sequence analysis 2005 - lecture 6 sequence analysis course lecture 6 multiple sequence alignment 2...

30
Sequence analysis 2005 - lecture 6 Sequence analysis Sequence analysis course course Lecture 6 Multiple sequence alignment 2 of 3 Multiple alignment methods

Post on 19-Dec-2015

240 views

Category:

Documents


0 download

TRANSCRIPT

Sequence analysis 2005 - lecture 6

Sequence analysis courseSequence analysis course

Lecture 6Multiple sequence alignment 2 of 3

Multiple alignment methods

Sequence analysis 2005 - lecture 6

Biological definitions for Biological definitions for related sequencesrelated sequences

Homologues are similar sequences in two different organisms that have been derived from a common ancestor sequence. Homologues can be described as either orthologues or paralogues.

Orthologues are similar sequences in two different organisms that have arisen due to a speciation event. Orthologs typically retain identical or similar functionality throughout evolution.

Paralogues are similar sequences within a single organism that have arisen due to a gene duplication event.

Xenologues are similar sequences that do not share the same evolutionary origin, but rather have arisen out of horizontal transfer events through symbiosis, viruses, etc.

Sequence analysis 2005 - lecture 6

Source: http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Orthology.html

So this means …So this means …

Sequence analysis 2005 - lecture 6

Multiple sequence alignmentMultiple sequence alignment Sequences can be conserved across species and perform

similar or identical functions.

> hold information about which regions have high mutation rates over evolutionary time and which are evolutionarily conserved;> identification of regions or domains that are critical to functionality.

Sequences can be mutated or rearranged to perform an altered function.

> which changes in the sequences have caused a change in the functionality.

Multiple sequence alignment: the idea is to take three or moresequences and align them so that the greatest number of similarcharacters are aligned in the same column of the alignment.

Sequence analysis 2005 - lecture 6

What to ask yourselfWhat to ask yourself

How do we get a multiple alignment?(three or more sequences)

What is our aim?

– Do we go for max accuracy, least computational time or the best compromise?

What do we want to achieve each time

Sequence analysis 2005 - lecture 6

Sequence-sequence alignmentSequence-sequence alignment

sequence

sequence

Sequence analysis 2005 - lecture 6

Multiple alignment methodsMultiple alignment methods

Multi-dimensional dynamic programming> extension of pairwise sequence alignment.

Progressive alignment> incorporates phylogenetic information to guide the alignment process

Iterative alignment> correct for problems with progressive alignment by

repeatedly realigning subgroups of sequence

Sequence analysis 2005 - lecture 6

Simultaneous multiple alignmentSimultaneous multiple alignmentMulti-dimensional dynamic programmingMulti-dimensional dynamic programming

The combinatorial explosion

2 sequences of length n n2 comparisons

Comparison number increases exponentially i.e. nN where n is the length of the sequences, and N is the

number of sequences

Impractical for even a small number of short sequences

Sequence analysis 2005 - lecture 6

Multi-dimensional dynamic Multi-dimensional dynamic programmingprogramming (Murata et al., 1985)(Murata et al., 1985)

Sequence 1

Seq

uenc

e 2

Sequence 3

Sequence analysis 2005 - lecture 6

The MSA approachThe MSA approach MSA (Lipman et al., 1989, PNAS 86, 4412)

MSA restricts the amount of memory by computing bounds that approximate the centre of a multi-dimensional hypercube.

Calculate all pair-wise alignment scores. Use the scores to to predict a tree. Calculate pair weights based on the tree (lower bound). Produce a heuristic alignment based on the tree. Calculate the maximum weight for each sequence pair (upper bound). Determine the spatial positions

that must be calculated to obtain the optimal alignment.

Perform the optimal alignment. Report the weight found compared

to the maximum weight previouslyfound (measure of divergence).

Extremely slow and memory intensive. Max 8-9 sequences of ~250 residues.

Sequence analysis 2005 - lecture 6

The DCA approachThe DCA approach DCA (Stoye et al., 1997, Appl. Math. Lett. 10(2), 67-73)

Each sequence is cut in two behinda suitable cut position somewhere close to its midpoint.

This way, the problem of aligningone family of (long) sequences is divided into the two problems of aligning two families of (shorter) sequences.

This procedure is re-iterated untilthe sequences are sufficiently short.

Optimal alignment by MSA.

Finally, the resulting short alignments are concatenated.

Sequence analysis 2005 - lecture 6

So in effect …So in effect …

Sequence 1

Seq

uenc

e 2

Sequence 3

Sequence analysis 2005 - lecture 6

Multiple alignment methodsMultiple alignment methods

Multi-dimensional dynamic programmingMulti-dimensional dynamic programming> extension of pairwise sequence alignment.> extension of pairwise sequence alignment.

Progressive alignment> incorporates phylogenetic information to guide the alignment process

Iterative alignment> correct for problems with progressive alignment by

repeatedly realigning subgroups of sequence

Sequence analysis 2005 - lecture 6

The progressive alignment methodThe progressive alignment method

Underlying idea: usually we are interested in aligning families of sequences that are evolutionary related.

Principle: construct an approximate phylogenetic tree for the sequences to be aligned and than to build up the alignment by progressively adding sequences in the order specified by the tree.

But before going into details, some notices of multiple alignment profiles …

Sequence analysis 2005 - lecture 6

How to represent a block of sequences?How to represent a block of sequences?

Historically: consensus sequence – single sequence that best represents the amino acids observed at each alignment position.

Modern methods: Alignment profile – representation that retains the information about frequencies of amino acids observed at each alignment position.

Sequence analysis 2005 - lecture 6

Multiple alignment profiles Multiple alignment profiles (Gribskov et al. 1987)(Gribskov et al. 1987)

Gribskov created a probe: group of typical sequences of functionally related proteins that have been aligned by similarity in sequence or three-dimensional structure (in his case: globins & immunoglobulins).

Then he constructed a profile, which consists of a sequence position-specific scoring matrix M(p,a) composed of 21 columns and N rows (N = length of probe).

The first 20 columns of each row specify the score for finding, at that position in the target, each of the 20 amino acid residues. An additional column contains a penalty for insertions or deletions at that position (gap-opening and gap-extension).

Sequence analysis 2005 - lecture 6

Multiple alignment profilesMultiple alignment profiles

ACDWY

-

i

fA..fC..fD..fW..fY..Gapo, gapxGapo, gapx

Position dependent gap penalties

Core region Core regionGapped region

Gapo, gapx

fA..fC..fD..fW..fY..

fA..fC..fD..fW..fY..

Profile buildingProfile building Example: each aa is represented as a frequency penalties as weights.

ACDWY

Gappenalties

i0.30.100.30.3

0.51.0

Position dependent gap penalties

0.50000.5

00.50.20.10.2

1.0

Profile-sequence alignmentProfile-sequence alignment

ACD……VWY

sequence

Sequence to profile alignmentSequence to profile alignment

AAVVL

0.4 A

0.2 L

0.4 V

Score of amino acid L in sequence that is aligned against this profile position:

Score = 0.4 * s(L, A) + 0.2 * s(L, L) + 0.4 * s(L, V)

Profile-profile alignmentProfile-profile alignment

ACD..Y

ACD……VWY

profile

profile

Profile to profile alignmentProfile to profile alignment

0.4 A

0.2 L

0.4 V

Match score of these two alignment columns using the a.a frequencies at the corresponding profile positions:

Score = 0.4*0.75*s(A,G) + 0.2*0.75*s(L,G) + 0.4*0.75*s(V,G) +

+ 0.4*0.25*s(A,S) + 0.2*0.25*s(L,S) + 0.4*0.25*s(V,S)

s(x,y) is value in amino acid exchange matrix (e.g. PAM250, Blosum62) for amino acid pair (x,y)

0.75 G

0.25 S

Sequence analysis 2005 - lecture 6

So, for scoring profiles …So, for scoring profiles …

Think of sequence-sequence alignment. Same principles but more information for each position.

Reminder: The sequence pair alignment score S comes from the

sum of the positional scores M(aai,aaj) (i.e. the substitution matrix values at each alignment position minus penalties if applicable)

Profile alignment scores are exactly the same, but the positional scores are more complex

Sequence analysis 2005 - lecture 6

Scoring a profile positionScoring a profile position

At each position (column) we have different residue frequencies for each amino acid (rows)

SO: Instead of saying S=M(aa1, aa2) (one residue pair)

For frequency f>0 (amino acid is actually there) we take:

ACD..Y

Profile 1ACD..Y

Profile 2

20

i

20

jjiji )aa,M(aafaafaaS

Sequence analysis 2005 - lecture 6

Log-average scoreLog-average score

Remember the substitution matrix formula?

In log-average scoring (von Ohsen et al, 2003)

Why is this so important? Think about it…

20

i

20

j aaaa

aaaa

ji

ji

ji

qq

plogfaafaaS

20

i

20

j aaaa

aaaa

ji

ji

ji

qq

pfaafaalogS

Sequence analysis 2005 - lecture 6

Progressive alignmentProgressive alignment

1. Perform pair-wise alignments of all of the sequences;2. Use the alignment scores to produces a dendrogram using

neighbour-joining methods (guide-tree);3. Align the sequences sequentially, guided by the

relationships indicated by the tree.

Biopat (first method ever)

MULTAL (Taylor 1987)

DIALIGN (1&2, Morgenstern 1996)

PRRP (Gotoh 1996)

ClustalW (Thompson et al 1994)

PRALINE (Heringa 1999)

T Coffee (Notredame 2000)

POA (Lee 2002)

MUSCLE (Edgar 2004)

Progressive multiple alignmentProgressive multiple alignment1213

45

Guide tree Multiple alignment

Score 1-2

Score 1-3

Score 4-5

Scores Similaritymatrix5×5

Scores to distances Iteration possibilities

General progressive multiple General progressive multiple alignment techniquealignment technique (follow generated tree)(follow generated tree)

13

25

13

13

13

25

25

d

root

PRALINE progressive strategyPRALINE progressive strategy

13

2

13

13

13

25

254

d

4

There are problems …There are problems …

Accuracy is very important !!!!

Alignment errors during the construction of the MSA cannot be repaired anymore: propagated into the progressive steps.

The comparisons of sequences at early steps during progressive alignments cannot make use of information from other sequences.

It is only later during the alignment progression that more information from other sequences (e.g. through profile representation) becomes employed in the alignment steps.

“Once a gap, always a gap”Feng & Doolittle, 1987