series, -expansion of the hypergeometric functions and

31
Series, ε-expansion of the hypergeometric functions and Feynman diagrams M.Yu.Kalmykov. DESY,Zeuthen & JINR, Dubna Based on the results A.I. Davydychev & M.Yu.K. hep-th/0303162 (ver.3) F. Jegerlehner & M.Yu.K. Nucl.Phys.B676 (2004)

Upload: others

Post on 18-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Series, ε-expansion of thehypergeometric functions and Feynman

diagrams

M.Yu.Kalmykov.

DESY,Zeuthen & JINR, Dubna

Based on the resultsA.I. Davydychev & M.Yu.K.

hep-th/0303162 (ver.3)F. Jegerlehner & M.Yu.K.

Nucl.Phys.B676 (2004)

Introduction

One of the most powerful tools used in loop calculations isdimensional regularization.

G. ’tHooft and M. Veltman, Nucl. Phys. B44 (1972) 189;

C.G. Bollini and J.J. Giambiagi, Nuovo Cimento 12B (1972) 20;

J.F. Ashmore, Lett. Nuovo Cim. 4 (1972) 289;

G.M. Cicuta and E. Montaldi, Lett. Nuovo Cim. 4 (1972) 329.

In some cases, one can derive results valid for an arbitrary space-

time dimension n=4−2ε usually in terms of various hypergeometric

functions. Dimensional regularization allows one to simultaneously

regulate the ultraviolet (UV) and infrared (IR) singularities.

For practical purposes the coefficients of the expansion in ε are

important.

In particular, in multiloop calculations higher order terms of the ε

expansion of one– and two–loop functions are needed, since one can

get contributions where these functions are multiplied by poles in ε.

Such poles may appear not only due to factorizable loop, but also as

IR-singularities or a result of application of the integration by part or

other techniques.

F.V. Tkachov, Phys. Lett. B100 (1981) 65;

K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B192 (1981) 159;

O.V. Tarasov, Phys. Rev. D54 (1996) 6479

Mikhail Kalmykov 2

What have been done before

D. Broadhurst (unpublished) ∼ 1991;

A. Grozin, 2000 (unpublished); Int.J.Mod.Phys. A (2004) 473;

S. Moch, P. Uwer & S. Weinzierl, J.Math.Phys. 43 (2002) 3363;

S. Weinzierl, hep-ph/0402131;

Expansion of hypergeometric functions of several variables around

integer values of parameters.

The result of expansion are expressible in terms of nested sums

or another new functions, like

harmonic polylogarithms

E. Remiddi & J.A.M. Vermaseren, Int. J. Mod. Phys. A15 (2000) 725.

2-d harmonic polylogarithms

T. Gehrmann and E. Remiddi, Nucl. Phys. B601 (2001) 248

multivariable polylogarithms

A.B. Goncharov, Math. Res. Lett. 5 (1998) 497.

For numerical evaluation of the new functions the proper subroutines

was elaborated

T. Gehrmann and E. Remiddi,

Comput. Phys. Commun. 141, 296 (2001)

Comput. Phys. Commun. 144, 200 (2002)

S. Weinzierl,

Comput. Phys. Commun. 145, 357 (2002)

Problem

The elaboration of the algorithm for analytical calculation of the higher

order terms of the ε-expansion of any hypergeometric functions of

several variables with arbitrary set of parameters.

Mikhail Kalmykov 3

Hypergeometric function

The generalized hypergeometric function can be written as series

PFQ

{A1 + a1ε}, {A2 + a2ε}, · · · {AP + aPε}{B1 + b1ε}, {B2 + b2ε}, · · · {BQ + bqε}

z

«

=∞X

j=0

zj

j!

ΠPs=1(As + asε)j

ΠQr=1(Br + brε)j

,

where (α)j ≡ Γ(α+ j)/Γ(α) is the Pochhammer symbol.

We want to construct the ε-expansion of this series.

PFQ =

8

<

:

P ≤ Q converges for all finite z

P = Q+ 1 converges for all |z| < 1

P > Q+ 1 diverges for all z 6= 0

Mikhail Kalmykov 4

Case of integer and half-integer valuesWe will concentrate on the case P+1FP .

Let us consider firstly the case of integer or half-integer values of

parameters: {Ai, Bj} ∈ {mi,mj + 12}.

To perform the ε-expansion we use the well-known representation

(1 + aε)j = j! exp

"

−∞X

k=1

(−aε)k

kSk(j)

#

,

which, for integer positive values, Ai ≡ mi > 1, yields

(m+aε)j=(m)j exp

(

−∞X

k=1

(−aε)k

k[Sk(m+j−1)−Sk(m−1)]

)

,

where Sk(j) =Pj

l=1 l−k is the harmonic sum satisfying the relation

Sk(j) = Sk(j − 1) +1

jk.

For half-integer positive values, Ai ≡ mi + 1/2 > 0, we use the

duplication formula

m+1

2+ aε

«

j

=(2m+ 1 + 2aε)j

4j (m+ 1 + aε)j

To work only with positive values we can apply several times the

Kummer relation:

PFQ

a1, · · · , aPb1, · · · , bQ

z

«

= 1 + za1 . . . aP

bi . . . bQP+1FQ+1

1, 1+a1, · · · , 1+aP2, 1+b1, · · · , 1+bQ

z

«

.

Mikhail Kalmykov 5

SumsAfter applying this procedure the original hypergeometric function can

be written as

P+1FP

{mi + aiε}J , {mj + 12 + djε}P+1−J

{ni + biε}K, {nj + 12 + cjε}P−K z

«

=

∞X

j=1

zj

j!

1

4j(K−J+1)

ΠJi=1(mi)j

ΠKl=1(nl)j

ΠP+1−Jr=1

(2mr + 1)j

(mr + 1)jΠP−Ks=1

(ns + 1)j

(2ns + 1)j∆

where

∆ = exp

2

4

∞X

k=1

(−ε)k

k

„ KX

l=1

bkl Sk(nl + j − 1)

−JX

i=1

akiSk(mi + j − 1)

+P−KX

s=1

cks

»

Sk(2ns + j) − Sk(ns + j)

−P+1−JX

r=1

dkr

»

Sk(2mr + j) − Sk(mr + j)

–«

3

5

with Sk(j) =Pj

l=11

lk

In this way, the analytical calculation of the ε-expansion is reduce to

analytical calculation of the multiple sums

∞X

j=1

zj

j!

1

4j(K−J+1)Πi,r,l,s

(mi − 1 + j)!(2mr + j)!

(nl − 1 + j)!(2ns + j)!×

[Sa1(m1+j−1)]i1 . . . [Sap(mp+j−1)]

ip ×[Sb1(2mr+2j)]j1 . . . [Sbq(2ns+2j)]jq,

where {mj, nk} - positive integer numbers.

Mikhail Kalmykov 6

Calculation methods

How to calculate this sums analytically?

• Integral representation for ψ-function

ψ(z) =d

dzln Γ(z) , ψ(m)(z) =

dm

dzmψ(z) ,

S1(j − 1) = ψ(j)+γE ,

Sk(j−1) = ζk−(−1)k

(k − 1)!ψ

(k−1)(j) ,

ψ(1 + z) = ψ(z) +1

z,

ψ(m)(1 + z) = ψ(m)(z) +(−1)mm!

zm+1,

ψ(z) + γ =

Z 1

0

1 − tz−1

1 − tdt ,

ψ(m)

(z) = −Z 1

0

tz−1

1 − tlnmt dt ,

where γE is Euler’s constant.

Multiple sums reduced to the multiple integral of the harmonic sums

=⇒ further simplifications in terms of Goncharov polylogartohms

or some more simple functions.

D. Borwein, J.M. Borwein, R. Girgensohn, (1995)

J.M. Borwein, R. Girgensohn, (1996)

P. Flajolet, B. Salvy, (1998)

O.M. Ogreid, P. Osland, (1998), (2001), (2002)

J. Fleischer, A.V. Kotikov, O.L. Veretin, (1999).

• Generating function approach

H.S. Wilf,Generatingfunctionology, Academic Press, London, 1994.

Mikhail Kalmykov 7

Generating functions approach

Let us rewrite the multiple sums

∞X

j=1

z

4(K−J+1)

«j 1

j!Πi,r,l,s

(mi − 1 + j)!(2mr + j)!

(nl − 1 + j)!(2ns + j)!×

[Sa1(m1+j−1)]i1 . . . [Sap(mp+j−1)]ip ×[Sb1(2mr+2j)]

j1 . . . [Sbq(2ns+2j)]jq,

in the following form

ΣA;B(u) =∞X

j=1

ujηA;B(j) u =

z

4(K−J+1),

where A ≡“

i1,...,ipa1,...,ap

and B ≡“

j1,...,jqb1,...,bq

denote the collective sets

of indices, whereas ηA;B(j) is the coefficient of uj.

ηA;B(j) =1

j!Πi,r,l,s

(mi − 1 + j)!(2mr + j)!

(nl − 1 + j)!(2ns + j)!×

[Sa1(m1+j−1)]i1 . . . [Sap(mp+j−1)]ip ×[Sb1(2mr+2j)]

j1 . . . [Sbq(2ns+2j)]jq,

The idea is to find a recurrence relation with respect to j, for the

coefficients ηA;B(j), and then transform it into a differential equation

for the generating function ΣA;B(u). In this way, the problem of

summing the series would be reduced to solving a differential equation.

Mikhail Kalmykov 8

Special case

Let us consider the following hypergeometric function

P+1FP

{32 + biε}J−1, {1 + aiε}K, {2 + diε}L

{32 + fiε}J , {1 + eiε}R, {2 + ciε}K+L−R−2 z

«

=1

2z

ΠK+L−R−2s=1 (1 + csε)Π

Jk=1(1 + 2fkε)

ΠLi=1(1 + diε)Π

J−1r=1 (1 + 2brε)

∞X

j=1

1“

2jj

(4z)j

jK−R−1∆ ,

where

∆ = exp

" ∞X

k=1

(−ε)k

k

TkSk(j − 1) + 2kUkSk(2j − 1) +Wkj−k”

#

where

Ak ≡X

aki , Bk ≡

X

bki , Ck ≡

X

cki , Dk ≡

X

dki ,

Ek ≡X

eki , Fk ≡

X

fki , Uk ≡ Fk −Bk, Wk ≡ Ck −Dk ,

Tk ≡ Bk + Ck + Ek −Ak −Dk − Fk,

The ε-expansion of hypergeometric function is reduced to studing of

the multiple inverse binomial sums∞X

j=1

1“

2jj

uj

jc[Sa1(j−1)]

i1 . . . [Sap(j−1)]ip [Sb1(2j−1)]

j1 . . . [Sbq(2j−1)]jq,

with u = 4z and

ηA;B;c(j)=1

jc[Sa1]

i1 . . . [Sap]ip [S̄b1]

j1 . . . [S̄bq]jq,

where Sa = Sa(j − 1) and S̄a = Sa(2j − 1).

Mikhail Kalmykov 9

Recurrence relation

The recurrence relation for this coefficient

ηA;B;c(j)=1

jc[Sa1]

i1 . . . [Sap]ip [S̄b1]

j1 . . . [S̄bq]jq,

can be written in the following form:

2(2j + 1)(j + 1)c−1ηA;B;c(j + 1) − j

cηA;B;c(j) = rA;B(j) ,

where the explicit form of the “remainder” rA;B(j) is given by

2j

j

«

rA;B(j) =

pY

k=1

h

Sak(j−1)+j−akiik

qY

l=1

h

Sbl(2j−1)+(2j)−bl+(2j + 1)−blijl

−pY

k=1

ˆ

Sak(j − 1)˜ik

qY

l=1

ˆ

Sbl(2j − 1)˜jl .

In other words, it contains all contributions generated by j−ak, (2j)−bl

and (2j + 1)−bl which appear because of the shift of the index j.

Multiplying both sides of this equation by uj, summing from 1 to

infinity, and using the fact that any extra power of j corresponds to the

derivative u(d/du), we arrive at the following differential equation for

the generating function ΣA;B;c(u):

4

u− 1

«„

ud

du

«c

ΣA;B;c(u) − 2

u

ud

du

«c−1

ΣA;B;c(u) =

2ηA;B;c(1) +RA;B(u) ,

where ηA;B;c(1) = 12δp0 and RA;B(u) ≡P∞

j=1 ujrA;B(j).

Mikhail Kalmykov 10

From definition it is easy to deduce

∞X

j=1

1“

2jj

uj

jcSa1 ⇒ Ra1;−(u) =

∞X

j=1

uj“

2jj

1

ja1,

∞X

j=1

1“

2jj

uj

jcS̄b1 ⇒ R−;b1(u) =

∞X

j=1

uj“

2jj

2

4

1

(2j)b1+

1

(2j + 1)b1

3

5 ,

· · ·

The differential equation for generating function ΣA;B;c(u) take the

most simple form in terms of the geometrical variable

u ≡ uθ = 4 sin2 θ2 ,

4

u− 1 = cot2 θ

2 , ud

du= tan θ

2

d

dθ,

1

2 sin2 θ2

2 sin θ2 cos θ2

d

dθ− 1

«„

tan θ2

d

«c−1

ΣA;B;c(uθ) =

δp0 +RA,B(uθ) .

Furthermore, it can be represented as

tan θ2

d

«c−1

ΣA;B;c(uθ) = tan θ2 σA;B(θ) ,

whered

dθσA;B(θ) = δp0 +RA,B(uθ)|

uφ=4 sin2 φ2

.

Mikhail Kalmykov 11

Introducing lθ ≡ ln`

2 sin θ2

´

, the differential equation for em

generating function can be rewritten as

1

2

d

dlθ

«c−kΣA;B;c(uθ) = ΣA;B;k(uθ) ,

or in integral form

∞X

j=1

uj

jcf(j) =

1

(c− 2)!

θZ

0

dφcos φ2

sin φ2

»

lnu− 2 ln“

2 sin φ2

–c−2 ∞X

j=1

4 sin2 φ2

”j

jf(j) ,

where f(j) stands for an arbitrary combination of the sums.

The iterative solution of this equation is

ΣA;B;c(uθ) = −kX

i=1

(−2)i

i!liθ ΣA;B;c−i(uθ)

+(−2)k

k!

θZ

0

dφ lkφdΣA;B;c−k(uφ)

dφ,

Statement. If for some k the derivative ΣA;B;c−k(uθ) is expressible

only in terms of the powers of θ and lθ, then the sum ΣA;B;c(uθ) can

be presented in terms of the generalized log-sine functions. Moreover,

according to a statement proven by [Davydychev & Kalmykov (2001)],

the analytic continuation of any generalized log-sine function Ls(k)j (θ)

can be expressed in terms of Nielsen polylogarithms.

Mikhail Kalmykov 12

Some definitions[L. Lewin, Polylogarithms and associated functions North-Holland,

Amsterdam, 1981.]

Ls(k)j (θ) = −

θZ

0

dφ φk lnj−k−1

˛

˛

˛

˛

2 sinφ

2

˛

˛

˛

˛

, Lsj(θ) = Ls(0)j (θ)

is the generalized log-sine function

TiN (z) = Im [LiN (iz)] =1

2i

»

LiN (iz) − LiN (−iz)

,

is the inverse tangent integral.

Lsci,j(θ) = −θZ

0

dφ lni−1

˛

˛

˛

˛

2 sin φ2

˛

˛

˛

˛

lnj−1

˛

˛

˛

˛

2 cos φ2

˛

˛

˛

˛

.

is the generalized log-sine-cosine function introduced by [Davydychev,

Kalmykov (2001)]. These functions satisfied to the following properties:

Lsci,1(θ) = Lsi(θ) , Lsc1,j (θ) = −Lsj(π − θ) + Lsj(π) .

Lsci,j(θ) = −Lscj,i(π − θ) + Lscj,i(π) ,k−1X

i=0

1

i!(k − 1 − i)!Lsci+1,k−i(θ) =

1

2(k − 1)!Lsk(2θ) ,

2Lsc2,2(θ) = 12Ls3(2θ) − Ls3(θ) + Ls3(π − θ) − Ls3(π) ,

6Lsc3,3(θ) + 4 [Lsc2,4(θ) − Lsc2,4(π − θ)]

= 12Ls5(2θ) − Ls5(θ) + Ls5(π − θ) + 15

8 πζ4 ,

Lsc2,3(θ) = 112Ls4(2θ) − 1

3Ls4(θ) + 2Ti4`

tan θ2

´

−2 ln`

tan θ2

´

Ti3`

tan θ2

´

+ ln2 `tan θ2

´

Ti2`

tan θ2

´

− 16θ ln3 `tan θ

2

´

.

Up to the level k = 5 only one new function is appeared Lsc2,4(θ).

Mikhail Kalmykov 13

Results

∞X

j=1

1“

2jj

uj

jc= −

c−2X

i=0

(−2)i

i!(c− 2 − i)!(lnu)c−2−i

Ls(1)i+2(θ) , c ≥ 2.

∞X

j=1

uj

jc1“

2jj

”S2 = −16

c−2X

i=0

(−2)i

i!(c− 2 − i)!(lnu)

c−2−iLs

(3)i+4(θ) ,

∞X

j=1

uj

jc1“

2jj

S22−S4

=−160

c−2X

i=0

(−2)i

i!(c−2−i)! (lnu)c−2−i

Ls(5)i+6(θ) ,

0 ≤ u ≤ 4, u = 4 sin2 θ2.

∞X

j=1

1“

2jj

uj

jS

21 = 4 tan θ

2

»

Ls3(π−θ) − Ls3(π)

−2Ls2(π−θ)Lθ + θL2θ + 1

24θ3

,

∞X

j=1

1“

2jj

uj

jS1S̄1 = tan θ

2

5 [Ls3(π−θ) − Ls3(π)] − Ls3(θ)

+12Ls3(2θ)−2Ls2(θ)Lθ+2Ls2(π−θ) lθ−8Ls2(π−θ)Lθ−2θlθLθ

+4θL2θ+

112θ

3

ff

,

∞X

j=1

1“

2jj

uj

jS3 = tan θ

2

6Cl4 (θ) − θ2Cl2 (θ) − 4θCl3 (θ) − 2θζ3

ff

,

∞X

j=1

1“

2jj

uj

j2S̄2 = 4θTi3

`

tan θ4

´

− 8ˆ

Ti2`

tan θ4

´˜2+ 1

96θ4 ,

· · ·

Lθ ≡ ln`

2 cos θ2´

, lθ ≡ ln`

2 sin θ2

´

.

Mikhail Kalmykov 14

Starting from series, depending on the angle θ2 we express the result

in terms of polylogarithmic functions of imaginary argument, which

depend on the

2θ, θ, π − θ,θ

2, π − θ

2,

θ

4

At the level 4 One needs to introduce a new function

Φ(θ) ≡θZ

0

dφ Ls2(φ) ln“

2 cos φ2

,

which obeys the following symmetry property:

Φ(θ) + Φ(π − θ) = Φ(π) + Ls2(π − θ) Ls2(θ) ,

where

Φ(π) = 16 ln

42 − ζ2 ln

22 + 7

2ζ3 ln 2 − 5316ζ4 + 4Li4

`

12

´

.

Φ(θ) can be related to the real part of a certain harmonic polylogarithm

of complex argument,

Φ(θ) = 196θ

2(2π − θ)

2 − LθCl3 (θ) + ζ3 ln 2 − H−1,0,0,1(1)

+12

»

H−1,0,0,1(eiθ) + H−1,0,0,1(e

−iθ)

,

where

H−1,0,0,1(y) =

yZ

0

dxLi3(x)

1 + x,

H−1,0,0,1(1) = − 112 ln4 2 + 1

2ζ2 ln2 2 − 34ζ3 ln 2 + 3

2ζ4 − 2Li4`

12

´

.

Mikhail Kalmykov 15

∞X

j=1

1“

2jj

uj

jcf

f c = 1 c = 2 c = 3 c = 4

1 ? ? ? ?

S1 + + +

S̄1 + + +

S2 ? ? ? ?

S21 + +

S1S̄1 + +

S̄2 + +

S̄21 + +

S3 + +

S1S2 + +

S31 +

S2S̄1 + +

S21S̄1 +

S1

`

S̄2 + S̄21

´

+

S̄31 + 3S̄1S̄2 + 2S̄3 +

S22 − S4 ? ? ? ?

Table 1: Equation index for the inverse binomial sums

An star ? means that the corresponding equation holds for general c.

Mikhail Kalmykov 16

Sums with shifted indices

∞X

j=1

1“

2jj

uj

2j + 1=

θ

sin θ− 1 =

2

sin θTi1`

tan θ2

´

− 1 ,

∞X

j=1

1“

2jj

uj

(2j + 1)2=

2

sin θ2

Ti2`

tan θ4

´

− 1 ,

∞X

j=1

1“

2jj

uj

(2j + 1)S1 = θ cot θ2 +

2

sin θ[Ls2(π − θ) − θLθ] − 2 ,

∞X

j=1

1“

2jj

uj

(2j + 1)S2 =

θ3

6 sin θ− 2θ cot θ2 − 1

2θ2 + 4 ,

∞X

j=1

1“

2jj

uj

(2j + 1)S̄1 =

1

sin θ[2Ls2(π−θ)−2θLθ+Ls2(θ)+θlθ]

+12θ cot θ2 − 2

sin θ2

Ti2`

tan θ4

´

− 1 ,

∞X

j=1

1“

2jj

uj

(2j + 1)S

21 = −1

2θ2+ 4 cot θ2 [Ls2(π − θ) − θLθ] − 4

+2θ cot θ2+θ3

6 sin θ+

4

sin θ

h

Ls3(π−θ)−Ls3(π)+θL2θ−2Ls2(π − θ)Lθ

i

,

∞X

j=1

1“

2jj

uj

(2j + 1)S1S2 = 8−θ2

lθ+2θCl2 (π−θ)−2θCl2 (θ)

−4Cl3 (π−θ)−2Cl3 (θ)−ζ3 + cot θ2

h

16θ

3−4θ+4θLθ−4Cl2 (π − θ)i

+1

sin θ

θ2 [Cl2 (π−θ)−Cl2 (θ)]−4θ [Cl3 (π−θ) + Cl3 (θ)]

−8Cl4 (π−θ)+6Cl4 (θ)+θζ3− 13θ

3Lθ

ff

,

Mikhail Kalmykov 17

Analytical continuationTo obtain results valid in other regions of variable u (for u < 0 and

u > 4), one needs to construct the proper analytical continuation

of the expressions presented in the previous section. For generalized

log-sine integrals it is described by [Davydychev, Kalmykov 2001].

Let us introduce a new variable

y ≡ eiσθ, ln(−y − iσ0) = ln y − iσπ,

where the choice of the sign σ = ±1 is related to the causal “+i0”

prescription for the propagators. The inverse relations are

u = −(1 − y)2

y, y =

1 −q

uu−4

1 +q

uu−4

, ud

du= −1 − y

1 + yy

d

dy,

In terms of this variable y, the analytic continuation of all generalized

log-sine integrals can be expressed in terms of Nielsen polylogarithms,

iσ [Lsj(π)−Lsj(θ)] =1

2jjlnj(−y)

h

1−(−1)ji

+(−1)j(j−1)!

j−2X

p=0

lnp(−y)2pp!

j−1−pX

k=1

(−2)−k

× [Sk,j−k−p(y)−(−1)pSk,j−k−p(1/y)] ,

whereas for the function Φ(θ) we get

Φ(θ) = ζ3 ln 2 + 12ζ4 − H−1,0,0,1(1)

+12

h

H−1,0,0,1(y) + H−1,0,0,1(y−1)i

−14

h

Li4(y) + Li4

y−1”i

−12

ˆ

ln(1 + y) − 12 ln y

˜

h

Li3(y) + Li3

y−1”i

,

Mikhail Kalmykov 18

For the cases involving the inverse tangent integrals the analytic

continuation are

TiN`

tan θ2

´

= −σ2i

[LiN (ω) − LiN (−ω)] ,

ω =1 − y

1 + y= −iσ tan θ

2 ,

TiN`

tan θ4

´

= −σ2i

[LiN (ωs) − LiN (−ωs)] ,

ωs =1 − √

y

1 +√y

= −iσ tan θ4 .

The results have simple form in term of “new” variables.

∞X

j=1

1“

2jj

uj

jS2(j − 1) = −1

6

1 − y

1 + yln3 y ,

∞X

j=1

1“

2jj

uj

jS2(2j − 1) =

1 − y

1 + y

»

2Li3(−ω) − 2Li3(ω) − 1

24ln3 y

,

where

y =1 −

q

uu−4

1 +q

uu−4

, ω =1 − √

y

1 +√y.

Mikhail Kalmykov 19

Binomial & harmonic sumsUsing the procedure described early, one can also construct the ε-

expansion of hypergeometric functions of the following types:

P+1FP

{32 + biε}J , {1 + aiε}K, {2 + diε}L

{32 + fiε}J−1, {1 + eiε}R, {2 + ciε}K+L−R u

«

=2

u

ΠK+L−Rs=1 (1 + csε)Π

J−1k=1(1 + 2fkε)

ΠLi=1(1 + diε)ΠJ

r=1(1 + 2brε)

∞X

j=1

2j

j

«

zj

jK−R−1∆ ,

P+1FP

{32 + biε}J , {1 + aiε}K, {2 + diε}L

{32 + fiε}J , {1 + eiε}R, {2 + ciε}K+L−R−1 z

«

=1

z

ΠK+L−R−1s=1 (1 + csε)Π

Jk=1(1 + 2fkε)

ΠLi=1(1 + diε)ΠJ

r=1(1 + 2brε)

∞X

j=1

zj

jK−R−1∆ ,

The ε-expansion of these hypergeometric function are reduced to

studing of the multiple binomial sums and multiple harmonic sums∞X

j=1

2j

j

«

uj

jc[Sa1(j−1)]

i1 . . . [Sap(j−1)]ip [Sb1(2j−1)]

j1 . . . [Sbq(2j−1)]jq,

∞X

j=1

uj

jc[Sa1(j−1)]i1 . . . [Sap(j−1)]ip [Sb1(2j−1)]j1 . . . [Sbq(2j−1)]jq,

Using the generating function approach all these sums can be calculated.

The result have simple form in terms of new variables:

• for multiple binomial sums

χ =1 −

√1 − u

1 +√

1 − u, u =

(1 + χ)2,

• for multiple harmonic sums

ξ =1 − √

u

1 +√u, u =

(1 − ξ)2

(1 + ξ)2,

Mikhail Kalmykov 20

Results

The first several terms (up to Li4) of ε-expansion for the hypergeometric

functions P+1FP are calculated analytically.

The hypergeometric functions of the special type have been considered:

P+1FP

{32+biε}

J−1, {1+aiε}K, {2+diε}L{3

2+fiε}J, {1+eiε}R, {2+ciε}K+L−R−2 z

«

{I}

P = K + L+ J − 2

P+1FP

{32+biε}

J, {1+aiε}K, {2+diε}L{3

2+fiε}J, {1+eiε}R, {2+ciε}K+L−R−1 z

«

{II}

P = K + L+ J − 1

P+1FP

{32+biε}

J+1, {1+aiε}K, {2+diε}L{3

2+fiε}J, {1+eiε}R, {2+ciε}K+L−R z

«

{III}

P = K + L+ J

For higher order terms of ε-expansion (above Li4) the one-fold integral

representation are available.

The algorithm can be extended on the function P+1FP with the arbitrary

set of parameters.

Up to weight 3 the result are expressible in terms of the ordinary

polylogarithms only (however, new variable should be introduced) At

the level weight 4, the harmonic polylogarithm H−1,0,0,1 it is necessary

to add.

For the particular values of variable z (z=1/4, z=1, z=4) the terms of

order (up to Li5) are available.

Mikhail Kalmykov 21

Examples

2F1 :⇒ K + L = 2, J = 1; 3; expansion up to O(ε4)

2F1

1 + a1ε, 1 + a2ε32 + fε,

z

«

, 2F1

1 + a1ε, 2 + d1ε32 + fε,

z

«

2F1

2 + d1ε, 2 + d2ε32 + fε,

z

«

3F2 :⇒ K + L+ J = 4, J = 1, 2; 3+8; expansion up to O(ε3)

3F2

1+a1ε, 1+a2ε, 1+a3ε32+f1ε, 1+e1ε

z

«

3F2

1+a1ε, 1+a2ε, 1+a3ε32+f1ε, 2+c1ε

z

«

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

3F2

2+d1ε, 2+d2ε, 2+d3ε32+fiε, 1+e1ε

z

«

3F2

2+d1ε, 2+d2ε, 2+d3ε32+fiε, 2+c1ε

z

«

3F2

32+b1ε, 1+a1ε, 1+a2ε32+f1ε,

32+f2ε

z

«

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

3F2

32+b1ε, 2+d1ε, 2+d2ε32+f1ε,

32+f2ε

z

«

4F3 :⇒ K + L+ J = 5, J = 1, 2, 3; 3+8+15;

expansion up to O(ε2)

Mikhail Kalmykov 22

Examples

A.Davydychev & M.K., hep-th/0303162

P126

p

1p

2

J 3

1

2

p

p

p3

K

p2

p3

1p

p3

= 0

= 0

m

m

= 0

= 0m

pp pp

m

M

m m

D4

2 = m2

m

m

(

2σ =

ν2

σ σ1

3

2

ν , ν , σ , σ , σ )21 1 2 3

m2

2

2

2

2

F10101

σ

ν2

ν1

1 2(σ,ν ,ν )J011

F.Jegerlehner, M.Kalmykov & O.Veretin, Nucl.Phys.B658 (2003) 49.

M

m m

M

m m

p^2=m^2 p^2=m^2

F00112F20110

Mikhail Kalmykov 23

Examples

Particular case z = 1

A.Davydychev & M.K., Nucl.Phys. B605 (2001) 266.

Master-integrals for packages

ONSHELL2

J.Fleischer & M.K. Comp.Phys.Comm. 128 (2000) 531.

MATAD

L.V. Avdeev, Comput. Phys. Commun. 98 (1996) 15

M. Steinhauser, Comput. Phys. Commun. 134 (2001) 335.

3E D3

D 32

ρ

1

ν

1

2σ2

σ

ν2

ν1

J011 1 2

σ1

σ2

α

β

V1001 (α,σ ,σ ,β)1 2F10101

1

(σ,ν ,ν )

ν

ν

νν

5

6

3 4

ν2

ν1

ν

σ

3

ν1

ν2

ρ

4 (ν ,ν ,ν ,ν ,ν ,ν ) (0,σ,0,ν ,ν ,ν )

σ

1 212(σ ,σ ,ρ ,ρ ,ν)1 2 3 4 65

Mikhail Kalmykov 24

Two-loop vertexA.Davydychev & M.K., hep-th/0303162

P126

p

1p

2

p3

= 0

= 02

2

(p2)2P126 =

∞X

j=1

1“

2jj

uj

j2

8

<

:

1

ε2+

1

ε

»

−S1 − log(−u)

+ 12 log

2(−u)

−S1 log(−u) − 32S2 − 15

2 S21 + 4S1S̄1 + 2

S1

j+ O(ε)

9

=

;

.

J. Fleischer, A. Kotikov, O.Veretin (1999)

(p2)2P126=− 1

2ε2ln2 y

+1

ε

»

2Li2(−y) ln y−4Li3(−y)+ln2 y ln(1 − y)− 13 ln3 y−ζ2 ln y−3ζ3

+8H−1,0,0,1(−y) + 2S2,2

y2”

− 8S2,2(−y) − 8S2,2(y) − 4Li4(y)

−12Li4(−y) − 8Li2(y) Li2(−y) − 14 [Li2(−y)]2 + 28S1,2(−y) ln y

−10Li3(−y) ln y + 7Li2(−y) ln2 y − 4Li2(−y) ln y ln(1 − y)

− ln2y ln

2(1 − y) − 1

6 ln4y + 2

3 ln3y ln(1 − y) + 2ζ2 ln y ln(1 − y)

−52ζ2 ln2 y + 6ζ3 ln(1 − y) − 11ζ3 ln y − 6Li2(−y) ζ2 − 27

4 ζ4 + O(ε) .

G. Passarino and S. Uccirati (2004)

R. Bonciani, P. Mastrolia and E. Remiddi (2004)

Mikhail Kalmykov 25

Two-loop vertexA.Davydychev & M.K., hep-th/0303162

K

p2

p3

1p

2 = m2

m

m

(

2σ =

ν2

σ σ1

3

2

ν , ν , σ , σ , σ )21 1 2 3

m2

K(1, 1, 1, 1, 0; p2,m) = (m

2)−2ε 1

2ε2

×Γ2(1 − ε)Γ(1 + 2ε)Γ(1 − 4ε)

Γ(1 − 2ε)Γ(1 − 3ε)Γ(1 + ε)

1

(1 − 2ε)(1 − 3ε)

×

8

<

:

1 − (1 + y)1−4ε

2(1 − y)(1 − y4ε) − 2ε

(1 + y)1−4ε

y−2ε(1 − y)

∞X

j=0

(−4ε)j

×j−1X

p=0

lnp y

2pp!

j−pX

k=1

(−2)−kh

Sk,j+1−k−p(−y)−(−1)pSk,j+1−k−p“

−y−1”i

9

=

;

,

Mikhail Kalmykov 26

Three-loop vacuum diagram D4A.Davydychev & M.K., hep-th/0303162

m

M

m m

D4

(m2)3ε

(1 − ε)(1 − 2ε)D4(1, 1, 1, 1, 1, 1;u)

=2ζ3

ε− 9ζ4 +

∞X

j=1

uj“

2jj

8

<

:

− 1

2j2ln

2u+

3

j3lnu− 5

j4− 1

j2ζ2

+4

j3S1−

4

j3S̄1+

2

j2S

21−

4

j2S1S̄1−

1

j2S2+

2

j2

S̄21 + S̄2

+O(ε)

9

=

;

=2ζ3

ε+2Ls

(1)4 (θ)+8lθ [Cl3 (θ)−ζ3]−2θLs3(θ)−6 [Ls2(θ)]

2

+112θ

4− 12ζ2θ

2−9ζ4 + O(ε), u =M2

m2

(m2)3ε(1 − ε)(1 − 2ε)D4(1, 1, 1, 1, 1, 1;u)

=2ζ3

ε+ 1

4 ln2u ln

2y

+ lnu

»

6Li3(y) − 6 ln yLi2(y) + 12 ln3 y − 3 ln2 y ln(1 − y) − 6ζ3

+4Li4(y) − 4S2,2(y) + 6 [Li2(y)]2 − 4 ln(1 − y)Li3(y)

+12 ln y ln(1 − y)Li2(y) − 3 ln2yLi2(y) + 5 ln

2y ln

2(1 − y)

Mikhail Kalmykov 27

−73 ln3 y ln(1 − y) + 1

4 ln4 y − 12ζ2Li2(y) − 8ζ2 ln y ln(1 − y)

+32ζ2 ln

2y + 4ζ3 ln(1 − y) + 3ζ4 + O(ε).

As a non-trivial check on these results we consider two particular values,

M2 = m2 and M2 = 0. In the first case (θ = π3), we reproduce the

known result for the master integral D4 ≡ D4(1, 1, 1, 1, 1, 1;u)|u→1,

(m2)3ε(1−ε)(1−2ε)D4|u→1 =2ζ3

ε−77

12ζ4−6ˆ

Ls2`

π3

´˜2+O(ε) .

In the second case, M2 = 0 (θ = 0, y → 1), the result for the master

integral BM is reproduced

(m2)3ε(1−ε)(1−2ε) D4|u→0 =2ζ3

ε− 9ζ4 + O(ε) .

In a similar manner, analytical results can be deduced for other diagrams

with two different mass scales, like D3 and E3 .

Mikhail Kalmykov 28

Two-loop sunsetA.Davydychev & M.K., hep-th/0303162

pp

m

m

0

;

ν2

ν1;

1 2(σ,ν ,ν )J011 For the integrals J011 with there are two master integrals of this

type, J011(1, 1, 1) and J011(1, 1, 2). However, two other independent

combinations of the integrals of this type happen to be more suitable

for constructing the ε-expansion, J011(1, 2, 2) and [J011(1, 2, 2) +

2J011(2, 1, 2)].

J011(1, 2, 2) =(m2)−1−2ε

(1 − ε)(1 + 2ε)3F2

1, 1 + ε, 1 + 2ε32 + ε, 2 − ε

p2

4m2

!

= 2(m2)−2ε

p2(1 − y)2ε y2ε

−12 ln2 y + ε

h

12 ln3 y + ζ2 ln y

−6 ln yLi2(−y) − 4 ln yLi2(y) + 3ζ3 + 12Li3(−y) + 6Li3(y)i

+ε2h

12H−1,0,0,1(−y) − 12 ln y

»

S1,2(−y) + S1,2

y2”

+ 134 ζ4

+8 ln yS1,2(y) − 12S2,2(−y) + 3S2,2

y2”

+ 6ζ2Li2(−y)−12 ln(1 − y)Li3(−y) − 7

24 ln4 y − 12ζ2 ln2 y + 2ζ3 ln y

+6 ln yLi3(−y) + 8 ln yLi3(y) + 4ζ2Li2(y) − 94Li4

y2”

+18 [Li2(−y)]2 + 12Li2(y) Li2(−y) + 4 [Li2(y)]2i

+ O(ε3)

ff

,

u ≡ p2

m2 = −(1−y)2y , y =

1−q

uu−4

1+q

uu−4

,

Mikhail Kalmykov 29

Two-loop sunsetF.Jegerlehner & M.K., hep-ph/0308216

J012

M

m p^2=m^2

;

;

;

(σ,β,α)

0

β

α

σ

For this integral J012 there are three master integrals of this type,

J012(1, 1, 1), J012(1, 2, 1) and J012(1, 1, 2). However, the other

independent combinations of the integrals of this type happen to

be more suitable for constructing the ε-expansion, J012(1, 2, 2),

J012(2, 2, 1), and [J012(1, 2, 2) + J012(2, 1, 2) + J012(2, 2, 1)].

J012(1, 2, 2) = −(M2)−1−2ε

ε(1 − ε)×

8

<

:

Γ(1 − ε)Γ(1 + 2ε)

Γ(1 + ε)3F2

1, 32, 1 + 2ε

2, 2 − ε

4m2

M2

!

m2

M2

!−ε

3F2

1, 1 + ε, 32 − ε

2 − ε, 2 − 2ε

4m2

M2

!

9

=

;

,

J012(2, 2, 1) =(M2)−1−2ε

ε2(1 − ε)×

8

<

:

(1 + ε)Γ(1 − ε)Γ(1 + 2ε)

Γ(1 + ε)4F3

1, 32, 1 + 2ε, 2 + ε

2, 2 − ε, 1 + ε

4m2

M2

!

m2

M2

!−ε

3F2

2, 1 + ε, 32 − ε

2 − ε, 2 − 2ε

4m2

M2

!

9

=

;

,

Mikhail Kalmykov 30

J012(1, 2, 2) + J012(2, 1, 2) + J012(2, 2, 1) =

(M2)−1−2ε 1

ε2

8

<

:

Γ(1 − ε)Γ(2 + 2ε)

Γ(1 + ε)

2

41 + 2m2

M2

1 + 2ε

1 − ε×

3F2

1, 32, 2 + 2ε

2, 2 − ε

4m2

M2

!

3

5

m2

M2

!−ε2

41 + 2m2

M2

1 + ε

1 − ε3F2

1, 2 + ε, 32 − ε

2 − ε, 2 − 2ε

4m2

M2

!

3

5

9

=

;

= (M2)−1−2ε1 + y

1 − y

8

<

:

1

εln y

−»

6 ln y ln(1 − y) +1

2ln

2y − 2ζ2 + 8Li2(−y) + 6Li2(y)

»

24S1,2

y2”

− 8S1,2(−y) − 12S1,2(y) − 12ζ2 ln(1 − y)

+ ln(1 − y)

48Li2(−y) + 36Li2(y)

«

− 44Li3(−y)

+ ln y

20Li2(−y) + 24Li2(y)

«

− 42Li3(y)

+18 ln y ln2(1 − y) + 3 ln

2y ln(1 − y) +

1

6ln

3y − 2ζ3

+O(ε2)

9

=

;

,

witch new variable

y =1 −

q

1 − 4m2

M2

1 +q

1 − 4m2

M2

,M2

m2=

(1 + y)2

y.

Mikhail Kalmykov 31