semester1.laporan praktikum fisika dasar : gerak harmoni sederhana (ghs)

of 29/29
LAPORAN PRAKTIKUM FISIKA DASAR Gerak Harmonik Sederhana Nama : Sajidin NPM : 240110120082 Kelompok : 4 Shift : TMIP-B1 Waktu : 08.00-10.00 WIB Asisten : Annisa Oktaviani LABORATORIUM FISIKA DASAR

Post on 29-Nov-2015

4.081 views

Category:

Documents

13 download

Embed Size (px)

DESCRIPTION

Semester1.Laporan praktikum Fisika dasar : Gerak Harmoni Sederhana (GHS)

TRANSCRIPT

LAPORAN PRAKTIKUM

FISIKA DASAR

Gerak Harmonik Sederhana

Nama

: SajidinNPM

: 240110120082Kelompok : 4Shift : TMIP-B1

Waktu

: 08.00-10.00 WIBAsisten: Annisa Oktaviani

LABORATORIUM FISIKA DASAR

JURUSAN TEKNIK DAN MANAJEMEN INDUSTRI PERTANIAN

FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN

UNIVERSITAS PADJADJARAN

JATINANGOR

2012BAB IPENDAHULUAN

1.1 Latar Belakang

Percobaan kali ini membahas mengenai gerak harmonik sederhana. Gerak harmonik sederhana yang disingkat GHS adalah gerak bolak-balik suatu benda di sekitar titik keseimbangan.

Dalam kehidupan ini begitu banyak benda yang mengalami berbagai gaya yang tidak sedikit kemungkinan menyebabkan benda tersebut bergetar atau berosilasi. Seperti senar gitar yang dipetik, garpu tala yang digetarkan, roda penyeimbang pada jam tua ketika jam berdentang, laba-laba mendeteksi mangsanya dari getaran sarangnya, mobil berosilasi ke atas dan ke bawah ketika menabrak sesuatu, bangunan dan jembatan bergetar ketika truk yang berat berlalu di atasnya atau ketika angin bertiup cukup kencang, sebuah benda di ujung pegas, dan hal-hal lain sebagainya yang serupa.

Pada beberapa bahasan mengenai gaya, benda yang mengalami gaya dianggap tidak mengalami perubahan bentuk. Pada kenyataannya setiap benda akan mengalami perubahan bentuk ketika diberi gaya seperti halnya pada waktu pegas ditarik dengan gaya F, pegas mengadakan gaya yang besarnya sama dengan gaya yang menarik, tetapi arahnya berlawanan (Faksi = -Freaksi). Maka gaya ini dapat dikatakan sebagai gaya pegas. Hukum Hooke menyatakan hubungan antara gaya F yang meregangkan pegas dan pertambahan panjang pegas x pada daerah elastis pegas. Setiap sistem yang memenuhi hukum Hooke akan bergetar dengan cara yang unik dan sederhana.

Pada saat suatu benda menjalani gerak periodik, maka posisi kecepatan, dan percepatannya akan berulang dalam interval waktu yang sama. Salah satu jenis gerak periodik memiliki persamaan gerak sebagai fungsi waktu berbentuk sinusoidal yang disebut gerak harmonik atau gerak selaras. Dengan demikian, sangat jelaslah bahwa untuk banyak bidang ilmufisika, pengetahuan mengenai gerak harmonik ini amat penting untuk dipelajari.

1.2 Tujuan

Adapun tujuan dari praktikum kali ini adalah:

1. Mampu mengungkapkan Hukum Hooke.

2. Mampu menyelesaikan soal-soal gerak harmonik sederhana.

3. Mampu menentukan tetapan pegas dan masa efektif pegas dengan melaksanakan percobaan ayunan pegas yang dibebani.

4. Mampu menentukan percepatan gravitasi dengan mengukur perpanjangan pegas yang dibebani.

BAB II

TINJAUANPUSTAKA

Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Setiap system yang memenuhi Hukum Hooke akan bergetar dengan cara yang unik dan sederhana yang bisa disebut pula gerak harmonik sederhana. Setiap system yang melengkung terpuntir atau mengalami perubahan bentuk yang elastis dikatakan memenuhi Hukum Hooke.

Gerak Harmonik Sederhana dapat dibedakan menjadi 2 bagian, yaitu:1. Gerak Harmonik Sederhana (GHS) Linier, misalnya penghisap dalam silinder gas, gerak osilasi air raksa / air dalam pipa U, gerak horizontal / vertikal dari pegas, dan sebagainya.

2. Gerak Harmonik Sederhana (GHS) Angular, misalnya gerak bandul/ bandul fisis, osilasi ayunan torsi, dan sebagainya.

Beberapa Contoh Gerak Harmonik Sederhana:

1. Gerak harmonik pada bandul

Gambar 1. Gerak harmonik pada bandul

Ketika beban digantungkan pada ayunan dan tidak diberikan gaya, maka benda akan diam di titik keseimbangan B. Jika beban ditarik ke titik A dan dilepaskan, maka beban akan bergerak ke B, C, lalu kembali lagi ke A. Gerakan beban akan terjadi berulang secara periodik, dengan kata lain beban pada ayunan di atas melakukan gerak harmonik sederhana.

2. Gerak harmonik pada pegas

Semua pegas memiliki panjang alami. Ketika sebuah benda dihubungkan ke ujung sebuah pegas, maka pegas akan meregang (bertambah panjang). Pegas akan mencapai titik kesetimbangan jika tidak diberikan gaya luar (ditarik atau digoyang).

Hubungan antara Periode dan Frekuensi:

Frekuensi adalah banyaknya getaran yang terjadi selama satu detik. Dengan demikian selang waktu yang dibutuhkan untuk melakukan satu getaran adalah:

x 1 sekon = sekonSelang waktu yang dibutuhkan untuk melakukan satu getaran adalah periode. Dengan demikian, secara matematis hubungan antara periode dan frekuensi adalah sebagai berikut:T= f= AmplitudoPada ayunan sederhana, selain periode dan frekuensi, terdapat juga amplitudo. Amplitudo adalah perpindahan maksimum dari titik kesetimbangan.Gaya PemulihGaya pemulih dimiliki oleh setiap benda elastis yang terkena gaya sehingga benda elastis tersebut berubah bentuk. Gaya yang timbul pada benda elastis untuk menarik kembali benda yang melekat padanya di sebut gaya pemulih.

Gaya Pemulih pada PegasPegas adalah salah satu contoh benda elastis. Oleh sifat elastisnya ini, suatu pegas yang diberi gaya tekan atau gaya regang akan kembali pada keadaan setimbangnya mula- mula apabila gaya yang bekerja padanya dihilangkan. Gaya pemulih pada pegas banyak dimanfaatkan dalam bidang teknik dan kehidupan sehari- hari. Misalnya di dalam shockbreaker dan springbed. Sebuah pegas berfungsi meredam getaran saat roda kendaraan melewati jalan yang tidak rata. Pegas - pegas yang tersusun di dalam springbed akan memberikan kenyamanan saat orang tidur.Jika gaya yang bekerja pada sebuah pegas dihilangkan, pegas tersebut akan kembali pada keadaan semula. Robert Hooke, ilmuwan berkebangsaan Inggris menyimpulkan bahwa sifat elastis pegas tersebut ada batasnya dan besar gaya pegas sebanding dengan pertambahan panjang pegas. Dari penelitian yang dilakukan, didapatkan bahwa besar gaya pegas pemulih sebanding dengan pertambahan panjang pegas. Secara matematis, dapat dituliskan sebagai:F= -k , dengan k= tetapan pegasTanda (-) diberikan karena arah gaya pemulih pada pegas berlawanan dengan arah gerak pegas tersebut.

Aplikasi Gerak Harmonik Sederhana1. Shockabsorber pada Mobil

Gambar 2. Shockabsorber pada mobil

Peredam kejut (shockabsorber) pada mobil memiliki komponen pada bagian atasnya terhubung dengan piston dan dipasangkan dengan rangka kendaraan. Bagian bawahnya, terpasang dengan silinder bagian bawah yang dipasangkan dengan as roda. Fluida kental menyebabkan gaya redaman yang bergantung pada kecepatan relatif dari kedua ujung unit tersebut. Hal ini membantu untuk mengendalikan guncangan pada roda.

2. Jam Mekanik

Roda keseimbangan dari suatu jam mekanik memiliki komponen pegas. Pegas akan memberikan suatu torsi pemulih yang sebanding dengan perpindahan sudut dan posisi kesetimbangan. Gerak ini dinamakan Gerak Harmonik Sederhana sudut (angular).

Gambar 3. Jam mekanik

3. Garpu Tala

Gambar 4. Garpu tala

Garpu tala dengan ukuran yang berbeda menghasilkan bunyi dengan pola titinada yang berbeda. Makin kecil massa m pada gigi garpu tala, makin tinggi frekuensi osilasi dan makin tinggi pola titinada dari bunyi yang dihasilkan garpu tala.

(Dikutip dari Wikipedia, 20 Oktober 2012)

Gerak harmonik sederhana yang selanjutnya disingkat GHS adalah gerak

bolak-balik suatu benda di sekitar titik keseimbangan. Gerak Harmonik

Sederhana mempunyai persamaan gerak dalam bentuk sinusoidal dan

digunakan untuk menganalisis suatu gerak periodik tertentu. Gerak periodik

adalah gerak berulang atau berosilasi melalui titik setimbang dalam interval

waktu tetap.

Pada beberapa bahasan mengenai gaya, benda yang mengalami gaya

dianggap tidak mengalami perubahan bentuk. Pada kenyataannya setiap benda

akan mengalami perubahan bentuk ketika diberi gaya seperti halnya pada

waktu pegas ditarik dengan gaya F, pegas mengadakan gaya yang besarnya

sama dengan gaya yang menarik, tetapi arahnya berlawanan (Faksi = -

Freaksi). Maka gaya ini dapat dikatakan sebagai gaya pegas.

Hukum Hooke menyatakan hubungan antara gaya F yang meregangkan pegas dan pertambahan panjang pegas x pada daerah elastis pegas. Setiap sistem yang

memenuhi hukum Hooke akan bergetar dengan cara yang unik dan sederhana.

Ketika kita melihat gagang telepon yang terlepas lalu tergantung maka

gagang telepon tersebut akan melakukan sebuah gerakan. Jika kita perhatikan

gerakannya, gagang telepon tersebut akan mengalami gerak yang berbeda

dengan gerak lurus ataupun gerak melingkar. Gerak tersebut merupakan gerak

bolak-balik yang melalui titik keseimbangannya dan berlangsung secara

periodik. Pada saat suatu benda menjalani gerak periodik, maka posisi kecepatan,

dan percepatannya akan berulang dalam interval waktu yang sama. Salah satu

jenis gerak periodik memiliki persamaan gerak sebagai fungsi waktu

berbentuk sinusoidal yang disebut gerak harmonik atau gerak selaras.(Dikutip dari Nova Nurfauziawati, 11 November 2010)

Periode (T)

Benda yang bergerak harmonis sederhana pada ayunan sederhana memiliki periode alias waktu yang dibutuhkan benda untuk melakukan satu getaran secara lengkap. Benda melakukan getaran secara lengkap apabila benda mulai bergerak dari titik di mana benda tersebut dilepaskan dan kembali lagi ke titik tersebut.

Jadi periode ayunan (T) adalah waktu yang diperlukan benda untuk melakukan satu getaran (disebut satu getaran jika benda bergerak dari titik di mana benda tersebut mulai bergerak dan kembali lagi ke titik tersebut ). Satuan periode adalah sekon atau detik.T= 2Frekuensi (f)Selain periode, terdapat juga frekuensi atau banyaknya getaran yang dilakukan oleh benda selama satu detik. Yang dimaksudkan dengan getaran di sini adalah getaran lengkap. Satuan frekuensi adalah 1/sekon atau s-1. 1/sekon atau s-1 disebut juga hertz, menghargai seorang fisikawan. Hertz adalah nama seorang fisikawan tempo dulu.

Gambar 5. Gerak Harmonis Sederhana pada Pegas

Semua pegas memiliki panjang alami sebagaimana tampak pada gambar a. Ketika sebuah benda dihubungkan ke ujung sebuah pegas, maka pegas akan meregang (bertambah panjang) sejauh y. Pegas akan mencapai titik kesetimbangan jika tidak diberikan gaya luar (ditarik atau digoyang), sebagaimana tampak pada gambar B. Jika beban ditarik ke bawah sejauh y1 dan dilepaskan benda akan akan bergerak ke B, ke D lalu kembali ke B dan C. Gerakannya terjadi secara berulang dan periodik.

(Dikutip dari Urly Safru, November 2008)

Setiap gerak yang terjadi secara berulang dalam selang waktu yang sama disebut gerak periodik. Karena gerak ini terjadi secara teratur maka disebut juga sebagai gerak harmonik/harmonis. Apabila suatu partikel melakukan gerak periodik pada lintasan yang sama maka geraknya disebut gerak osilasi/getaran. Bentuk yang sederhana dari gerak periodik adalah benda yang berosilasi pada ujung pegas. Karenanya kita menyebutnya gerak harmonis sederhana. Banyak jenis gerak lain (osilasi dawai, roda keseimbangan arloji, atom dalam molekul, dan sebagainya) yang mirip dengan jenis gerakan ini.

Dalam kehidupan sehari-hari, gerak bolak balik benda yang bergetar terjadi tidak tepat sama karena pengaruh gaya gesekan. Ketika kita memainkan gitar, senar gitar tersebut akan berhenti bergetar apabila kita menghentikan petikan. Demikian juga bandul yang berhenti berayun jika tidak digerakan secara berulang. Hal ini disebabkan karena adanya gaya gesekan. Gaya gesekan menyebabkan benda-benda tersebut berhenti berosilasi. Jenis getaran seperti ini disebut getaran harmonik teredam. Walaupun kita tidak dapat menghindari gesekan, kita dapat meniadakan efek redaman dengan menambahkan energi ke dalam sistem yang berosilasi untuk mengisi kembali energi yang hilang akibat gesekan, salah satu contohnya adalah pegas dalam arloji yang sering kita pakai. Pada kesempatan ini kita hanya membahas gerak harmonik sederhana secara mendetail, karena dalam kehidupan sehari-hari terdapat banyak jenis gerak yang menyerupai sistem ini.

(Dikutip dari Denia Azkiya, 12 November 2011)

Jika posisi pegas horizontal (mendatar), pegas akan meregang atau mengerut jika diberikan gaya luar (ditarik atau ditekan). Pada pegas yang digantungkan vertikal, gravitasi bekerja pada benda bermassa yang dikaitkan pada ujung pegas. Akibatnya, walaupun tidak ditarik ke bawah, pegas dengan sendirinya meregang sejauh x0. Pada keadaan ini benda yang digantungkan pada pegas berada pada posisi setimbang.

Berdasarkan hukum II Newton, benda berada dalam keadaan setimbang jika gaya total = 0. Gaya yang bekerja pada benda yang digantung adalah gaya pegas (F0 = -kx0) yang arahnya ke atas dan gaya berat (w = mg) yang arahnya ke bawah. Total kedua gaya ini sama dengan nol.

(Dikutip dari Ardhan Apriadi, 13 Desember 2010)

Simpangan GetarSimpangan getaran didefinisikan sebagai jarak benda yang bergetar ke titik keseimbangan. Karena posisi benda yang bergetar selalu berubah, maka simpangan getaran juga akan berubah mengikuti posisi benda.Y = A sin (m) atau y = A sin w.t atau y = A sin 2 ftEnergi Potensial GetarEp = ky2Energi Kinetik GetarEk = mv2Energi Mekanik GetarEm = Ek + Ep

Keterangan:Y = simpangan getar (m)A = amplitudo (m)

(Dikutip dari Adelina Verawati, 5 Desember 2009)

BAB III

METODOLOGI

3.1 Alat dan Bahan

3.1.1 Alat

Adapun alat yang digunakan dalam praktikum kali ini adalah:

1. Statip untuk menggantungkan pegas.2. Skala pelengkap statip skala baca untuk pengukuran.

3. Pegas spiral untuk mengayunkan beban.

4. Tabung untuk menyimpan beban.

5. Stopwatch untuk menghitung waktu.

6. Kertas grafik untuk pembuatan grafik.

3.1.2 BahanBahan yang digunakan adalah:

1. Beban untuk alat pemberat.3.2 Prosedur Praktikum

Prosedur praktikum kali ini adalah:

3.2.1 Percobaan Menentukan Tetapan Pegas

1. Menggantungkan pegas pada statip lalu menggantungkan tabung kosong dibawahnya. Lalu tabung ditarik sedikit kebawah kemudian dilepaskan. Setelah itu mencatat waktu yang diperlukan untuk 20 getaran.

2. Menjelaskan tentang mengamati getaran 20 kali memberikan hasil yang lebih teliti dibandingkan satu getaran saja.

3. Mengulangi pengukuran dengan menambahkan 2 keping beban setiap kali hingga 10 keping beban digunakan.

4. Mengolah data sesuai dengan tabel yang tersedia.

5. Menimbang masing-masing beban juga pegas dan mencatat hasil dengan dilengkapi tabel data yang tersedia.

6. Membuat grafik antara T2 terhadap masa total beban yang digunakan.

7. Menentukan nilai rata-rata tetapan pegas dari grafik lengkap dengan ketidakpastiannya.8. Membandingkan massa efektif pegas dengan massa sebenarnya.

9. Mencatat hasil praktikum.

3.2.2 Percobaan Menentukan Percepatan Gravitasi 1. Mengatur skala hingga jarum menunjuk pada bagian skala itu dan mencatat berturut-turut penunjukan jarum ketika tabung kosong, kemudian ketika ditambah satu persatu hingga beban ke-10 lalu ketika dikurangi satu persatu hingga tabung kosong kembali.

2. Mengolah data dan melengkapi tabel.

3. Membuat grafik antara simpangan dengan massa beban.

4. Menentukan percepatan gravitasi dari grafik.

5. Membandingkan hasil praktikum dengan gravitasi yang telah diteliti.

6. Memberikan ulasan.

BAB IVHASIL PERCOBAAN DAN PEMBAHASAN

4.1 Hasil

Hasil dari praktikum kali ini adalah:

Massa pegas = 9,95.10-30,5.10-3 kgMassa ember = 63,6.10-30,5.10-3 kgMassa beban= 5. 10-30,5.10-3 kg

T2 terhadap mtotalBebanm0,5.10-3 (kg)t(10T) 0,5.10-3 (s)T= t/10 (s)T2 (s2)

member63,6x10-35,1830,51830,2686

member+m1+m273,6x10-36,10,610,3721

member++m483,6x10-37,71670,77160,5954

member++m693,6x10-38,21670,82160,6751

member++m8103,6x10-38,7330,87330,7626

member++m10113,6x10-39,30,930,8649

Tabel 4.1.1 T2 terhadap mtotalA= |-0,48167|B= 12,0934

R= 0, 9857

Y= Bx+A

Y= 12,0934x+0,48167

Grafik 4.1.1 x terhadap T2X terhadap mbebanBeban F= m.g (N)(x+0,5.10-2) (m)(x-0,5.10-2) (m)( 0,5.10-2) (m)(x=-x0) (m)

m10,04891x10-21x10-21x10-21x10-2

m1+m20,09781,8 x10-21,8 x10-21,8 x10-21,8 x10-2

m1++m30,14673 x10-23 x10-23 x10-23 x10-2

m1++m40,19564 x10-24 x10-24 x10-24 x10-2

m1++m50,24455 x10-25 x10-25 x10-25 x10-2

m1++m60,29346 x10-26 x10-26 x10-26 x10-2

m1++m70,34237 x10-26,9x10-26,95x10-26,95x10-2

m1++m80,39128,2 x10-28,1x10-28,15x10-28,15x10-2

m1++m90,44019,3 x10-29,3 x10-29,3 x10-29,3 x10-2

m1++m100,489010,5 x10-210,5 x10-210,5 x10-210,5 x10-2

Tabel 4.1.2 X terhadap mbebanA= -0,0021666|B= 2,1042R= 0, 9992Y= Bx+A

Y= 2,1042x+0,0021666

Grafik 4.1.2 X terhadap mbeban

K= K= 4,03783Membandingkan massa pegas sebenarnya dan massa pegas efektifMassa pegas sebenarnya= 0,00995 kg 0,01 kgMassa pegas efektif= = 0,03419 kgJadi, pada praktikum kali ini massa pegas sebenarnya lebih kecil dibandingkan massa pegas efektif.

0,00995 kg < 0,03419 kg

Perbandingan nilai gravitasi

Gravitasi literatur di Bandung 9,78 m/s2Nilai gravitasi hasil praktikum:

g= B.K

g= 7,4926 m/s2

Pada praktikum kali ini gravitasi pada literatur lebih besar dari gravitasi hasil praktikum.

9,78 m/s2 > 7,4926 m/s24.2 Pembahasan

Praktikum kali ini membahas tentang gerak harmonik sederhana. Dimana praktikan belajar menghitung waktu pada setiap getaran pegas yang ditentukan jumlah getarannya dan juga perbedaannya apabila ditambahkan beberapa keping beban pada beban tersebut serta praktikan belajar menghitung besar gravitasi bumi yang dialami pegas yang bergetar tersebut.

Pertama, praktikan menarik tabung kosong yang terkait pada pegas sehingga menghasilkan getaran, disini praktikan mulai menyiapkan stopwatch atau alat pengukur waktu lainnya untuk mencatat waktu yang dihasilkan dalam dua puluh getaran pegas.

Setelah terperoleh waktu yang dihasilkan dari dua puluh getaran pegas tadi, kemudian praktikan melakukan percobaan kembali dengan menambahkan dua keping logam pada pegas dalam setiap percobaan yang diulangi sampai mencapai penambahan sepuluh keping logam.

Seterusnya, terperoleh jumlah periode yang dihasilkan dari sepuluh pembagian terhadap waktu yang nantinya akan terperoleh periode pangkat dua sebagai pemasukan data table x terhadap periode pangkat dua. Hasil tabel yang diperoleh adalah titik-titik pendataan antara nilai x dan periode pangkat dua menghasilkan garis yang naik kearah kanan, hal ini membuktikan bahwa seiring bertambahnya jumlah getaran suatu pegas maka periode yang diperoleh akan bertambah juga secara perlahan yang merupakan hasil sepuluh pembagian terhadap waktu tersebut.

Kemudian, praktikan membuat tabel x terhadap massa beban. Hasil tabel yang diperoleh adalah titik-titik pendataan antara nilai x dan massa beban menghasilkan garis yang naik secara cepat kearah kanan, hal ini membuktikan bahwa seiring bertambahnya dua keping logam pada setiap percobaan pengulangan mencapai sepuluh keping logam, maka pegas akan mengalami penambahan jumlah getaran dan beban yang di tahan pegas akan sangat berat dari beban sebelumnya.

Selanjutnya, mencari nilai konstanta pegas (K) yang diperoleh dari pembagian empat phi kuadrat dengan nilai B yang diperoleh dari perhitungan regresi. Nilai K ini akan membantu praktikan dalam mencari percepatan gravitasi pada sebuah pegas tersebut yaitu dengan mengalikan antara nilai B tadi dengan nilai konstanta pegas tersebut.

Masalah-masalah pada praktikum kali ini yaitu ketidak akuratan praktikan dalam menghitung waktu pada setiap getaran karena kemampuan regangan pegas terhadap jumlah beban yang ditahannya, sehingga getaran pegas terkadang tidak teratur.

Solusi praktikan dalam menyigapi masalah ini yaitu dengan cara menarik beban secara pelan/perlahan agar getaran yang diperoleh akan teratur atau tidak terlalu kencang yang menyebabkan ketidak teraturan getaran pegas.

BAB V

KESIMPULAN

Pada praktikum kali ini didapat kesimpulan:

1. Gerak harmonik sederhana adalah gerak bolak - balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan.

2. Yang dapat mempengaruhi ayunan pada gerak harmonik sederhana diantaranya adalah periode dan frekuensi.3. Periode adalah waktu yang diperlukan benda untuk melakukan satu getaran. Sedangkan frekunsi adalah adalah banyaknya getaran yang dilakukan oleh benda selama satu detik.

4. Satuan dari frekuensi adalah hertz.

5. Pada percobaan penentuan tetapan pegas, pengamatan harus dilakukan lebih dari satu getaran untuk mencapai ketelitian.

6. Massa pegas sebenarnya lebih kecil dibandingkan massa pegas efektif hasil praktikum.7. Gravitasi sebenarnya lebih besar dibandingkan dengan gravitasi praktikum.

8. Perbedaan tersebut dikarenakan kekurangtelitian dalam perhitungan, pembacaan skala, pencatatan waktu, alat yang kurang sempurna.

DAFTAR PUSTAKAZaida, Drs, M.Si., Petunjuk Praktikum Fisika Dasar, Jatinangor, 2012Wikipedia. 2012. Gerak Harmonik Sederhana. Terdapat pada: http://id.wikipedia.org/wiki/Gerak_harmonik_sederhana ( Diakses pada tanggal 20 Oktober 2012 pukul 16.26 WIB)

Nova Nurfauziawati. 2010. Gerak Harmonik Sederhana. Terdapat pada: http://novanurfauziawati.files.wordpress.com/2012/01/modul-5-ghs.pdf (Diakses pada 20 Oktober 2012 pukul 16.46 WIB)

Urly Safru. 2008. Gerak Harmonik Sederhana. Terdapat pada:

https://www.google.co.id/search?q=laporan+gerak+harmonik+sederhana&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a&channel=fflb (Diakses pada tanggal 20 Oktober 2012 pukul 16.48 WIB)

Denia Azkiya. 2011. Gerak Harmonis. Terdapat pada : http://deniayaya.blogspot.com/2011/11/laporan-praktikum-fisika-gerak-harmonis.html (Diakses pada tanggal 20 Oktober 2012 pukul 16.52 WIB)Ardhan Apriadi. 2010. Gerak Harmonik Sederhana. Terdapat pada: http://ardhanapriadi.blog.com/2010/12/13/gerak-harmonik-sederhana/(Diakses pada tanggal 20 Oktober 2012 pukul 16.57 WIB)Adelina Verawati. 2009. Gerak Harmonik Sederhana. Terdapat pada: http://adelina-verawati.blogspot.com/2009/12/gerak-harmonik-sederhana.html (Diakses pada tanggal 20 Oktober 2012 pukul 17.00 WIB)

_1443505679.xlsChart1

0.2686

0.3721

0.5954

0.6751

0.7626

0.8649

x

T2

Y-Values

Sheet1

X-ValuesY-Values

63,6x10-30.2686

73,6x10-30.3721

83,6x10-30.5954

93,6x10-30.6751

103,6x10-30.7626

113,6x10-30.8649