semiconductor device modeling and characterization ee5342, lecture 6-spring 2010

46
L6 February 03 1 Semiconductor Device Modeling and Characterization EE5342, Lecture 6-Spring 2010 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

Upload: monty

Post on 05-Jan-2016

48 views

Category:

Documents


2 download

DESCRIPTION

Semiconductor Device Modeling and Characterization EE5342, Lecture 6-Spring 2010. Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/. Project 1A – Diode parameters to use. Tasks. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 1

Semiconductor Device Modeling and CharacterizationEE5342, Lecture 6-Spring 2010

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

Page 2: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

Project 1A – Diode parameters to use

L6 February 03 2

Param Value UnitsIS 3.608E-16 AN 1IKF 1.716E-08 ARS 10 OhmISR 2.422E-12 ANR 2M 0.5VJ 755 mVCJ0 3.316E-15 FdTMOM 300 KRTH 500

Page 3: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

Tasks• Using PSpice or any simulator, plot the i-v curve for

this diode, assuming Rth = 0, for several temperatures in the range 300 K < TEMP = TAMB < 304 K.

• Using this data, determine what the i-v plot would be for Rth = 500 K/W.

• Using this data, determine the maximum operating temperature for which the diode conductance is within 1% of the Rth = 0 value at 300 K.

• Do the same for a 10% tolerance.• Propose a SPICE macro which would give the Rth =

500 K/W i-v relationship.

L6 February 03 3

Page 4: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

Example

L6 February 03 4

Page 5: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 5

Induced E-fieldin the D.R.

xn

x-xp-xpc xnc

O-O-O-

O+O+

O+

Depletion region (DR)

p-type CNR

Ex

Exposed Donor ions

Exposed Acceptor Ions

n-type chg neutral reg

p-contact N-contact

W

0

Page 6: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 6

Depletion approx.charge distribution

xn

x-xp

-xpc xnc

+qNd

-qNa

+Qn’=qNdxn

Qp’=-qNaxp

Charge neutrality => Qp’ + Qn’ = 0,

=> Naxp = Ndxn

[Coul/cm2]

[Coul/cm2]

Page 7: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 7

1-dim soln. ofGauss’ law

nx

nnax

ppax

px

ndpada

daeff

npeff

bi

xx ,0E

,xx0 ,xxNq E

,0xx ,xxNq

- E

xx ,0E

,xNxN ,NN

NNN

,xxW ,qN

VaV2W

xxn xn

c

-xpc-xp

Ex

-Emax

Page 8: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 8

Depletion Approxi-mation (Summary)• For the step junction defined by

doping Na (p-type) for x < 0 and Nd, (n-type) for x > 0, the depletion width

W = {2(Vbi-Va)/qNeff}1/2, where Vbi = Vt ln{NaNd/ni

2}, and Neff=NaNd/(Na+Nd). Since Naxp=Ndxn,

xn = W/(1 + Nd/Na), and xp = W/(1 + Na/Nd).

Page 9: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 9

One-sided p+n or n+p jctns• If p+n, then Na >> Nd, and

NaNd/(Na + Nd) = Neff --> Nd, and W --> xn, DR is all on lightly d. side

• If n+p, then Nd >> Na, and NaNd/(Na + Nd) = Neff --> Na, and W --> xp, DR is all on lightly d. side

• The net effect is that Neff --> N-, (- = lightly doped side) and W --> x-

Page 10: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 10

JunctionC (cont.)

xn

x-xp

-xpc xnc

+qNd

-qNa

+Qn’=qNdxn

Qp’=-qNaxp

Charge neutrality => Qp’ + Qn’ = 0,

=> Naxp =

Ndxn

Qn’=qNdxn

Qp’=-qNaxp

Page 11: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 11

JunctionC (cont.)• The C-V relationship simplifies to

][Fd/cm ,NNV2

NqN'C herew

equation model a ,VV

1'C'C

2

dabi

da0j

21

bi

a0jj

Page 12: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 12

JunctionC (cont.)• If one plots [C’j]

-2 vs. Va

Slope = -[(C’j0)2Vbi]-1

vertical axis intercept = [C’j0]-2 horizontal axis intercept = Vbi

C’j-2

Vbi

Va

C’j0-2

Page 13: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 13

Arbitrary dopingprofile• If the net donor conc, N = N(x), then at xn,

the extra charge put into the DR when Va->Va+Va is Q’=-qN(xn)xn

• The increase in field, Ex =-(qN/)xn, by Gauss’ Law (at xn, but also const).

• So Va=-(xn+xp)Ex= (W/) Q’

• Further, since N(xn)xn = N(xp)xp gives, the dC/dxn as ...

Page 14: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 14

Arbitrary dopingprofile (cont.)

p

n

j

3j

j

j

n

j

nd

ndj

p

n2j

n

p2

n

j

xNxN

1

dV

'dCq

'C

'CdVd

q

'C

xd

'Cd N with

, dV

'CddC'xd

qNdVxd

qNdVdQ'

'C further

,xN

xN1

'C

dx

dx1

Wdx

'dC

Page 15: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 15

Arbitrary dopingprofile (cont.)

,VV2

qN'C where , junctionstep

sided-one to apply Now .

dV'dC

q

'C xN

profile doping the ,xN xN orF

abij

3j

n

pn

Page 16: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 16

Arbitrary dopingprofile (cont.)

bi0j

bi

23

bi

a0j

23

bi

a30j

V2qN

'C when ,N

V1

VV

121

'qC

VV

1'C

N so

Page 17: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 17

Arbitrary dopingprofile (cont.)

)( and ,

12

and

when area),(A and V, , '

,quantities measured of in terms So,

22

0

VCxN

dV

CdqA

NxNxNN

CAC

jnd

j

rapnd

jj

Page 18: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 18

Debye length• The DA assumes n changes from Nd to

0 discontinuously at xn, likewise, p changes from Na to 0 discontinuously at -xp.

• In the region of xn, the 1-dim Poisson equation is dEx/dx = q(Nd - n), and since Ex = -d/dx, the potential is the solution to -d2/dx2 = q(Nd - n)/

n

xxn

Nd

0

Page 19: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 19

Debye length (cont)• Since the level EFi is a reference for

equil, we set = Vt ln(n/ni)

• In the region of xn, n = ni exp(/Vt), so d2/dx2 = -q(Nd - ni e

/Vt), let = o + ’, where o = Vt ln(Nd/ni) so Nd - ni e

/Vt = Nd[1 - e/Vt-o/Vt], for - o = ’ << o, the DE becomes d2’/dx2

= (q2Nd/kT)’, ’ << o

Page 20: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 20

Debye length (cont)• So ’ = ’(xn) exp[+(x-xn)/LD]+con.

and n = Nd e’/Vt, x ~ xn, where LD is the “Debye length”

material. intrinsic for 2n and type-p

for N type,-n for N pn :Note

length. transition a ,q

kTV ,

pnqV

L

i

ad

tt

D

Page 21: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 21

Debye length (cont)• LD estimates the transition length of a step-

junction DR (concentrations Na and Nd with Neff =

NaNd/(Na +Nd)). Thus,

bi

efft

da0V

dDaDV2

NV

N1

N1

W

NLNL

a

• For Va=0, & 1E13 < Na,Nd < 1E19

cm-3

13% < < 28% => DA is OK

Page 22: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 22

Example

• An assymetrical p+ n junction has a lightly doped concentration of 1E16 and with p+ = 1E18. What is W(V=0)?

Vbi=0.816 V, Neff=9.9E15, W=0.33m

• What is C’j? = 31.9 nFd/cm2

• What is LD? = 0.04 m

Page 23: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 23

Ideal JunctionTheory

Assumptions

• Ex = 0 in the chg neutral reg. (CNR)

• MB statistics are applicable• Neglect gen/rec in depl reg (DR)• Low level injections apply so that np < ppo for -xpc < x < -xp, and pn < nno for xn < x < xnc

• Steady State conditions

Page 24: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 24

Forward Bias Energy Bands

1eppkT/EEexpnp ta VV0nnFpFiiequilnon

1/exp 0 ta VV

ppFiFniequilnon ennkTEEnn

Ev

Ec

EFi

xn xnc-xpc -xp 0

q(Vbi-Va)

EFPEFNqVa

x

Imref, EFn

Imref, EFp

Page 25: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 25

Law of the junction(follow the min. carr.)

t

bia

n

p

p

na

t

bi

no

po

po

no

po

not

no

pot2

i

datbi

V

V-Vexp

n

n

pp

,0V when and

,V

V-exp

n

n

pp

get to Invert

.nn

lnVp

plnV

n

NNlnVV

Page 26: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 26

Law of the junction (cont.)

t

a

pt

a

n

t

a

t

a

t

bi

t

bia

VV

2ixpp

VV

2ixnn

VV

no

2iV

V

pono

pon

VV

nopoVV-V

pn

ennp also ,ennp

Junction the of Law the

enn

epn

np have We

enn nda epp for So

Page 27: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 27

Law of the junction (cont.)

dnonapop

ppnn

ppopppop

nnonnnon

a

Nnn and Npp

injection level- low Assume

.pn and pn Assume

.ppp ,nnn and

,nnn ,ppp So

. 0V for nnot' eq.-non to Switched

Page 28: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 28

pt

apop

nt

anon

V

V-

pononoV

V-V

pon

t

biaponno

xx at ,1VV

expnn sim.

xx at ,1VV

exppp so

,epp ,pepp

giving V

V-Vexpppp

t

bi

t

bia

InjectionConditions

Page 29: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 29

Ideal JunctionTheory (cont.)

Apply the Continuity Eqn in CNR

ncnn

ppcp

xxx ,Jq1

dtdn

tn

0

and

xxx- ,Jq1

dtdp

tp

0

Page 30: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 30

Ideal JunctionTheory (cont.)

ppc

nn

p2p

2

ncnpp

n2n

2

ppx

nnxx

xxx- for ,0D

n

dx

nd

and ,xxx for ,0D

p

dx

pd

giving dxdp

qDJ and

dxdn

qDJ CNR, the in 0E Since

Page 31: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 31

Ideal JunctionTheory (cont.)

)contacts( ,0xnxp and

,1en

xn

pxp

B.C. with

.xxx- ,DeCexn

xxx ,BeAexp

So .D L and D L Define

pcpncn

VV

po

pp

no

nn

ppcL

xL

x

p

ncnL

xL

x

n

pp2pnn

2n

ta

nn

pp

Page 32: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 32

Excess minoritycarrier distr fctn

1eLWsinh

Lxxsinhnxn

,xxW ,xxx- for and

1eLWsinh

Lxxsinhpxp

,xxW ,xxx For

ta

ta

VV

np

npcpop

ppcpppc

VV

pn

pncnon

nncnncn

Page 33: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 33

CarrierInjection

xn-xpc 0

ln(carrier conc)ln Naln Nd

ln ni

ln ni2/Nd

ln ni2/Na

xnc-xp

x

~Va/Vt~Va/Vt

1enxn t

aV

V

popp

1epxp t

aV

V

nonn

Page 34: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 34

Minority carriercurrents

1eLWsinh

Lxxcosh

LNDqn

xxx- for ,qDxJ

1eLWsinh

Lxxcosh

LN

Dqn

xxx for ,qDxJ

ta

p

ta

n

VV

np

npc

na

n2i

ppcdx

ndnn

VV

pn

pnc

pd

p2i

ncndxpd

pp

Page 35: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 35

Evaluating thediode current

p/nn/pp/nd/a

p/n2isp/sn

spsns

VV

spnnp

LWcothLN

DqnJ

sdefinition with JJJ where

1eJxJxJJ

then DR, in gen/rec no gminAssu

ta

Page 36: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 36

Special cases forthe diode current

nd

p2isp

pa

n2isn

nppn

pd

p2isp

na

n2isn

nppn

WN

DqnJ and ,

WND

qnJ

LW or ,LW :diode Short

LN

DqnJ and ,

LND

qnJ

LW or ,LW :diode Long

Page 37: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 37

Ideal diodeequation• Assumptions:

– low-level injection– Maxwell Boltzman statistics– Depletion approximation– Neglect gen/rec effects in DR– Steady-state solution only

• Current dens, Jx = Js expd(Va/Vt)

– where expd(x) = [exp(x) -1]

Page 38: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 38

Ideal diodeequation (cont.)• Js = Js,p + Js,n = hole curr + ele curr

Js,p = qni2Dp coth(Wn/Lp)/(NdLp) =

qni2Dp/(NdWn), Wn << Lp, “short” =

qni2Dp/(NdLp), Wn >> Lp, “long”

Js,n = qni2Dn coth(Wp/Ln)/(NaLn) =

qni2Dn/(NaWp), Wp << Ln, “short” =

qni2Dn/(NaLn), Wp >> Ln, “long”

Js,n << Js,p when Na >> Nd

Page 39: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 39

Diffnt’l, one-sided diode conductance

Va

IDStatic (steady-state) diode I-V characteristic

VQ

IQ QVa

DD dV

dIg

t

asD V

VdexpII

Page 40: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 40

Diffnt’l, one-sided diode cond. (cont.)

DQ

t

dQd

QDDQt

DQQd

tat

tQs

Va

DQd

tastasD

IV

g1

Vr ,resistance diode The

. VII where ,V

IVg then

, VV If . V

VVexpI

dV

dIVg

VVdexpIVVdexpAJJAI

Q

Page 41: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 41

Charge distr in a (1-sided) short diode

• Assume Nd << Na

• The sinh (see L12) excess minority carrier distribution becomes linear for Wn << Lp

pn(xn)=pn0expd(Va/Vt)

• Total chg = Q’p = Q’p = qpn(xn)Wn/2x

n

x

xnc

pn(xn

)

Wn = xnc-

xn

Q’p

pn

Page 42: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 42

Charge distr in a 1-sided short diode

• Assume Quasi-static charge distributions

• Q’p = Q’p =

qpn(xn)Wn/2

• dpn(xn) = (W/2)*

{pn(xn,Va+V) -

pn(xn,Va)}x

n

xxnc

pn(xn,Va)

Q’p

pn pn(xn,Va+V)

Q’p

Page 43: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 43

Cap. of a (1-sided) short diode (cont.)

p

x

x p

ntransitQQ

transitt

DQ

pt

DQQ

taaa

a

Ddx

Jp

qVV

V

I

DV

IV

VVddVdV

dVA

nc

n2W

Cr So,

. 2W

C ,V V When

exp2

WqApd2

)W(xpqAd

dQC Define area. diode A ,Q'Q

2n

dd

2n

dta

nn0nnn

pdpp

Page 44: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 44

General time-constant

np

a

nnnn

a

pppp

pnVa

pn

Va

DQd

CCC ecapacitanc diode total

the and ,dVdQ

Cg and ,dV

dQCg

that so time sticcharacteri a always is There

ggdV

JJdA

dVdI

Vg

econductanc the short, or long diodes, all For

QQ

Page 45: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 45

General time-constant (cont.)

times.-life carr. min. respective the

, and side, diode long

the For times. transit charge physical

the ,D2

W and ,

D2W

side, diode short the For

n0np0p

n

2p

transn,np

2n

transp,p

Page 46: Semiconductor Device  Modeling and Characterization EE5342, Lecture 6-Spring 2010

L6 February 03 46

General time-constant (cont.)

Fdd

transitminF

gC

and 111

by given average

the is time transition effective The

sided-one usually are diodes Practical