k

ν−ν−ν+

=

Page 6: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

6

Fretting and Fretting Fatigue11 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Displacement: Stick - Partial Slip - Gross Slip

*M.Ödfalk et al. Wear 157 (1992) 435-444

⎥⎥⎥

⎢⎢⎢

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

μ−−

μ=δ 3

2

N

T32N

PS F

F11

R²E

F

2k3

3N

TR²EF

kFGSPS =δ →mit FT=μFN

Fretting and Fretting Fatigue12 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

with

Displacement: Stick - Partial Slip - Gross Slip

*M.Ödfalk et al. Wear 157 (1992) 435-444K.L.Johnson, Contact Mechanics, Cambridge University Press (1985)

δe δS

Now δ = δe + δS

δe

δe = reversible partδS = irreversible part, slip

While

k

R²EFk

3N

e =

e

Te k

F=δ

( )1

F,F,F TTT max

±=α

⎟⎠⎞⎜

⎝⎛ Δαδ=δ

Page 7: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

7

Fretting and Fretting Fatigue13 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Partial Slip: reversibel and irreversible displacements vs. time

*M.Ödfalk et al. Wear 157 (1992) 435-444K.L.Johnson, Contact Mechanics, Cambridge University Press (1985)

δ, δe, and δS are not in-phase

⎥⎥⎥⎥

⎢⎢⎢⎢

⎪⎪⎭

⎪⎪⎬

⎪⎪⎩

⎪⎪⎨

⎟⎟

⎜⎜

μ−−

μ−⎟

⎜⎜

μ−−

μ=Δ

32

N

T

N

T35

N

T

e

2N

F

F11

F6

F5

F

F11

k

F²36E maxmaxmaxEnergy lost

Fretting and Fretting Fatigue14 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Elastic-Plastic Hertz-Mindlin-Vingsbo Approach

*O.Vingsbo et al. Wear, 126 (1988) 131-147

If the plastic deformation of asperities is regarded, the contactzone has an yielding annulus withinwhich the asperities are deformedbut not fractured.

The stick as well as the slip zonestill follow the elastic Mindlinapproach.

Page 8: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

8

Fretting and Fretting Fatigue15 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

* M.Ödfalk et al. Wear 157 (1992) 435-444

Fretting Wear: Elastic-Plastic Hertz-Mindlin-Vingsbo Approach

Elastic stick

Elastic partial slip

plastic displacement

Full FT-δ cycle

Fretting and Fretting Fatigue16 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Regimes and Problems

Dissipated Energy Ed is transformed into crack initiation and propagation(partial slip) and wear (gross slip); can be described by the accumulateddissipated energy

Wear follows the accumulateddissipated energy, while crackinitiation does not*Fouvry et al. Wear 255 (2003) 287-298

Page 9: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

9

Fretting and Fretting Fatigue17 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Wear Rate vs. Displacement

Vingsbo et al. Wear 126 (1988) 131-147Fouvry et al. Wear 203-204 (1997) 393-403

crack initiation

wear loss

δ < a δ > a

Fretting and Fretting Fatigue18 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Partial Slip – Gross Slip – Fretting Map

Fouvry et al. Wear 200 (1996) 186-205

FT-δ curves aresignificantlydifferent forboth regimes

FT

δ δ

FT

Page 10: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

10

Fretting and Fretting Fatigue19 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Partial Slip – Gross Slip

Fouvry et al. Wear 200 (1996) 186-205

FT-δ curves are significantlydifferent for both regimes

but during cycles one maychange from one regime(gross slip) to another (partial slip)

e.g. because of crackinitiation under the contactzone

Fretting and Fretting Fatigue20 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear Regimes

Fouvry et al. Wear 200 (1996) 186-205

Thus, betweenpartial slip and gross slip a mixedslip regime has to be introduced.

These regimes canbe distinguished as to certain systemdependant and system independantvariables

Page 11: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

11

Fretting and Fretting Fatigue21 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear Regimes: Definitions

*Fouvry et al. Wear 200 (1996) 186-205

FT-δ curveEd = energy during one cycleEt = total energy during one cycle

Energy Ratio Criterion A

A = Ed/Et

if A < 0,2; then partial slip

Ed

Et

Fretting and Fretting Fatigue22 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear Regimes: Definitions

*Fouvry et al. Wear 200 (1996) 186-205

FT-δ curveδ = max. displacement amplitudeδ0 = displacement amplitude at FT = 0 („aperture“)

Aperture Ratio Criterion B

B = δ0/δ

if B < 0,26; then partial slip

2δ0

Page 12: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

12

Fretting and Fretting Fatigue23 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear Regimes: Definitions

*Fouvry et al. Wear 200 (1996) 186-205

FT-δ curveEd = energy during one cycleE0 = energy during one cyclecorresponding to the area of a parallelogram in which the loop islocated

System Free Ratio C

C = Ed/E0

if C < 0,77; then partial slip

Ed

E0

Fretting and Fretting Fatigue24 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear Regimes: Definitions

Alternatively the normal force FNt or the displacement δt at transition PS-GRS could be calculated according to

21

1

23

N ³Ek4R3F

t ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛μδ

=31

13

2

Nt R3E4

kF ⎟⎠⎞

⎜⎝⎛μ=δ

*Fouvry et al. Wear 200 (1996) 186-205

2

22

1

21

E

1

E

1

E1 ν−

+ν−

=

μ = static friction, Ei = Youngs Moduli, Gi = shear moduli, νi = Poissons ratios

⎟⎟⎠

⎞⎜⎜⎝

⎛ ν−+

ν−=

2

2

1

11 G

2

G

2

163k

Page 13: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

13

Fretting and Fretting Fatigue25 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Route to solve Problems

*Fouvry et al. Wear 200 (1996) 186-205

Fretting and Fretting Fatigue26 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Gross Slip Regime Wear Mechanisms

*Fouvry et al. Wear 200 (1996) 186-205, Liskiewicz et al. Tribology Int 38 (2005) 69-79

∑∑ =N

dd iEE1

)(

accumulated dissipated energy Ed

energy friction coefficient µe

gN

de F

μ4

= ∑=N

gN

de iiF

iEN 1 )()(4

)(1δ

μ

Page 14: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

14

Fretting and Fretting Fatigue27 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Gross Slip Regime

Wear volume follows theaccumulated dissipatedenergy

∑≈ dGRS EW α

*Fouvry et al. Wear 200 (1996) 186-205, Varenberg et al. Wear 252 (2002) 902-910, Liskiewicz et al. Tribology Int 38 (2005) 69-79

+ contact area

dissipated energydensity Edh

Fretting and Fretting Fatigue28 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Gross Slip Regime

dissipated energydensity governs thelife time

*Fouvry et al. Wear 200 (1996) 186-205, Liskiewicz et al. Tribology Int 38 (2005) 69-79

Page 15: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

15

Fretting and Fretting Fatigue29 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Gross Slip Regime

Wear volume follows the accumulated dissipated energy

*Fouvry et al. Wear 200 (1996) 186-205

∑=∑=

N

1idd )i(EE

for large amplitudes

D4E

FµF dNsT ==

sliding tangential force

with D = δ0

∑=∑=

N

1iiTid )DF4(E

Fretting and Fretting Fatigue30 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Gross Slip Regime

Wear volume follows theaccumulated dissipatedenergy

∑≈ dGRS EW α

*Fouvry et al. Wear 200 (1996) 186-205, Varenberg et al. Wear 252 (2002) 902-910, Liskiewicz et al. Tribology Int 38 (2005) 69-79

+ contact area

dissipated energydensity Edh

α is constant and known!

Page 16: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

16

Fretting and Fretting Fatigue31 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Gross Slip Regime

Pressure and shear stress fieldfor a full sliding sphere

*Fouvry et al. Wear 200 (1996) 186-205

thus, any local dissipated energy analysishas to regard

1. local FT~(p(x,y) and FN~(q(x,y))2. transition to reciprocating sliding wear

dX²X²Y1aq)Y,X(EeX

eX0d ∫ −−=

+

aaDe 0δ==

Fretting and Fretting Fatigue32 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Wear: Gross Slip Reciprocating Sliding

Surface distribution Ed(X,Y) for e=0.5

*Fouvry et al. Wear 200 (1996) 186-205

Surface distribution Ed (X,Y), e=1.5

Page 17: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

17

Fretting and Fretting Fatigue33 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Gross Slip Regime

Distribution in axial X, Y=0 and lateral X=0, Y direction differs

*Fouvry et al. Wear 200 (1996) 186-205

dX²X²Y1aq)Y,X(EeX

eX0d ∫ −−=

+

dX)0Y,X(EE ddA ∫ ==∞+

∞−dX)Y,0X(EE ddL ∫ ==

∞+

∞−

Daq2eq²a2E 00dA π=π=

for e ≥ 13

q²a4E 0RS

dLπ

=independent of e

for e < 1 ³)ee3(3

q²a2E 0GRS

dL −π

=

Fretting and Fretting Fatigue34 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Gross Slip Regime

*Fouvry et al. Wear 200 (1996) 186-205

dX²X²Y1aq)Y,X(EeX

eX0d ∫ −−=

+

Evolution of theprincipal energy variable for one alternated cycle

Page 18: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

18

Fretting and Fretting Fatigue35 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Gross Slip Regime

*Fouvry et al. Wear 200 (1996) 186-205

Shape of wear scar Contour for q0 and p0

acumulation ofthird bodies

Fretting and Fretting Fatigue36 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Partial Slip Regime

*Fouvry et al. Wear 200 (1996) 186-205

Application of Dang Van´s theory of multaxial fatigue to contactproblems

Estimation of a local cyclic failure criterion dc from local hydrostaticpressure p (x,y,z,t) [=σm or σh] and macroscopic rotating bending stress σD and shear stress τD endurance limits:

if d > 1 initiation of fatigue crack likely

)t,z,y,x(p)t,z,x,y()t(d

α−βτ

=

3

2D

DD

D

σ

σ−τ

τ=β

Page 19: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

19

Fretting and Fretting Fatigue37 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Partial Slip Regime

The maximum of d(x,y,z,t) has to beestimated according to Fouvry et al.

d is biggest at the edge of the contact zone withinthe surfacex=a, z=y=0

*Fouvry et al. Wear 200 (1996) 186-205, Wear 195 (1996) 21-34, Tribotest J 3-1 (1996) 23-44

Fretting and Fretting Fatigue38 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Wear: Partial Slip Regime

1Fouvry et al. Wear 195 (1996) 12-34, ²Cattaneo Rendiconto dell´Áccademia dei lincei 6, 27 (1938) 343-348; 434-436; 474-478, ³Midlin et al. Trans ASME, J Appl Mech 20 (1953) 327-344, 4Dang Van ASTM Stp. 1191, ASTM Philadelphia, PA (1993) 120-130, 5Hamilton Proc Inst Mech Eng, 197C (1983) 53-59

Procedure1:- normal pressure from Hertzian theory- partial slip tangential stress loading byCattaneo² and Midlin³- μ is independant of x, y and t³- combined isotropic and kinematic hardening4

- computing according to Hamilton5

Page 20: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

20

Fretting and Fretting Fatigue39 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Schematic Fretting Wear Map with Dang Van Criterion:

Fouvry et al. 195 (1996) 21-34

σEXT = external stress from fretting fatiguep0fl = limit fatigue Hertzian pressure

Flat: mild steelBall: 52100R=50 mm

μ=0.8 (106 cycles)σD=660 MPaτD=410 MPaRp=1050 MPa

Fretting and Fretting Fatigue40 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Measured Fretting Wear Map with Dang Van Criterion:

Fouvry et al. 200 (1996) 186-205

Page 21: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

21

Fretting and Fretting Fatigue41 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Proposed Pressure Crack Nucelation Map for Partial Slip Fretting Wear Regimes

Fouvry et al. Wear 200 (1996) 186-205

σY = Rpσe,max calculatedfrom measuredvalues duringfretting tests

Fretting and Fretting Fatigue42 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Proposed Pressure Crack Nucelation Map for Partial Slip Fretting Wear Regimes

Fouvry et al. 200 (1996) 186-205

Flat: mild steelBall: 52100R=50 mm

μ=0.8 (106 cycles)σD=660 MPaτD=410 MPaRp=1050 MPa

Page 22: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

22

Fretting and Fretting Fatigue43 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Notice:

1Chivers et al. Proc Inst Mech Eng 199 (1985) 283-301

- Tribosystems must be definded precisely as to Partial Slip – Gross Slip by ABC or other suitable criteria

- Gross Slip: Accumulated Dissipated Energy governs wear and, therefore, endurance

- Partial Slip: Stress distribution over coordinates and time together with gross bending and torsion fatigue properties govern crack nucleation and propagation and, therefore, endurance.

- In a first rough approximation Haigh diagrams and principal stress investigation according to Chivers et al.1 might work as well.

Fretting and Fretting Fatigue44 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Fatigue

We would expect all four major wear mechanisms!SF-TCR-AB-AD

Page 23: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

23

Fretting and Fretting Fatigue45 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Fatigue:from Venkatesh et al. 2001 from Vallellano et al. 2004

from Alfredson et al. 2004

from Vallellano et al. 2004

Fretting and Fretting Fatigue46 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting FatigueFretting fatigue brings about very small strokes. This leadsto a fretting contact within the partial slip or even stick regime

distribution of internal loadsfatigue

distribution of external loadsfretting

from Kimura et al. 2003

Thus, the highest tensile stresses appear at the rimof the stick zone leading to crack initiation and propagation

Page 24: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

24

Fretting and Fretting Fatigue47 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting FatigueThe superposition of internal and external loads brings about a distinct lossof endurance

Notice: The endurance isnot limited by wear but byfatigue properties! Earliercrack initation!

~AISI 1055 (EN Ck53)+ pressure 12.5 MPa + pressure 25 MPa

-20%

-96%

from Neuner, PhD Thesis, TU Erlangen-Nuremberg, Germany 2005

Fretting and Fretting Fatigue48 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting FatigueFretting fatigue is treatedaccording to the crackanalogy methodology, because of the similaritiesof the stress fields withfracture mechanics

Notice: The loading situationdepends on adhesion!

from Naboulsi 2005

weak adhesion

strong adhesion

crack

Page 25: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

25

Fretting and Fretting Fatigue49 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Fatigue:

under a given load Fmax the maximum contact radius between e.g. a cylinder and flat is given by

3 max,2

max 4)1(3

⎥⎥⎦

⎢⎢⎣

⎡ −= NF

EDa ν

for weak adhesion

32

max,max,2

max 233

23

4)1(3

⎥⎥

⎢⎢

⎟⎟

⎜⎜

⎛⎟⎠⎞

⎜⎝⎛+++

−= ad

Nadad

NDwFDwDwF

EDa πππν

for strong adhesion

D = diameter of the cylinderwad = work of adhesion ~ 1 N/m

Ginnakopoulos et al. Acta Mater 46 1998

Barquins et al. J Mech Theor Appl 1 (1982)

Semenchenko, Addison-Wesley (1962)

Fretting and Fretting Fatigue50 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Due to this similarity of stress fields a fretting contact can be described bymeans of LEFM

The normal load FN, wich is not constant but oscillatory and > 0, bringsabout a stress field described by ΔKIThe tangential load FT, wich is not constant but oscillatory and > 0, bringsabout a stress field described by ΔKII

Fretting Fatigue:

max

max,a

FK N

I π=

max

max,a

FK T

II π=

Page 26: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

26

Fretting and Fretting Fatigue51 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Fatigue:

For e.g. strong adhesion and weak adhesion one can calculate amax and amin from measured FNmax and FNmin as well as the R-values:

max,

min,

N

NNFF

R =max,

min,

T

TTFF

R =

minmax

maxminmax, )(aa

RaaFK

NN

I πππ −

minmax

maxminmax, )(aa

RaaFK

TT

II πππ −

Fretting and Fretting Fatigue52 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Fatigue:

For the bulk material, which is loaded with the oscillatory fatigue stress amplitude σa in the tangential direction of the contact one gets:

)(2 dcEbdEc

rK abulk

II +=Δ

πσ with E = Youngs-Modulus

r = polar coordinat along contact area2b = thickness of substratec = width of contact bodyd = width of substrate

then BulkIIIII

total KKKK 222 Δ+Δ+Δ=Δ

Page 27: Sk Hwt 08 Fretting Ss08

Höhere Werkstofftechnik: Tribologie Fretting and Fretting Fatigue

27

Fretting and Fretting Fatigue53 www.uni-due.de/wt

Universität Duisburg-EssenLotharstr 1, 47057 Duisburg, Germany

WerkstofftechnikMaterials Science & Engineering

Fretting Fatigue: (from Naboulsi, Eng.Frac.Mech. 72 (2005))

ΔKtotal characterizes crack initiation of fretting fatigue. It depends on loading and geometry. If one does not consider the bulk fatigue stress one

can express ΔKtotal by a CAF-factor(crack-analogy-fretting) which is a measure for the damagetolerance of the system.

With increasing CAF the numberof cycles to failure Nf decrease.

Knowing CAF vs. Nf for oneconfiguration one can recalculatefor other configurations for thestrong adhesion case (= stick regime).

Notice: CAF isnormalized to CAF(Nf=106)