shocks in the icm and the ipmsirius.unist.ac.kr/kaw9/twjones.pdf · 2017-07-19 · ge = ρ. e ~...

43
Shocks in the ICM and the IPM Tom Jones (University of Minnesota) 7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma- Ray Emission from Galaxy Cluster Shocks 1

Upload: others

Post on 27-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

Shocks in the ICM and the IPM

Tom Jones (University of Minnesota)

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 1

Page 2: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 2

Outline

Setting the stage for following talks

The Interplanetary and Intracluster Media as Collisionless Plasmas

Basic Introduction to IPM Shocks & (Some) Issues

Basic Introduction to ICM Shocks & (Some) Issues

Page 3: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

Measure: Solar Wind (IPM):R ~ 1 AU

ICM:Outside cluster cores

kTe (keV) ~0.01 ~1 - 10

ne (cm-3) ~ 1 - 10 ~ 10-4 – 10-2

ωpe/(2π) (Hz)* ~ 104 ~ 102 - 103

Pe ~ nkT (dyne/cm2) ~ 10-11 – 10-10 10-13 – 10-10

B (µG)**B ∝ne

(1/2)(roughly)~ 10 - 100 ~ 0.1 – 5

Some Representative IPM & ICM Plasma Properties:

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 3

**1 µG = 0.1 nT

* ωpi ~ 0.02ωpe

Page 4: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

Length: IPM: ICM:

Coulomb scattering lengthλcoulomb~0.2 pc TkeV

2/ne

~ 0.4 -4 AU ~.02 – 200 kpc

electron thermal gyro radius: rge=ρe ~ 1300 km TkeV

(1/2) /BµG

~ 1 – 10 km ~ 300 - 4x104 km

proton thermal gyro radius: rgp =ρI ~ 5.6x104 km TkeV

(1/2) /BµG

~ 50 - 500 km ~ 104 – 2x106 km

Some Characteristic “Micro-Physics” Lengths: I

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 4

Both plasmas are collisionless!

IPM and ICM thermal gyroradii are very much smaller than λcoulomb

1 AU ≈ 1.5x108 kmrsun ~ 106 km1 kpc ≈ 3x1016 km ≈ 2x108 AU

Page 5: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

Length: IPM: ICM:

electron skin depth*: λe = c/ωpe~ 5km ne

(-1/2)~ 1 - 5 km ~ 50 – 500 km

Ion inertial length**:λi = c/ωpi~ 200km ni

(-1/2)~60 – 200km ~2000 – 20,000 km

Debye length:λD ~ 0.24 km (TkeV /ne)1/2

~ .01 km (~ 10 m) ~ 2 – 100 km

Some Characteristic “Micro-Physics” Lengths: II

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 5

*EM field penetration length

**Ions decouple from electrons

IPM λi is comparable to rgp

ICM λi is smaller than rgp

Page 6: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

Some Dimensionless IPM/ICM Plasma Measures

Measure: Solar Wind: ICM:β = P/(B2/8π) = (6/5) cs

2/vA2

~ 8x104 ne TkeV/BµG2

~ 0.1 – 80 ~ 50 – 103

Ion gyro/inertial lengthrgi/λi = ρi/λI ~ √β

~ 0.3 - 10 ~ 7 - 30

Nd = neλD3 ~ 1013 TkeV

(3/2) /ne(1/2) ~ 1010 ~ 1014

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 6

ICM is generally High β;IPM can be “High” β (border-line?)

Both media are “good plasmas” Nd >> 1(support collective plasma wave families)In effect both become “weakly collisional”

Page 7: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

Velocity: IPM: ICM:

Ion acoustic (sound) speed:cs = √(5P/3ρ) ~ 500 TkeV

(1/2) km/s~ 50 km/s ~ 500 – 1500 km/s

Alfven speed:vA = B/√(4πρ) ~ 2 BµG/ne

(1/2) km/s~20 – 100 km/s ~ 20 – 100 km/s

Turbulent velocities: δv ~ 10 - 50 km/s ~ 300 km/s *Bulk flows: ~ 300 – 600 km/s Up to ~ 2000 km/s

Some Characteristic IPM/ICM Velocities

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 7

*Assuming Pturb ~ 0.1 csNot measured directly

Turbulence in both IPM and ICM should be compressional (δv/cs can be ~ 1)

IPM turbulence should be “MHD” (δv <vA )ICM turbulence (on large scales) should be “HD” (δv >vA )

but, MHD for l < lA ~ L (vA/δv)3; lA ~ 1% L (very crude)

Page 8: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

Some IPM/ICM Shock Parameters

Parameter: Solar Wind (IPM): ICM:Ms = Mf = Vs/cs < a few < a fewMA/Ms ~ β1/2 ~ 1 ~ 10Density compression ~ 2 - 3 ~ 2 - 3

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 8

IPM and ICM shocks have similar sonic (fast mode) Mach numbers

ICM shocks (mostly) have higher Alfvenic Mach numbers than IPM shocks

IPM and ICM shocks are both collisionless, magnetized shocks

Page 9: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 9

Quick Recap So Far

IPM and ICM plasmas both:

are collisionless – Coulomb collision lengths can approach system size have much smaller particle kinetic scales (e.g., gyro radii, inertial lengths) are “good plasmas” (e.g., carry plasma waves, collective behaviors dominate) host compressible turbulence contain shocks with sonic Mach numbers of a few

β = Pg/PB ~ (cs/vA)2 generally smaller in the IPM than the ICM, so:--Usually--

IPM turbulence is MHD on largest scales, while ICM turbulence is HD on largest scales,

but probably MHD on smaller scales ICM shocks are less magnetized than IPM shocks,

with larger Alfvenic Mach numbers

Page 10: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 10

Some Features of Collisionless, Magnetized Plasma Shocks(Fast, “Magnetosonic” Mode)

Shock Characterization Parameters:

Subcritical Shocks, Mf < Mcrit(Nonlinear wave steepening/resistive dissipation may be enough)Postshock flow speed less than cs

Supercritical Shocks, Mf > McritViscous dissipation neededIon reflection important

Shock “foot” is a (diagnostic) feature

Quasi parallel (B|| > B⊥)incident (relative to shock normal)

Quasi perpendicular (B⊥ > B||)incident (relative to shock normal)

Page 11: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 11

The Subcritical/Supercritical Shock Domains

ICMsIPM

Balogh & Treumann 2013

Page 12: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 12

Balogh & Treumann 2013

Example Subcritical Shock Transitions

Page 13: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 13

IPM Shocks: CMEs ⇒ Interplanetary Shocks

Page 14: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 14

Resulting Interplanetary Shock

Page 15: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 15

Some Example IPM, Solar Wind Shocks(Solar Wind Shocks measured by “Wind”

Wilson 2013

Mf ~ 1.7 Mf ~ 1.7

Mf ~ 1.6Mf ~ 4.5

Quasi Parallel Quasi Perpendicular

Note “loud”upstream foot

subcritical

supercritical

Page 16: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 16

The Most Familiar IPM Shocks:

Planetary Bow Shocks

Page 17: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 17

Cartoon of Earth’s Bow Shock:Note both Quasi-parallel & Quasi-Perpendicular Forms

Page 18: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 18

Earth’s Bow Shock Profile(Quasi-Perpendicular)

Thickness “a few” ion inertial lengths Schwartz + 11

Ms ~ 3.5

Page 19: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 19

Collisionless Plasma, so Commonly Not Isotropic, Maxwellian Distributions

Wilson 2013

Page 20: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 20

Saturn’s Bow Shock(Cartoon with Cassini)

Saturn is special:

Large Solar wind Mach #High βMostly quasi perpendicular

Page 21: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 21

What Does Cassini See?

Sulaiman et al 2016

Plasma waves

Page 22: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 22

Some Saturn Bow Shock Crossings by Cassini

IPM Field Strength& Alfven Mach number

5 < MA < 40(most)

Sulaiman et al 2016

P dyn

is ra

m p

ress

ure

Page 23: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 23

Saturn Quasi Perpendicular Bow Shock Structures

Sulaiman et al 2016

MA

MA ~ 5θBn = 65o

MA ~ 25θBn = 81o

MA ~ 33θBn = 77o Note significant “magnetic overshoot”

Page 24: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 24

ICM Shocks:Focus on Cluster Formation Shocks

e.g., Accretion & Mergers

But, there are others, including bow shocks

Page 25: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 25

ICM Shock (X-ray) Examples:Bow Shock of Galaxy NGC1404

moving in the Fornax Cluster ICM

Bow Shock

λCoul ~ 700 pcδshock < 50 pc

Su + 2016

Chandra X-ray Image

Profiles fromN1399

Page 26: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 26

Cluster Scale Shock Examples:“Bullet” Cluster X-ray Merger Shock

Merger ShockM ~ 3X-ray thickness, δshock < 2 kpc

Markevitch 05

λcoulomb ~ 10 kpc

Page 27: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 27

Bullet Cluster X-ray Shock Profile

Ms ~ 3

Markevitch 05

Page 28: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 28

Shocks in Cluster Formation Simulation

ICM Densityvolume rendering

6.3 Mpc subvolume∆x = 20 kpc

Movie spans~ 10 Gyr

Vazza + (TJ) 2017

(Major Merger~ 2/3 through theMovie)

Page 29: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 29

ICM Velocityvolume renderingColored by speedDark (< 100 km/sec)“White” > 300 km/sec

Movie spans~ 10 Gyr

Vazza + (TJ) 2017

(Major Merger~ 2/3 through theMovie)

6.3 Mpc subvolume∆x = 20 kpc

Shocks in Cluster Formation Simulation

Page 30: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 30

ICM Shocksvolume renderingColored by sonicMach number(red M~ 1.5)(blue M ~ 20) Movie spans

~ 10 Gyr

Vazza + (TJ) 2016

(Major Merger~ 2/3 through theMovie)

6.3 Mpc subvolume∆x = 20 kpc

Shocks in Cluster Formation Simulation

Page 31: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 31

ICM Turbulence“Intensity”(vorticity)Volume rendering

Movie spans~ 10 Gyr

Vazza + (TJ) 2017

(Major Merger~ 2/3 through theMovie)

6.3 Mpc subvolume∆x = 20 kpc

Shocks in Cluster Formation Simulation

Page 32: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 32

2D Snapshots

Dark Matter Distribution

Slice Through Cluster Center

Baryon DistributionDuring Major Merger Event

Page 33: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 33

2 Mpc

2D SnapshotsSlice Through Cluster Center

800 km/sec

400 km/sec

ICM Flow Velocity(code units)

z = 0.3During Major Merger Event

Page 34: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 34

z = 0.3

2D SnapshotsSlice Through Cluster Center

Div VICM(rate of expansion)

rarefaction

compression

shock2 Mpc

During Major Merger Event

rarefaction

Page 35: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 35

Shimwell et al 2014

Merging Cluster Shocks Sometimes Illuminatedas Synchrotron “Radio Relics”: Example: Eastern Merger Shock in Bullet Cluster

Page 36: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 36

Shimwell et al 2014

X-ray Profile Across Bullet Relic (East)

Ms ~ 2.5Shock

Page 37: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 37

Other “Famous” Examples:“Sausage Cluster” (CIZA J2242.8+5301)

Van Weeren etal 2010

GMRT 610 MHz

X-ray and radio ‘’shock estimates”Ms ~ 3 - 4

Page 38: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 38

Other “Famous” Examples:“Toothbrush Cluster” (IRXS J0603.3+4214)

Van Weeren etal 2016

LOFAR 120-181 MHz

Page 39: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 39

Van Weeren etal 2016

Toothbrush: Radio & X-ray

Contours: radioColor: X-ray (Chandra)

Page 40: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 40

X-ray Profile Across Toothbrush “Head”

Van Weeren etal 2016

Relic “Leading Edge”

Evidently a Very Weak Shockσ~ 1.26Ms < 1.5

Page 41: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 41

Radio Spectral Map Not Consistent with Simple “DSA”Model in this Shock

N(E) ∝ E s

s = 2α - 1

Implyings ~ (-2 ,- 3)

“Standard” DSA

Ms ~ 3

Van Weeren etal 2016

Explanation of Relic is More Complex(Part of Why We are Here in Ulsan!)

Page 42: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 42

Summary The IPM and ICMs are both collisionless plasmas with microphysics

dominated by fast, collective interactions (⇒ “weakly collisional”)

Each is weakly to moderately magnetized:-In the IPM β= Pg/PB ~ (cs/vA)2 ~ 1 (within an order of magnitude), so vA~ cs-In ICMs β= Pg/PB ~ (cs/vA)2 >> 1 , so vA < cs

Both media develop shocks up to sonic Mach numbers of a few (ignoring external)-In the IPM we can measure the shock (& plasma) properties directly-In ICMs we depend on “remote sensing” (X-rays, radio emission & γ-rays)We are greatly constrained by both the data and our limited understandingof very complex phenomena

Page 43: Shocks in the ICM and the IPMsirius.unist.ac.kr/kaw9/TWJones.pdf · 2017-07-19 · ge = ρ. e ~ 1300 km T. keV (1 ... crit (Nonlinear wave steepening/resistive dissipation may be

7/10/2017 KAW9: Collisionless Shock Particle Acceleration and Gamma-Ray Emission from Galaxy Cluster Shocks 43

감사합니다!