semantic ontology alignment: survey and analysis

18
Semantic Ontology Alignment: Survey and Analysis Semantic Ontology Alignment: Survey and Analysis This paper was downloaded from TechRxiv (https://www.techrxiv.org). LICENSE CC BY 4.0 SUBMISSION DATE / POSTED DATE 13-12-2020 / 17-12-2020 CITATION Boudaoud, Lakhdar El Amine (2020): Semantic Ontology Alignment: Survey and Analysis. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.13370786.v1 DOI 10.36227/techrxiv.13370786.v1

Upload: others

Post on 27-Mar-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Semantic Ontology Alignment: Survey and Analysis

Semantic Ontology Alignment: Survey and AnalysisSemantic Ontology Alignment: Survey and AnalysisThis paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY 4.0

SUBMISSION DATE / POSTED DATE

13-12-2020 / 17-12-2020

CITATION

Boudaoud, Lakhdar El Amine (2020): Semantic Ontology Alignment: Survey and Analysis. TechRxiv. Preprint.https://doi.org/10.36227/techrxiv.13370786.v1

DOI

10.36227/techrxiv.13370786.v1

Page 2: Semantic Ontology Alignment: Survey and Analysis

1

Semantic Ontology Alignment: Survey and

Analysis

Boudaoud Lakhdar El Amine

Computer science Laboratory of Oran (LIO), University of Oran1 Ahmed Ben Bella, Algeria

[email protected]

Abstract

Ontology alignment is an important part

in the semantic web to reach its full

potential, Recently, ontologies have

become competitive common on the World

Wide Web where they generic semantics

for annotations in Web pages, This paper

aims at counting all works of the ontology

alignment field and analyzing the

approaches according to different

techniques (terminological, structural,

extensional and semantic). This can clear

the way and help researchers to choose the

appropriate solution to their issue. They

can see the insufficiency, so they can

propose new approaches for stronger

alignment and also He determines possible

inconsistencies in the state of the ontology,

which result from the userโ€™s actions, and

suggests ways to remedy these

inconsistencies.

Key Word: String Similarity, Alignment

Method, Alignment Process, Inconsist-

ency, Similarity aggregation, Semantic

web

1. Ontology in the Web of Thing and on

the AI

We developed a plugin algorithm for

ontology merging and alignmentโ€”AOP

(formerly Smart)โ€”which code the process

as much as possible. If the decision is not

possible, the plugin guides the user to the

paragraph that information are determined,

suggests possible actions, and determines

the conflictual situation.

Ontologies are a formal way to describe

taxonomies and classification networks,

essentially defining the structure of

knowledge for various domains: the nouns

representing classes of objects and the

verbs representing relations between the

objects [1] .

2. Related Work

In the literature, we have found many

methods of the similarity aggregation task,

as follows:

Falcon-Ao [3] uses three heuristic rules to

integrate results generated by a structural

matcher called GMO, and a linguistic

matcher called LMO. The heuristic rules

constructed by measuring both linguistic

and structural comparability of two

ontologies and computing a measure of

reliability of matched entity pairs. LMO

component of Falcon-Ao combines two

linguistic similarities with homogeneous

experimental combination weights. LILY

[4] combines all separate similarities with

homogeneous experimental combination

weights. When the User use linear

Combination weights , this is Method of

Euzenat and Valtchev [5], there is also

MapPso [6] as APFEL [7] who use an

average weighted function, RIMOM [8]

who take results of multiple strategies and

use risk minimization to search for optimal

mapping, It utilizes a sigmoid function

with a set of experimental parameters,

arriving at COMA [9] , then he uses some

strategies as min, max, average. GAOM

Page 3: Semantic Ontology Alignment: Survey and Analysis

2

[10] integrate similarities with max

strategy, LSD [11] also use max, min and

average strategy, some system put weights

of matchers using various strategies such

as Experimental. The principal definition

between ontologies is How is calculate

Homogeneous weights.

3. Classification of Ontology Alignment

Methods

The Ontology Alignment is a combination

of Technique for calculating similarity

measures, there are some parameters who

are taken in ontology as Weights,

thresholds, or External resources (Thesa-

rus, dictionary) and we take the relationsh-

ip between entities that compose

Ontologies, There are several methods for

calculating similarity between entities of

several ontologies , Methods existing in the

Ontology alignments are :

3.1 Terminological methods (A Termin-

ological matcher) [12]

These methods compared terms and strings

or texts. They are used to calculate the

value of similarity between units of text,

such as names, labels, comments,

descriptions, etc. These methods can be

further divided into two sub-categories:

methods that compare the terms based on

characters in these terms, and methods

using some linguistic knowledge. The

difficulty is, on the one hand how to select

the most appropriate similarity measures

and, on the other hand, how to effectively

combine them. We cite as an example of

matcher of this category: the edit distance.

3.2 Structural methods (String Matc-

hing) [13] :

These methods calculate the similarity

between two entities by exploiting

structural information, when the concerned

entities are connected to the others by

semantic or syntactic links, forming a

hierarchy or a graph of entities. There are

two categories :

Internal structural methods, This

Method exploit information about entity

attributes,

External structural methods, This

Method consider relations between entities,

We cite as an example of a matcher of this

category: Resnik similarity.

3.3 Extensional methods [14]

This Method infer the similarity between

two entities, especially concepts or classes,

by analyzing their extensions, i.e. their

instances.

3.4 Semantic methods

3.4.1 Techniques based on the external

ontologies [15] Techniques based on the

external ontologies: When two ontologies

have to be aligned, it is preferable that the

comparisons are done according to a

common knowledge. Thus, these

techniques use an intermediate formal

ontology to meet that need. This ontology

will define a common context for the two

ontologies to be aligned

3.4.2 Deductive techniques Semantic

methods are based on logical models, such

as propositional satisfiability (SAT), SAT

modal or description logics. They are also

based on deduction methods to deduce the

similarity between two entities. Techniques

of description logics, such as the

subsumption test, can be used to verify the

semantic relations between entities, such as

equivalence (similarity is equal to 1), the

subsumption (similarity is between 0 and

1) or the exclusion (similarity is equal to

0), and therefore used to deduce the

similarity between the entities. These

alignment techniques are integrated into

approaches for mapping ontologies. We

find approaches that combine multiple

alignment techniques. Much work has been

Page 4: Semantic Ontology Alignment: Survey and Analysis

3

developed in the area of Ontology and

focus on the alignment techniques [17].

3.5 Instance Based Method :

These methods exploit the instances

associated to the concepts (extensions) to

calculate the similarities between them.

We cite as an example of a matcher of this

category: Jaccard similarity

4. General Alignment Approaches

The general representation and reasoning

framework that we propose includes: 1) a

declarative language to specify networks of

ontologies and alignments, with

independent control over specifying local

ontologies and complex alignment

relations, 2) the possibility to align

heterogeneous ontologies, and 3) in

principle, the possibility to combine

different alignment paradigms

(simple/integrated/contextualized) within

one network. Through category theory, we

obtain a unifying framework at various

levels [18] :

Semantic level We give a uniform

semantics for distributed networks of

aligned ontologies, using the powerful

notion of colimit, while reflecting properly

the semantic variation points indicated

above [19] .

(Meta) Language level We provide a

uniform notation (based on the distributed

ontology language DOL) for distributed

networks of aligned ontologies, spanning

the different possible semantic choices

[20].

Reasoning level Using the notion of

colimit, we can provide reasoning methods

for distributed networks of aligned

ontologies, again across all semantic

choices [21] .

Tool level The tool ontohub.org provides

an implementation of analysis and

reasoning for distributed networks of

aligned ontologies, again using the

powerful abstractions provided by category

theory[22] .

Logic level Our semantics is given for the

ontology language OWL, but due to the

abstraction power of the framework, it

easily carries over to other logics used in

ontology engineering, like RDFS, first-

order logic or F-logic. This shows that

category theory is not only a powerful

abstraction at the semantic level, but can

properly guide language design and tool

implementations and thus provide useful

abstraction barriers from a software

engineering point of view [23] .

The distributed ontology language DOL is

a metalanguage in the sense that it enables

the reuse of existing ontologies as building

blocks for new ontologies using a variety

of structuring techniques, as well as the

specification of relationships between

ontologies. One important feature of DOL

is the ability to combine ontologies that are

written in different languages without

changing their semantics. A formal

specification of the language can be found

in [24]. However note that syntax and

semantics of DOL alignments is introduced

in this paper for the first time.

The general picture is then as follows:

existing ontologies can be integrated as-is

into the DOL framework. With our new

extended DOL syntax, we can specify

different kinds of alingments. From such

an alignment, we construct a graph of

ontologies and morphisms between the min

a way depending on the chosen alignment

framework. Sometimes, this step also

involves transformations on the ontologies,

such as relativisation of the (global)

domain using predicates. A network of

alignments can then be combined to an

integrated alignment ontology via a so-

called colimit. Reasoning in a network of

aligned ontologies is then the same as

Page 5: Semantic Ontology Alignment: Survey and Analysis

4

reasoning in the combined ontology. Thus,

in order to implement a reasoner, it is in

principle sufficient to done the

relativisation procedure for the local logics

and the alignment transformation for each

kinds of semantics.

5. Network of Ontologies (Distributed

Ontologies Language) and there

Semantics

5.1 Preliminaries

In this section we present some

preliminary notions of ontology alignment

in order to facilitate the reading of the

paper content. We outline the notions of

ontology, similarity calculation techniques

and alignment, respectively. We refer the

reader, for more details, to the following

references [25] [26].

Definition 1: Ontology is a six tuple [27]:

๐‘‚ = < ๐ถ, ๐‘…, ๐ผ, ๐ป๐ถ, ๐ป๐‘…, ๐‘‹ > where:

๐ถ: set of concepts.

๐‘…: set of relations.

๐ผ: set of instances of C and R.

๐ป๐ถ: denotes a partial order relation on

C, called hierarchy or taxonomy of

concepts. It associates to each concept

its super or sub-concepts.

๐ป๐‘…: denotes a partial order relation on

R, called hierarchy or taxonomy of

relations. It associates to each relation

its super or sub-relations.

๐‘‹: set of axioms.

๐‘๐‘’๐‘œ : Denotes Networks of ontologies

๐ท๐บ โˆถ ๐บ๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ (๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™) ๐ท๐‘œ๐‘š๐‘Ž๐‘–๐‘›

๐ท๐‘ โˆถ ๐‘ƒ๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘Ž๐‘™ Domain

We define as a logic syntax a tuple L = (๐’๐ข๐ ๐ง, ๐’๐ž๐ง, ๐’๐ฒ๐ฆ๐›๐จ๐ฅ๐ฌ, ๐Š๐ข๐ง๐๐ฌ, ๐’๐ฒ๐ฆ, ๐ค๐ข๐ง๐, ๐š๐ซ๐ข๐ญ๐ฒ)

๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘ ๐‘ก๐‘–๐‘›๐‘” ๐‘œ๐‘“:

a category Sign ,signature morphisms;

a sentence ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘œ๐‘Ÿ (Sen)

๐‘†๐‘’๐‘› โˆถ ๐‘บ๐’Š๐’ˆ๐’ โ†’ ๐‘†๐‘’๐‘ก assigning to each

signature the set of its sentences and to

each signature morphism ๐œŽ: ๐›ด โ†’

๐›ดโ€™ a sentence translation function

๐‘บ๐’†๐’(๐œŽ) โˆถ ๐‘บ๐’†๐’(๐›ด) โ†’ ๐‘บ๐’†๐’(๐›ดโ€ฒ);

a set Symbols of symbols and a set

Kinds of symbol kinds together with a

function kind : Symbols โ†’ Kinds

giving the kind of each symbol;

a faithful ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘œ๐‘Ÿ

๐‘บ๐’š๐’Ž โˆถ ๐‘บ๐’Š๐’ˆ๐’ โ†’ ๐‘† ๐‘’๐‘ก assigning to

each signature ฮฃ

a set of symbols ๐‘บ๐’š๐’Ž(๐œฎ) โŠ†

๐‘บ๐’š๐’Ž๐’ƒ๐’๐’๐’” and to each signature

morphism ๐œŽ: ๐›ด โ†’ ๐›ดโ€ฒ

a function ๐‘บ๐’š๐’Ž(๐ˆ) โˆถ ๐‘บ๐’š๐’Ž(๐œฎ) โ†’

๐‘บ๐’š๐’Ž(๐œฎโ€ฒ) such that for each ๐’” โˆˆ

๐‘บ๐’š๐’Ž(๐œฎ), ๐’Œ๐’Š๐’๐’…(๐ˆ(๐’”)) = ๐’Œ๐’Š๐’๐’…(๐’”)

a function ๐’‚๐’“๐’Š๐’•๐’š โˆถ ๐‘บ๐’š๐’Ž๐’ƒ๐’๐’๐’” ๐‘ giving

the arity of each symbol.

Before giving examples of logic syntaxes,

we introduce the concept of logical theory

Definition 2 [28] Let L be a logic syntax.

A theory of L consists of signature ฮฃ and

a set E of ฮฃ -sentences.

For the purposes of this paper, it suffices to

regard an ontology as a theory. In DOL,

ontologies can be written using more

complex structuring mechanisms.

Example 1 In ALC, the signatures are

tuples (๐ด, ๐‘…, ๐ผ ) with A, R, and I Subsets of

a set of names. For two signatures ๐›ด =

(๐ด, ๐‘…, ๐ผ)and ๐›ดโ€ฒ = (๐ดโ€ฒ, ๐‘…โ€ฒ, ๐ผโ€ฒ), a signature

morphism,ฯ•: ฮฃ โ†’ ฮฃโ€ฒConsiste of function โˆถ

ฯ†A โˆถ A โ†’ Aโ€ฒ

๐‘Ž ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œn: ฯ†R โˆถ R โ†’ Rโ€ฒ

๐‘Ž ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œn: ฯ†I โˆถ I โ†’ Iโ€ฒ

๐‘ฒ๐’Š๐’๐’…๐’” is the set {concept, role,

individual}.

๐‘บ๐’š๐’Ž๐’ƒ๐’๐’๐’” is the set of all pairs (๐’Œ, ๐’”)

where k is an element of ๐‘ฒ๐’Š๐’๐’…๐’” and s is a

name. For each (๐‘˜, ๐‘ ) โˆˆ ๐‘บ๐’š๐’Ž๐’ƒ๐’๐’๐’”,

๐’Œ๐’Š๐’๐’…(๐’Œ, ๐’”) = ๐’Œ. For each signature

๐›ด = (๐ด, ๐‘…, ๐ผ), ๐‘†๐‘ฆ๐‘š(๐›ด) is the union of the

๐‘ ๐‘’๐‘ก {(๐‘๐‘œ๐‘›๐‘๐‘’๐‘๐‘ก, ๐‘Ž)|๐‘Ž โˆˆ ๐ด} with

{(๐‘Ÿ๐‘œ๐‘™๐‘’, ๐‘Ÿ)|๐‘Ÿ โˆˆ ๐‘…} and

{(๐‘–๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™, ๐‘–)| ๐‘– โˆˆ ๐ผ}.

Page 6: Semantic Ontology Alignment: Survey and Analysis

5

5.2 Networks of Ontologies

In this section we recall networks of

aligned ontologies and introduce syntax for

them in DOL. Networks of aligned

ontologies (here denoted NeO) [29], called

distributed systems [43] , consist of a

family (๐‘‚๐‘–)๐‘–โˆˆ๐ผ๐‘›๐‘‘ of ontologies over a set of

indexes Ind interconnected by a set of

alignments (๐ด๐‘–๐‘–)๐‘–โˆˆ๐ผ๐‘›๐‘‘ between them.

Definition 3 Let L be a logic syntax and

let R be a family of correspondence

relations for L. A correspondence is a

๐‘ก๐‘Ÿ๐‘–๐‘๐‘™๐‘’ (๐‘ 1, ๐‘ 2, ๐‘…)where ๐‘ 1, ๐‘ 2 โˆˆ ๐‘†๐‘ฆ๐‘š๐‘๐‘œ๐‘™๐‘ 

and ๐‘… โˆˆ ๐‘…such that (kind(๐‘ 1), kind(๐‘ 2)) is

in the set of kinds of R

Definition 4 For two ontologies S, T , an

alignment between S and T is a set of

correspondences {(๐‘ 1๐‘– , ๐‘ 2

๐‘– , ๐‘…๐‘–)}๐‘–=1,2,โ€ฆ๐‘›

for

๐‘› โˆˆ ๐‘, such that for each ๐‘– = 1, . . . , ๐‘› we

have that ๐‘ 1๐‘– โˆˆ ๐‘†๐‘ฆ๐‘š(๐‘ ๐‘–๐‘”(๐‘†)), ๐‘ 2

๐‘– โˆˆ ๐‘†๐‘ฆ๐‘š(๐‘ ๐‘–๐‘”(๐‘‡)),

๐‘Ž๐‘›๐‘‘ ๐‘…๐‘– โˆˆ โ„œ

Example 2 Below are the types of

relations that can appear in

correspondences between ALC symbols,

together with their kinds:

=

{(concept, concept), (role, role),

(individual, individual)}

โŠฅ {(concept, concept), (role, role),

(individual, individual)}

<

{(concept, concept), (role, role)}

>

{(concept, concept), (role, role)}

โˆˆ {(individual, concept)}

โˆ‹ {(concept, individual)}

Example 3 Similarly, in FOL we have the

following correspondences:

= {(fun, fun), (pred, pred)}

โŠฅ {(fun, fun), (pred, pred)}

< {(pred, pred)}

> {(pred, pred)}

6 Three Semantics of Relational

Networks of Ontologies

We will now generalise the three semantics

for networks of aligned ontologies

introduced in [43] to an arbitraries logic.

A semantics of relational NeOs is given in

terms of local interpretation of the

ontologies and alignments In consists of.

To be able to give such a semantics, one

needs to give an interpretation of the

relations between symbols that are

expressed in the correspondences. let

๐‘† = {(๐‘‚๐‘– )๐‘–โˆˆ๐ผ๐‘›๐‘‘, (๐ด๐‘–๐‘— )๐‘–,๐‘—โˆˆ๐ผ๐‘›๐‘‘}, be a NeO

(in any logic) over a set of indexes Ind.

6.1 Simple Semantics

In the simple semantics, the assumption is

that all ontologies are interpreted over the

same domain (or universe of interpretation)

๐ท. The relations in ๐‘… are interpreted as

relations over D, and we denote the

interpretation of R โˆˆ R by ๐‘…๐ท. If ๐‘‚1, ๐‘‚2

are two ontologies and c = (๐‘’1, ๐‘’2, ๐‘…) is a

correspondence between ๐‘‚1 and ๐‘‚2, we

say that c is satisfied by interpretations m1,

m2 of ๐‘‚1, ๐‘‚2 if ๐‘š1 (๐‘’1)) ๐‘…๐ท ๐‘š2(๐‘’2)).

This is written ๐‘š1, ๐‘š2| =๐‘… c.

Definition 5 Given a model theory for a

logic L, the interpretation of

correspondence relations relative to a set is

an interpretation function .๐ผ taking as

arguments a relation ๐‘… โˆˆ ๐‘…, ๐‘˜๐‘–๐‘›๐‘‘ (๐‘˜1, ๐‘˜2)๐‘œ๐‘“ ๐‘… ๐‘Ž๐‘›๐‘‘ a set X and giving

as result a relation ๐‘…๐ผ ๐‘‘๐‘œ๐‘š๐‘Ž๐‘–๐‘›(๐‘˜2, ๐‘‹).

๐ท1 ๐ท2 ๐ท4 ๐ท5

๐‘‚1

๐ท3

๐‘‚2 ๐‘‚4 ๐‘‚5

๐‘‚3

๐‘š5

๐‘š5โ€ฒ ๐‘š1โ€™

๐‘š3โ€ฒ ๐‘š4โ€ฒ

๐‘š1

๐‘š2โ€ฒ

๐ท๐บ

๐‘š3 ๐‘š4 ๐‘š2

Page 7: Semantic Ontology Alignment: Survey and Analysis

6

๐ผ๐‘“ ๐‘‚1, ๐‘‚2 ๐‘Ž๐‘Ÿ๐‘’ two ontologies and ๐‘ =(๐‘ 1, ๐‘ 2, ๐‘…) is a correspondence between

๐‘‚1 ๐‘Ž๐‘›๐‘‘ ๐‘‚2, we say that c is satisfied by the

models ๐‘€1, ๐‘€2, ๐‘œ๐‘“๐‘‚1, ๐‘‚2, written

๐‘€1, ๐‘€2| =๐‘† ๐ถ, if and only if ๐‘€๐‘†1

1 ๐‘…๐ท1 ๐‘€๐‘†2

2

model of an alignment A between

ontologies ๐‘‚1๐‘Ž๐‘›๐‘‘ ๐‘‚2 ๐‘–๐‘  then a pair

๐‘€1, ๐‘€2 ๐‘œ๐‘“ interpretations of ๐‘‚1, ๐‘‚2 such

that for all c โˆˆ A, ๐‘€1, ๐‘€2| =๐‘† ๐ถ. We

denote this by ๐‘€1, ๐‘€2| =๐‘† ๐ด. An

interpretation of S is a family

(๐‘€๐‘–)๐‘–โˆˆ๐‘–๐‘›๐‘‘ of ๐‘š๐‘œ๐‘‘๐‘’๐‘™ ๐‘€๐‘– ๐‘œ๐‘“ ๐‘‚๐‘–. A simple

interpretation of S is an interpretation

(๐‘€๐‘–)๐‘–โˆˆ๐‘–๐‘›๐‘‘

๐‘œ๐‘“ ๐‘†๐‘– over the same universe

D.

Definition 6 [80] A simple model of a

NeO S is a simple interpretation

(๐‘€๐‘–)๐‘–โˆˆ๐‘–๐‘›๐‘‘

of S such that for each i, j

โˆˆ I , ๐‘€๐‘–, ๐‘€๐‘—| =๐‘† ๐ด๐‘–๐‘—. This is written

(๐‘€๐‘–)๐‘–โˆˆ๐‘–๐‘›๐‘‘ | =๐‘† ๐‘†

Example 4 (Interpretation of correspond-

ence relations in SROIQ)

The interpretation of correspondence

relations in SROIQ relative to a global

universe D is given in the table below,

where on the first column we have the

correspondence, on the second the relation

that interprets it and on the third its domain

of interpretation. (๐’„๐Ÿ, ๐’„๐Ÿ, =) = ๐‘ท(๐‘ซ) ๐‘ฟ ๐‘ท(๐‘ซ)

(๐’“๐Ÿ, ๐’“๐Ÿ, =) = ๐‘ท(๐‘ซ ๐‘ฟ๐‘ซ) ๐‘ฟ ๐‘ท(๐‘ซ๐‘ฟ๐‘ซ)

(๐’Š๐Ÿ, ๐’Š๐Ÿ, =) = ๐‘ซ ๐‘ฟ ๐‘ซ

(๐’„๐Ÿ, ๐’„๐Ÿ, โŠฅ) ๐‘ด๐‘ช๐Ÿ

๐Ÿ โˆฉ ๐‘ด๐’„๐Ÿ

๐Ÿ= โˆ… ๐‘ท(๐‘ซ) ๐‘ฟ ๐‘ท(๐‘ซ)

(๐’“๐Ÿ, ๐’“๐Ÿ, โŠฅ) ๐‘ด๐‘น๐Ÿ

๐Ÿ โˆฉ ๐‘ด๐‘น๐Ÿ

๐Ÿ= โˆ… ๐‘ท(๐‘ซ ๐‘ฟ๐‘ซ) ๐‘ฟ ๐‘ท(๐‘ซ๐‘ฟ๐‘ซ)

(๐’Š๐Ÿ, ๐’Š๐Ÿ, โŠฅ) โ‰  ๐‘ซ ๐‘ฟ ๐‘ซ

(๐’„๐Ÿ, ๐’„๐Ÿ, <) โŠ† ๐‘ท(๐‘ซ) ๐‘ฟ ๐‘ท(๐‘ซ)

(๐’“๐Ÿ, ๐’“๐Ÿ, <) โŠ† ๐‘ท(๐‘ซ ๐‘ฟ๐‘ซ) ๐‘ฟ ๐‘ท(๐‘ซ๐‘ฟ๐‘ซ)

(๐’„๐Ÿ, ๐’„๐Ÿ, >) โŠ‡ ๐‘ท(๐‘ซ) ๐‘ฟ ๐‘ท(๐‘ซ)

(๐’“๐Ÿ, ๐’“๐Ÿ, >) โŠ‡ ๐‘ท(๐‘ซ ๐‘ฟ๐‘ซ) ๐‘ฟ ๐‘ท(๐‘ซ๐‘ฟ๐‘ซ)

(๐’„๐Ÿ, ๐’Š๐Ÿ, โˆ‹) โˆ‹ ๐‘ท(๐‘ซ)๐‘ฟ ๐‘ซ

(๐’Š๐Ÿ, ๐’„๐Ÿ, โˆˆ) โˆˆ ๐‘ซ ๐‘ฟ ๐‘ท (๐‘ซ)

where ck, rk, ikare class, role and individual symbols from an ontology Ok and Mk โˆˆ Model(Ok) for k = 1,2 Example 6 (Interpretation of

correspondence relations in FOL) The

interpretation of correspondence relations

in FOL relative to a global universe D is

(๐’‡๐Ÿ, ๐’‡๐Ÿ, =) = ๐‘ญ ๐’–๐’(๐‘ซ) ร— ๐‘ญ ๐’–๐’(๐‘ซ)

(๐’‡๐Ÿ, ๐’‡๐Ÿ, โŠฅ) โ‰  ๐‘ญ ๐’–๐’(๐‘ซ) ร— ๐‘ญ ๐’–๐’(๐‘ซ)

(๐’‘๐Ÿ, ๐’‘๐Ÿ, =) = ๐‘ท ๐’“๐’†๐’…(๐‘ซ) ร— ๐‘ท ๐’“๐’†๐’…(๐‘ซ)

(๐’‘๐Ÿ, ๐’‘๐Ÿ, โŠฅ) โ‰  ๐‘ท ๐’“๐’†๐’…(๐‘ซ) ร— ๐‘ท ๐’“๐’†๐’…(๐‘ซ)

(๐’‘๐Ÿ, ๐’‘๐Ÿ, <) โŠ† ๐‘ท ๐’“๐’†๐’…(๐‘ซ) ร— ๐‘ท ๐’“๐’†๐’…(๐‘ซ)

(๐’‘๐Ÿ, ๐’‘๐Ÿ, >) โŠ‡ ๐‘ท ๐’“๐’†๐’…(๐‘ซ) ร— ๐‘ท ๐’“๐’†๐’…(๐‘ซ)

where ๐‘“๐‘˜ , ๐‘๐‘˜ ๐‘Ž๐‘Ÿ๐‘’ function and predicate

symbols from an ontology ๐‘‚๐‘˜, with

๐‘˜ = 1,2 6.2 Integrated Semantics:

Another possibility is to consider that the

domain of interpretation of the ontologies

of a NeO is not constrained, and a global

domain of interpretation U exists, together

with a family of equalising functions

๐›พ๐‘– โˆถ ๐ท๐‘– โ†’ ๐‘ˆ, where Di is the domain of

๐‘‚๐‘– , for each ๐‘– โˆˆ ๐ผ. A relation R in R is

interpreted as a relation RU on the global

domain. Satisfaction of a correspondence

๐‘ = (๐‘’1, ๐‘’2, ๐‘…) by two models ๐‘š1 ๐‘œ๐‘“ ๐‘‚1

and ๐‘š2 ๐‘œ๐‘“ ๐‘‚2 means that

๐›พ๐‘–(๐‘š๐‘–(๐‘’1))๐‘…๐‘ˆ ๐›พ๐‘— (๐‘š๐‘— (๐‘’2)).

Definition 7 [80] An integrated

interpretation of

a NeO S, {(๐‘€๐‘–)๐‘–โˆˆ๐‘–๐‘›๐‘‘

, (๐›พ๐‘–)๐‘– โˆˆ ๐‘–๐‘›๐‘‘}is an

integrated model of ๐‘† ๐‘–ff ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘Ž๐‘โ„Ž ๐‘–, ๐‘— โˆˆ

๐ผ ๐‘›๐‘‘, ๐‘€1, ๐‘€2|=๐›พ1,๐›พ2๐ผ ๐ด๐‘–๐‘— |

6.3 Contextualised Semantics

The functional notion of contextualised

semantics in [38] is not very useful and has

been replaced by a more flexible relational

notion subsequently [8], closely related to

๐‘‚1 ๐‘‚2 ๐‘‚3 ๐‘‚4 ๐‘‚5

๐ท1 ๐ท2 ๐ท3 ๐ท4 ๐ท5

๐‘š1

๐‘š2

๐‘š3

๐‘š4

๐‘š5

๐‘ˆ

๐›พ3 ๐›พ4 ๐›พ2 ๐›พ1 ๐›พ3

Page 8: Semantic Ontology Alignment: Survey and Analysis

7

the semantics of DDLs [9] and ๐œ€-

connections [41]. The idea is to relate the

domains of the ontologies by a family of

relations ๐‘Ÿ = (๐‘Ÿ๐‘–๐‘— )๐‘–, ๐‘— โˆˆ ๐ผ. The relations R

in R are interpreted in each domain of the

ontologies in the NeO. Satisfaction of a

correspondence ๐‘ = (๐‘’1, ๐‘’2, ๐‘…) by two

models ๐‘š1 of ๐‘‚1 and ๐‘š2 of ๐‘‚2 means that

๐‘š๐‘–(๐‘’1)๐‘…๐‘– ๐‘Ÿ๐‘—๐‘–(๐‘š๐‘— (๐‘’2)), where ๐‘…๐‘– is the

interpretation of R in ๐ท๐‘–

Contextualized semantics gives up the

notion of a global universe, and instead lets

each ontology in a network be interpreted

with its own local universe. However, in

order to give semantics to alignments,

these universes need to be related

somehow. The approach of [43] to use

mappings between local universes has a

number of limitations and has been

replaced by a more flexible approach

subsequently [29], which uses relations

between local universes. This is closely

related to the semantics of DDLs [9] and

E -connections [37].

Example 5 (Interpretation of

correspondence relations in SROIQ) The

interpretation of correspondences in

SROIQ relative to a set D in the

contextualized semantics is (๐‘1, ๐‘2, =) ๐‘€๐‘1

1 = ๐‘Ÿ21(๐‘€๐‘22 )

(๐‘Ÿ1, ๐‘Ÿ2, =) ๐‘€๐‘Ÿ11 = ๐‘Ÿ21(๐‘€๐‘Ÿ2

2 )

(๐‘–1, ๐‘–2, =) ๐‘€๐‘–11 = ๐‘Ÿ21(๐‘€๐‘–2

2 ) ๐‘–. ๐‘’ ๐‘€๐‘–11 , ๐‘€๐‘–2

1 โˆˆ ๐‘Ÿ21

(๐‘1, ๐‘2, โŠฅ) ๐‘€๐‘11 โˆฉ ๐‘Ÿ21(๐‘€๐‘2

2 ) = โˆ…

(๐‘Ÿ1, ๐‘Ÿ2, โŠฅ) ๐‘€๐‘Ÿ11 โˆฉ ๐‘Ÿ21(๐‘€๐‘Ÿ2

2 ) = โˆ…

(๐‘–1, ๐‘–2, โŠฅ) (๐‘€๐‘–22 , ๐‘€๐‘–1

1 ) โˆ‰ ๐‘Ÿ21

(๐‘1, ๐‘2, <) ๐‘€๐‘11 โŠ† ๐‘Ÿ21(๐‘€๐‘2

2 )

(๐‘Ÿ1, ๐‘Ÿ2, <) ๐‘€๐‘Ÿ11 โŠ† ๐‘Ÿ21(๐‘€๐‘Ÿ2

2 )

(๐‘1, ๐‘2, >) ๐‘€๐‘11 โŠ‡ ๐‘Ÿ21(๐‘€๐‘2

2 )

(๐‘Ÿ1, ๐‘Ÿ2, >) ๐‘€๐‘Ÿ11 โŠ‡ ๐‘Ÿ21(๐‘€๐‘Ÿ2

2 )

(๐‘1, ๐‘–2, โˆ‹) ๐‘Ÿ21(๐‘€๐‘–22 ) โŠ† ๐‘€๐‘1

1

(๐‘–1, ๐‘2, โˆˆ) ๐‘€๐‘–11 = ๐‘Ÿ21(๐‘€๐‘2

2 )

where ๐‘1, ๐‘Ÿ1, ๐‘–1๐‘Ž๐‘Ÿ๐‘’ class, role and

individual symbols from an ontology

๐‘‚1, ๐‘2, ๐‘Ÿ2, ๐‘–2 ๐‘Ž๐‘Ÿ๐‘’ class, role and individual

symbols from an ontology ๐‘‚2, ๐‘€1 and

๐‘€2 are models of ๐‘‚1and ๐‘‚2 with domains

๐ท1 and ๐ท2 and ๐‘Ÿ21 is the domain relation

between ๐ท1 ๐‘Ž๐‘›๐‘‘ ๐ท2 .

7 Normalization of Alignments

In this section we describe how relational

(and therefore also general) networks can

be normalized into functional ones. Part of

this normalization process generalizes to

an arbitrary institution, while certain parts

(namely relativisation of ontologies and the

construction of bridges) are institution-

specific and have to be provided separately

for each institution.

A central motivation behind this

construction is the following: We will

prove representation theorems showing

that the semantics of a relational network

coincides with that of its normalization,

This implies that reasoning in the colimit

of the normalized network is complete and

(in case of logics admitting amalgamation)

also sound for reasoning about the network

7.1 Structure of the Normalization

Process

Relational DOL networks (i.e. networks

involving alignments) can be normalized to

purely functional networks. In this section,

we lay out the structure of this

normalization process, while in the next,

we will provide details for each of the four

possible assumptions about the semantics.

Example 6 We illustrate the four

approaches to semantics with the help of a

simple example. Let us consider the

following two ontologies:

๐‘‚๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐‘† ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐ต๐‘–๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’ ๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™ ๐ด๐‘š๐‘–๐‘›๐‘’ ๐‘‡๐‘ฆ๐‘๐‘’๐‘  ๐ต๐‘–๐‘’๐‘›_๐‘’๐‘ก๐‘Ÿ๐‘’

๐‘‚1 ๐‘‚2 ๐‘‚3 ๐‘‚4 ๐‘‚5

๐ท2 ๐ท3 ๐ท4 ๐ท5

๐‘Ÿ1,2 ๐‘Ÿ5,4

โ€ฆ

.. ๐‘Ÿ1,3

โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ

๐ท1

Page 9: Semantic Ontology Alignment: Survey and Analysis

8

๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐ธ๐‘›๐‘“๐‘Ž๐‘›๐‘ก

๐‘‚๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐‘‡ = ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘› ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ ๐‘‡๐‘œ๐‘”๐‘’๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘ค๐‘–๐‘กโ„Ž ๐‘กโ„Ž๐‘’ ๐‘“๐‘œ๐‘™๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘” ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘ ๐‘๐‘œ๐‘›๐‘‘๐‘’๐‘›๐‘๐‘’๐‘  ๐‘†: ๐ต๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’ = ๐‘‡: ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก ๐‘†: ๐ด๐‘š๐‘–๐‘›๐‘’ โˆˆ ๐‘‡: ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘› ๐‘†: ๐ธ๐‘›๐‘“๐‘Ž๐‘›๐‘ก โŠฅ ๐‘‡: ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ where we prefix with S : the symbols

coming from S and with T : the symbols

coming from T . Using the DOL syntax,

we can write this alignment as

๐ด๐‘™๐‘–๐‘”๐‘›๐‘’๐‘š๐‘’๐‘›๐‘ก ๐ด ๐‘† ๐‘ก๐‘œ ๐‘‡ = ๐ต๐‘–๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’ =

๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก

Amine โˆˆ Masculin,

Enfant โŠฅ Travailleur

Note that so far we have not specified

which kind of semantics is assumed for A.

Depending on the choice for the assumed

semantics, the normalisation of A will be

constructed in a different way. The idea is

to introduce for each correspondence a

theory that captures its semantics. This is

done differently for four possible semantics

of the alignment. Using these theories, we

then construct a diagram that gives the

semantics of the alignment. In all four

semantics, the diagram is a W-alignment in

the sense of [41]:

Definition 8 Let S and T be two ontologies

in a logic L and

A={๐‘๐‘– = (๐‘ 1๐‘– , ๐‘ 2

๐‘– , ๐‘…๐‘–)|๐‘– โˆˆ ๐ผ๐‘›๐‘‘} ๐‘Ž๐‘› ๐‘Ž๐‘™๐‘–๐‘”๐‘›๐‘š๐‘’๐‘›๐‘’๐‘ก ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘† ๐‘Ž๐‘›๐‘‘ ๐‘‡ , the

diagram of the alignment A is :

Where the ontologies :

B, Sฬƒ , Sฬƒโ€™, Tฬƒโ€ฒ, Tฬƒ and the Morphism t1, t2, ฯƒ1, ฯƒ2

depend on the choice of semantics for the

alignment A, in a way to be made precise

for each possible option.

Intuitively, ๏ฟฝฬƒ๏ฟฝโ€ฒ and ๏ฟฝฬƒ๏ฟฝโ€ฒ are either the

ontologies S and T being aligned, or a

transformation of them, involving their

translation along a comorphism. B is a

bridge ontology that formalises the

intended meaning of the correspondences

of A. It will be constructed as a union of

smaller theories, each internalizing the

semantics of a correspondence of A. This

means, intuitively, that the models ๐‘€ of a

theory that internalises the semantics of

(๐‘ 1, ๐‘ 2 , ๐‘…), are precisely those for which

the relation ๐‘€๐‘… holds for ๐‘€๐‘ 1 ๐‘Ž๐‘›๐‘‘ ๐‘€๐‘ 2

, in a

way that takes into account the possible

semantics of the alignment. We will define

this formally for each choice of semantics.

It is possible that some correspondence

cannot be internalised in the logic of the

ontologies being aligned. In this case, we

will have to look for a more expressive

logic, where such a theory internalising the

semantics of that correspondence can be

constructed.. ๏ฟฝฬƒ๏ฟฝโ€™ and ๐‘‡โ€ฒฬƒ are interface of S

and T , respectively, with B , meaning that

they connect the symbols from the aligned

ontologies with their correspondents in the

bridge ontology along ๐‘ก๐‘– ๐‘Ž๐‘›๐‘‘ ๐œŽ๐‘– These

diagrams will be used in the construction

of the normalisation of a network:

Definition 9 Given a general NeO, its

normalization is defined as the union of its

functional part with the normalization of

its relational part.

For each ontology ๐‘‚๐‘– in a network of

aligned ontologies, let ๏ฟฝฬƒ๏ฟฝ๐‘– be its corres-

ponding ontology in the diagram of the

network. Let ฮฃ๐‘– = ๐‘†๐‘–๐‘”(๐‘‚๐‘–) and ฮฃ๐‘–โ€ฒ =

๐‘†๐‘–๐‘”(๐‘‚๐‘–โ€ฒ). In each of the four cases that

correspond to the different choices of

semantics we can define:

(i)a sentence translation functor ฮฑโˆ—

โˆ—

:

๐‘†๐‘’๐‘›(๐›ด๐‘–) โ†’ ๐‘†๐‘’๐‘›(ฮฃ๐‘–โ€ฒ)

(ii) model reduct factor ฮฒโˆ—

โˆ—

:

B ๏ฟฝฬƒ๏ฟฝ

๏ฟฝฬƒ๏ฟฝ ๏ฟฝฬƒ๏ฟฝโ€ฒ ๏ฟฝฬƒ๏ฟฝโ€ฒ

๐‘ก1 ๐œŽ2 ๐‘ก2 ๐œŽ1

Page 10: Semantic Ontology Alignment: Survey and Analysis

9

๐‘€๐‘œ๐‘‘(๐›ด๐‘–) โ†’ ๐‘€๐‘œ๐‘‘(ฮฃ๐‘–โ€ฒ)

such that the condition ๐›ฝโˆ—(๐‘€โ€ฒ)| = ๐‘’

โ‡” ๐‘€โ€ฒ| = ๐›ผโˆ—(๐‘’) โ„Ž๐‘œ๐‘™๐‘‘ for each ๐‘€ โˆˆ

(๐‘€๐‘œ๐‘‘(๏ฟฝฬƒ๏ฟฝ๐‘–)) ๐‘Ž๐‘›๐‘‘ ๐‘’๐‘Ž๐‘โ„Ž ๐‘’ โˆˆ ๐‘†๐‘’๐‘› (ฮฃ๐‘–) Using

these functors allows us to formulate the

results about reasoning in a NeO in a

uniform way. In all four cases, we can

define a signature morphism in a

Grothendieck logic from ฮฃ๐‘– ๐‘ก๐‘œ ฮฃ๐‘–โ€ฒ

Such that ฮฑโˆ— and ฮฒโˆ— translation and model

reduction functors corresponding to it.

Thus, the expected condition follows from

the satisfaction condition of the

Grothendieck logic. We now proceed with

discussing how these diagrams are

obtained for each of the four possible

semantics.

7.2 Simple Semantics Alignment

We start with defining what it means for a

theory to capture the semantics of a

correspondence. In this section, ๐‘™๐‘’๐‘ก ๐ด =

{๐‘๐‘– = (๐‘ 1๐‘– , ๐‘ 2

๐‘– , ๐‘…๐‘–)|๐‘– โˆˆ ๐ผ๐‘›๐‘‘} Be an alignment

between two ontologies S and T in a

logic L, where Ind is a set of indices.

First we define the signature of the theory.

Definition 10 The bridge signature

ฮฃ๐ต ๐‘œ๐‘“ ๐ต is defined as the union of

๐‘†๐‘–๐‘”1(๐ด) ๐‘Ž๐‘›๐‘‘ ๐‘†๐‘–๐‘”2(๐ด) where ฮฃ1is the

smallest subsignature of Sig(S ) such that

Symbols(ฮฃ1) includes ๐‘ 1๐‘– ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘Ž๐‘โ„Ž ๐‘– โˆˆ

๐ผ๐‘›๐‘‘ is the signature obtained by renaming

every ๐‘ ๐‘ฆ๐‘š๐‘๐‘œ๐‘™ ๐‘  โˆˆ ๐‘†๐‘ฆ๐‘š๐‘๐‘œ๐‘™๐‘ (ฮฃ1) to S:s

and ฮฃ2 is the smallest subsignature of

Sig(T ) such that Symbols(ฮฃ2) includes

๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘Ž๐‘โ„Ž , ๐‘Ž๐‘›๐‘‘ ๐‘†2๐‘– ๐‘†๐‘–๐‘”2(๐ด) is the signat-

ure obtained by renaming every symbol

๐‘  โˆˆ ๐‘†๐‘ฆ๐‘š๐‘๐‘œ๐‘™๐‘ (๐›ด2) ๐‘ก๐‘œ ๐‘‡: ๐‘ .

We must prefix the symbols occurring in

correspondences with the names of the

ontology where they come from to avoid

unintended identifications when making

the union of the involved signatures.

Definition 11 Let ฮฃ๐ต be the bridge

signature of A and โˆ† a set of

ฮฃ๐ต sentences. We say that (ฮฃ๐ต, โˆ†)

internalises the semantics of

{๐‘๐‘– = (๐‘ 1๐‘– , ๐‘ 2

๐‘– , ๐‘…๐‘–)|๐‘– โˆˆ ๐ผ๐‘›๐‘‘} denoted

(ฮฃ๐ต, โˆ†) โ‰Š๐‘ ๐‘–๐‘š ๐‘๐‘–, ๐‘–๐‘“

๐‘€ |= ฮฃ๐ต ฮ” ๐‘–๐‘“๐‘“ (๐‘€๐‘†:๐‘†๐‘–2

, ๐‘€๐‘‡:๐‘†๐‘–2

) โˆˆ

(๐‘…๐ผ) ๐‘ข๐‘›๐‘–๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’(๐‘€) for each ฮฃB

Definition 12 Let ฮฃ๐ต be the bridge signatu-

re of A.

Assume that (ฮฃ๐ต, โˆ†) โ‰Š๐‘ ๐‘–๐‘š ๐‘๐‘– each ๐‘๐‘– โˆˆ ๐ด.

The diagram of A is obtained by setting

the parameters as follows:

๏ฟฝฬƒ๏ฟฝ = ๐‘† ๐‘Ž๐‘›๐‘‘ ๏ฟฝฬƒ๏ฟฝ = ๐‘†

๏ฟฝฬƒ๏ฟฝ = (๐‘†๐‘–๐‘”1(๐ด), โˆ…)

๐‘ก1 ๐‘š๐‘Ž๐‘๐‘  ๐‘’๐‘Ž๐‘โ„Ž ๐‘†: ๐‘  โˆˆ ๐‘†๐‘ฆ๐‘š๐‘๐‘œ๐‘™๐‘ (๐‘†๐‘–๐‘”1(๐ด))๐‘ก๐‘œ ๐‘ 

๏ฟฝฬƒ๏ฟฝ = (๐‘†๐‘–๐‘”1(๐ด), โˆ…)

๐‘ก2 ๐‘š๐‘Ž๐‘๐‘  ๐‘’๐‘Ž๐‘โ„Ž ๐‘‡: ๐‘  โˆˆ ๐‘†๐‘ฆ๐‘š๐‘๐‘œ๐‘™๐‘ (๐‘†๐‘–๐‘”1(๐ด))๐‘ก๐‘œ ๐‘ 

๐ต = (ฮฃ๐ต, โ‹ƒ ๐‘– โˆˆ ๐ผ๐‘›๐‘‘ โˆ†๐‘– )

๐œŽ1 ๐‘Ž๐‘›๐‘‘ ๐œŽ2 ๐‘Ž๐‘Ÿ๐‘’ ๐‘–๐‘›๐‘๐‘™๐‘ข๐‘ ๐‘–๐‘œ๐‘›๐‘  Example 7 (Simple semantics in SROIQ)

For each type of correspondence, we give

below the theory that internalises its

semantics. We have chosen to use

Manchester syntax for SROIQ [38], as it

makes more obvious the kinds of symbols

involved. We also assume that the

correspondences are between symbols

from the ontologies S and T .

(๐‘1, ๐‘2, =) ๐ถ๐‘™๐‘Ž๐‘ ๐‘ : ๐‘†: ๐‘1 ๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก ๐‘ก๐‘œ โˆถ ๐‘‡: ๐‘2 (๐‘Ÿ1, ๐‘Ÿ2, =) ๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ: ๐‘†: ๐‘Ÿ1 ๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก ๐‘ก๐‘œ โˆถ ๐‘‡: ๐‘Ÿ2 (๐‘–1, ๐‘–2, =) ๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™: ๐‘†: ๐‘–1 ๐‘†๐‘Ž๐‘š๐‘’ ๐‘Ž๐‘  ๐‘‡: ๐‘–2 (๐‘1, ๐‘2, โŠฅ)๐ถ๐‘™๐‘Ž๐‘ ๐‘ : ๐‘†: ๐‘1 ๐ท๐‘–๐‘ ๐‘—๐‘œ๐‘–๐‘›๐‘ก๐‘  ๐‘ค๐‘–๐‘กโ„Ž ๐‘‡: ๐‘2 (๐‘Ÿ1, ๐‘Ÿ2, โŠฅ)๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ: ๐‘†: ๐‘Ÿ1 ๐ท๐‘–๐‘ ๐‘—๐‘œ๐‘–๐‘›๐‘ก๐‘  ๐‘ค๐‘–๐‘กโ„Ž ๐‘‡: ๐‘Ÿ2 (๐‘–1, ๐‘–2, โŠฅ)๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™: ๐‘†: ๐‘–1 ๐ท๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘‡: ๐‘–2 (๐‘1, ๐‘2, <)๐ถ๐‘™๐‘Ž๐‘ ๐‘ : ๐‘†: ๐‘1 ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐‘‡: ๐ถ2 (๐‘Ÿ1, ๐‘Ÿ2, <)๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ: ๐‘†: ๐‘Ÿ1 ๐‘†๐‘ข๐‘๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ÿ2 (๐‘1, ๐‘2, >)๐ถ๐‘™๐‘Ž๐‘ ๐‘ : ๐‘‡: ๐‘2 ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘œ๐‘“ ๐‘†: ๐‘1 (๐‘Ÿ1, ๐‘Ÿ2, >)๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ: ๐‘‡: ๐‘Ÿ2

Page 11: Semantic Ontology Alignment: Survey and Analysis

10

๐‘†๐‘ข๐‘๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ ๐‘‚๐‘“ ๐‘†: ๐‘Ÿ1 (๐‘1, ๐‘–2, โˆ‹)๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™: ๐‘‡: ๐‘–2 ๐‘‡๐‘ฆ๐‘๐‘’ ๐‘†: ๐ถ1 (๐‘–1, ๐‘2, โˆˆ)๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™: ๐‘†: ๐‘–1 ๐‘‡๐‘ฆ๐‘๐‘’ ๐‘†: ๐ถ1 Example 8 (Simple semantics in FOL)

Similarly, in semantics of corresp-

ondences:

(๐‘“1, ๐‘“2 =) โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›. ๐‘†: ๐‘“1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) = ๐‘‡: ๐‘“2(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) (๐‘“1, ๐‘“2, โŠฅ)โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›. ยฌ๐‘†: ๐‘“1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) = ๐‘‡: ๐‘“2(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) (๐‘1, ๐‘2, =) โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›. ๐‘†: ๐‘1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) โ‡โ‡’ ๐‘‡: ๐‘2(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) (๐‘1, ๐‘2, โŠฅ)โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›. ยฌ(๐‘†: ๐‘1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) โˆง ๐‘‡: ๐‘2(๐‘ฅ1, . . . , ๐‘ฅ๐‘›)) (๐‘1, ๐‘2, <)โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›. ๐‘†: ๐‘1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) =โ‡’ ๐‘‡: ๐‘2(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) (๐‘1, ๐‘2, >)โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›. ๐‘‡: ๐‘2(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) =โ‡’ ๐‘†: ๐‘1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) Example 9 For the alignment of Ex. 9, we

start by adding the assumption that we

have a shared universe for the ontologies:

The network of A is then

Alignment S to T=

๐‘Šโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘†โ€ฒ๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘ ๐‘ก๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘›๐‘๐‘’๐‘๐‘ก๐‘  ๐‘†: ๐ต๐‘–๐‘’๐‘›๐ธ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘›๐‘‘ ๐‘†: ๐ธ๐‘›๐‘“๐‘Ž๐‘›๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘†: ๐‘Ž๐‘š๐‘–๐‘›๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘‡โ€ฒ๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘ ๐‘ก๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘›๐‘๐‘’๐‘๐‘ก๐‘  ๐‘‡: ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก, ๐‘‡: ๐ธ๐‘š๐‘๐‘™๐‘œ๐‘ฆ๐‘’๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘‡: ๐‘€๐‘Ž๐‘™๐‘’. ๐‘‡โ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’

๐‘๐‘Ÿ๐‘–๐‘‘๐‘”๐‘’ ๐‘œ๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐ต ๐‘–๐‘ : ๐‘‚๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐ต = ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘† โˆถ ๐ต๐‘–๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’ ๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก ๐‘ก๐‘œ ๐‘‡

โˆถ ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘‡ โˆถ ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘‡ โˆถ ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘› ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘† โˆถ ๐ธ๐‘›๐‘“๐‘Ž๐‘›๐‘ก ๐ท๐‘–๐‘ ๐‘—๐‘œ๐‘–๐‘›๐‘ก ๐‘ค๐‘–๐‘กโ„Ž ๐‘‡

โˆถ ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ ๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘† โˆถ ๐ด๐‘š๐‘–๐‘›๐‘’, ๐‘‡๐‘ฆ๐‘๐‘’ ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘› We can combine the resulting functional

network into a single ontology. In DOL,

this is written as:

๐‘œ๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐ถ = ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘’ ๐‘ ๐‘‡โ„Ž๐‘’ ๐‘๐‘œ๐‘™๐‘–๐‘š๐‘–๐‘ก ๐‘œ๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘›๐‘’๐‘ก๐‘ค๐‘œ๐‘Ÿ๐‘˜ ๐‘œ๐‘“ ๐ด ๐‘–๐‘ :

๐‘œ๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐ถ =

๐ถ๐‘™๐‘Ž๐‘ ๐‘ : ๐‘†: ๐ต๐‘–๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’ ๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก๐‘‡๐‘œ:

๐‘‡: ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก

๐ถ๐‘™๐‘Ž๐‘ ๐‘ : ๐‘‡: ๐‘‡r๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ

๐ถ๐‘™๐‘Ž๐‘ ๐‘ : ๐‘‡: ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘› ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“: ๐‘‡: ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก

๐ถ๐‘™๐‘Ž๐‘ ๐‘ : ๐‘†: ๐ธ๐‘›๐‘“๐‘Ž๐‘›๐‘ก ๐ท๐‘–๐‘ ๐‘—๐‘œ๐‘–๐‘›๐‘ก๐‘Š๐‘–๐‘กโ„Ž: ๐‘‡: ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ

๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™: ๐‘†: ๐‘Ž๐‘š๐‘–๐‘›๐‘’ ๐‘‡๐‘ฆ๐‘๐‘’๐‘ : ๐‘‡: ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘›, ๐‘†:

๐ต๐‘–๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’

๐‘‚๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐ถ =

๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘†: ๐ต๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’

โˆถ ๐‘’๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก ๐‘ก๐‘œ ๐‘‡: ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก

๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘‡: ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ

๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘‡

โˆถ ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘› ๐‘†๐‘ข๐‘ ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘‚๐‘“ ๐‘‡: ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก

๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘†

โˆถ ๐ธ๐‘›๐‘“๐‘Ž๐‘›๐‘ก ๐‘‘๐‘–๐‘ ๐‘—๐‘œ๐‘–๐‘›๐‘ก ๐‘ค๐‘–๐‘กโ„Ž: ๐‘‡: ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ

๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘†

โˆถ ๐ด๐‘š๐‘–๐‘›๐‘’ ๐‘‡๐‘ฆ๐‘๐‘’๐‘  ๐‘‡: ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘› ๐‘†: ๐ต๐‘–๐‘’๐‘›_๐‘’๐‘ก๐‘Ÿ๐‘’

Since the original ontologies are not

modified in the diagram of the alignments,

the signature morphism from ๐‘†๐‘–๐‘”(๐‘‚๐‘–) to

๐‘†๐‘–๐‘”(๏ฟฝฬƒ๏ฟฝ๐‘–) is the identity, so the functors

๐›ผโˆ— ๐‘Ž๐‘›๐‘‘ ๐›ฝโˆ— are the identities on ๐‘†๐‘–๐‘”(๐‘‚๐‘–) โˆ’

๐‘ ๐‘’๐‘›๐‘ก๐‘’๐‘›๐‘๐‘’๐‘ , respectively on ๐‘†๐‘–๐‘”(๐‘‚๐‘–) โˆ’

๐‘š๐‘œ๐‘‘๐‘’๐‘™๐‘ .

Example 10 (Generalised integrated

semantics in FOL) In FOL we have the

following basic bridge ontology:

โˆ€ ๐‘ฅ1, ๐‘ฅ2, ๐‘ง . ๐‘ง๐‘Ÿ๐‘ ๐‘ฅ1 โ‹€ ๐‘ง๐‘Ÿ๐‘ ๐‘ฅ2 โŸน ๐‘ฅ1 = ๐‘ฅ2 โˆ€ ๐‘ฅ . ๐‘†:โŠบ (๐‘ฅ) โŸน โˆƒ๐‘ง . ๐‘ง๐‘Ÿ๐‘  ๐‘ฅ โˆ€๐‘ฅ, ๐‘ง . ๐‘ง๐‘Ÿ๐‘ ๐‘ฅ โŸน ๐‘†:โŠบ (๐‘ฅ) โˆง ๐บ(๐‘ง)

โˆ€ ๐‘ฅ1, ๐‘ฅ2, ๐‘ง . ๐‘ง๐‘Ÿ๐‘‡๐‘ฅ1 โ‹€ ๐‘ง๐‘Ÿ๐‘‡๐‘ฅ2 โŸน ๐‘ฅ1 = ๐‘ฅ2 โˆ€ ๐‘ฅ . ๐‘‡:โŠบ (๐‘ฅ) โŸน โˆƒ๐‘ง . ๐‘ง๐‘Ÿ๐‘‡ ๐‘ฅ โˆ€๐‘ฅ, ๐‘ง . ๐‘ง๐‘Ÿ๐‘ ๐‘ฅ โŸน ๐‘‡:โŠบ (๐‘ฅ) โˆง ๐บ(๐‘ง) where for each of ๐‘Ÿ๐‘† and ๐‘Ÿ๐‘‡, the first axiom

is inverse functionality, the second one is

right-totality and the third one gives the

domain and the range, and the following

theories that internalise the semantics of

correspondences:

(๐‘“1, ๐‘“2, ) โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›, ๐‘ฆ1, . . . , ๐‘ฆ๐‘›, ๐‘ง1, . . . , ๐‘ง๐‘›. ๐‘†:โŠบ (๐‘ฅ1) โˆง. . .โˆง ๐‘†:โŠบ (๐‘ฅ๐‘›) โˆง ๐‘‡:โŠบ (๐‘ฆ1) โˆง. . .โˆง ๐‘‡:โŠบ (๐‘ฆ๐‘›) โˆง ๐‘ง1๐‘Ÿ๐‘†๐‘ฅ1 โˆง. . .โˆง ๐‘ง๐‘›๐‘Ÿ๐‘†๐‘ฅ๐‘› โˆง ๐‘ง1๐‘Ÿ๐‘‡๐‘ฆ1 โˆง. . .โˆง ๐‘ง๐‘›๐‘Ÿ๐‘‡๐‘ฆ๐‘›

S B

๏ฟฝฬƒ๏ฟฝโ€ฒ ๏ฟฝฬƒ๏ฟฝโ€ฒ T

Tapez une รฉquation ici.

๐‘ก1 ๐‘ก2

๐œŽ1 ๐œŽ2

Page 12: Semantic Ontology Alignment: Survey and Analysis

11

=โ‡’

โˆƒ๐‘ง . ๐‘ง ๐‘Ÿ๐‘ ๐‘†: ๐‘“1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) โˆง ๐‘ง ๐‘Ÿ๐‘‡๐‘‡: ๐‘“2(๐‘ฆ1, . . . , ๐‘ฆ๐‘›) (๐‘“1, ๐‘“2, ) โˆƒ๐‘ฅ1, . . . , ๐‘ฅ๐‘›, ๐‘ฆ1, . . . , ๐‘ฆ๐‘›, ๐‘ง1, . . . , ๐‘ง๐‘›. ๐‘†:โŠบ (๐‘ฅ1) โˆง. . .โˆง ๐‘†:โŠบ (๐‘ฅ๐‘›) โˆง ๐‘‡:โŠบ (๐‘ฆ1) โˆง. . .โˆง ๐‘‡:โŠบ (๐‘ฆ๐‘›) โˆง ๐‘ง1๐‘Ÿ๐‘†๐‘ฅ1 โˆง. . .โˆง ๐‘ง๐‘›๐‘Ÿ๐‘†๐‘ฅ๐‘› โˆง ๐‘ง1๐‘Ÿ๐‘‡๐‘ฆ1 โˆง. . .โˆง ๐‘ง๐‘›๐‘Ÿ๐‘‡๐‘ฆ๐‘› =โ‡’

โˆƒ๐‘ง . ๐‘ง ๐‘Ÿ๐‘ ๐‘†: ๐‘“1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) โˆง ๐‘ง ๐‘Ÿ๐‘‡๐‘‡: ๐‘“2(๐‘ฆ1, . . . , ๐‘ฆ๐‘›)๐‘Ÿ๐‘‡

(๐‘1, ๐‘2, ) โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›, ๐‘ฆ1, . . . , ๐‘ฆ๐‘›, ๐‘ง1, . . . , ๐‘ง๐‘›. ๐‘†:โŠบ (๐‘ฅ1) โˆง. . .โˆง ๐‘†:โŠบ (๐‘ฅ๐‘›) โˆง ๐‘‡:โŠบ (๐‘ฆ1) โˆง. . .โˆง ๐‘‡:โŠบ (๐‘ฆ๐‘›) โˆง ๐‘ง1๐‘Ÿ๐‘†๐‘ฅ1 โˆง. . .โˆง ๐‘ง๐‘›๐‘Ÿ๐‘†๐‘ฅ๐‘› โˆง ๐‘ง1๐‘Ÿ๐‘‡๐‘ฆ1 โˆง. . .โˆง ๐‘ง๐‘›๐‘Ÿ๐‘‡๐‘ฆ๐‘› =โ‡’

๐‘†: ๐‘1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) โˆง ๐‘‡: ๐‘2(๐‘ฆ1, . . . , ๐‘ฆ๐‘›)

(๐‘1, ๐‘2, )ยฌโˆƒ๐‘ฅ1, . . . , ๐‘ฅ๐‘›, ๐‘ฆ1, . . . , ๐‘ฆ๐‘›, ๐‘ง1, . . . , ๐‘ง๐‘›. ๐‘†:โŠบ (๐‘ฅ1) โˆง. . .โˆง ๐‘†:โŠบ (๐‘ฅ๐‘›) โˆง ๐‘‡:โŠบ (๐‘ฆ1) โˆง. . .โˆง ๐‘‡:โŠบ (๐‘ฆ๐‘›) โˆง ๐‘ง1๐‘Ÿ๐‘†๐‘ฅ1 โˆง. . .โˆง ๐‘ง๐‘›๐‘Ÿ๐‘†๐‘ฅ๐‘› โˆง ๐‘ง1๐‘Ÿ๐‘‡๐‘ฆ1 โˆง. . .โˆง ๐‘ง๐‘›๐‘Ÿ๐‘‡๐‘ฆ๐‘› โˆง ๐‘†: ๐‘1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) โˆง ๐‘‡: ๐‘2(๐‘ฆ1, . . . , ๐‘ฆ๐‘›)

(๐‘1, ๐‘2, )โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›, ๐‘ฆ1, . . . , ๐‘ฆ๐‘›, ๐‘ง1, . . . , ๐‘ง๐‘›. ๐‘†:โŠบ (๐‘ฅ1) โˆง. . .โˆง ๐‘†:โŠบ (๐‘ฅ๐‘›) โˆง ๐‘‡:โŠบ (๐‘ฆ1) โˆง. . .โˆง ๐‘‡:โŠบ (๐‘ฆ๐‘›) โˆง ๐‘ง1๐‘Ÿ๐‘†๐‘ฅ1 โˆง. . .โˆง ๐‘ง๐‘›๐‘Ÿ๐‘†๐‘ฅ๐‘› โˆง ๐‘ง1๐‘Ÿ๐‘‡๐‘ฆ1 โˆง. . .โˆง ๐‘ง๐‘›๐‘Ÿ๐‘‡๐‘ฆ๐‘› =โ‡’ ๐‘†: ๐‘1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) =โ‡’ ๐‘‡: ๐‘2(๐‘ฆ1, . . . , ๐‘ฆ๐‘›) (๐‘1, ๐‘2, )โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›, ๐‘ฆ1, . . . , ๐‘ฆ๐‘›, ๐‘ง1, . . . , ๐‘ง๐‘›. ๐‘†:โŠบ (๐‘ฅ1) โˆง. . .โˆง ๐‘†:โŠบ (๐‘ฅ๐‘›) โˆง ๐‘‡:โŠบ (๐‘ฆ1) โˆง. . .โˆง ๐‘‡:โŠบ (๐‘ฆ๐‘›) โˆง ๐‘ง1๐‘Ÿ๐‘†๐‘ฅ1 โˆง. . .โˆง ๐‘ง๐‘›๐‘Ÿ๐‘†๐‘ฅ๐‘› โˆง ๐‘ง1๐‘Ÿ๐‘‡๐‘ฆ1 โˆง. . .โˆง ๐‘ง๐‘›๐‘Ÿ๐‘‡๐‘ฆ๐‘› =โ‡’ ๐‘‡: ๐‘2(๐‘ฆ1, . . . , ๐‘ฆ๐‘›) =โ‡’ ๐‘†: ๐‘1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) Example 11 (General integrated semantics

in SROIQ)

The basic bridge ontology for general

integrated semantics in SROIQ is

๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ: ๐‘Ÿ๐‘  ๐ถโ„Ž๐‘Ž๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘’๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘๐‘  โˆถ ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’๐น๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™

๐ท๐‘œ๐‘š๐‘Ž๐‘–๐‘› โˆถ ๐บ ๐‘…๐‘Ž๐‘›๐‘”๐‘’ โˆถ ๐‘†:โŠบ ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘†:โŠบ ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ โˆถ ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘Ÿ๐‘ 

๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ: ๐‘Ÿ๐‘‡ ๐ถโ„Ž๐‘Ž๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘’๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘๐‘  โˆถ ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’๐น๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐ท๐‘œ๐‘š๐‘Ž๐‘–๐‘› โˆถ ๐บ ๐‘…๐‘Ž๐‘›๐‘”๐‘’ โˆถ ๐‘‡:โŠบ ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘‡:โŠบ ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ โˆถ ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘Ÿ๐‘‡ ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐บ ๐‘‡โ„Ž๐‘’ ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘ฆ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™๐‘–๐‘ง๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘š๐‘Ž๐‘›๐‘ก๐‘–๐‘๐‘  ๐‘œ๐‘“ ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘ ๐‘๐‘œ๐‘›๐‘‘๐‘’๐‘›๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’ โˆถ (๐‘1, ๐‘2, =) ๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘’๐‘  ๐‘Ÿ๐‘  ๐‘†๐‘œ๐‘š๐‘’ ๐‘†: ๐‘1 ๐‘Ÿ๐‘‡ ๐‘†๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘2 (๐‘–1, ๐‘–2, =) ๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘’๐‘  ๐‘Ÿ๐‘  ๐‘†๐‘œ๐‘š๐‘’ {๐‘†: ๐‘–1} ๐‘Ÿ๐‘‡ ๐‘†๐‘œ๐‘š๐‘’ {๐‘‡: ๐‘–2} (๐‘1, ๐‘2, โŠฅ) ๐‘๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘Ÿ๐‘  ๐‘ ๐‘œ๐‘š๐‘’ {๐‘†: ๐‘1} ๐ท๐‘–๐‘ ๐‘—๐‘œ๐‘–๐‘›๐‘ก๐‘  ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ÿ๐‘‡ ๐‘†๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘2 (๐‘–1, ๐‘–2, โŠฅ) ๐‘๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘Ÿ๐‘  ๐‘ ๐‘œ๐‘š๐‘’ {๐‘†: ๐‘–1} ๐ท๐‘–๐‘ ๐‘—๐‘œ๐‘–๐‘›๐‘ก๐‘  ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ÿ๐‘‡ ๐‘†๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘–2 (๐‘1, ๐‘2, <) ๐‘๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘Ÿ๐‘  ๐‘ ๐‘œ๐‘š๐‘’ {๐‘†: ๐‘1} ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐‘Ÿ๐‘‡ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡ โˆถ ๐‘2 (๐‘1, ๐‘2, >) ๐‘๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘Ÿ๐‘‡ ๐‘ ๐‘œ๐‘š๐‘’ {๐‘‡: ๐‘1} ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐‘Ÿ๐‘† ๐‘ ๐‘œ๐‘š๐‘’ ๐‘† โˆถ ๐‘2 (๐‘1, ๐‘–2, โˆ‹) ๐‘๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘Ÿ๐‘‡ ๐‘ ๐‘œ๐‘š๐‘’ {๐‘‡: ๐‘–2} ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐‘Ÿ๐‘† ๐‘ ๐‘œ๐‘š๐‘’ ๐‘† โˆถ ๐‘1 (๐‘–1, ๐‘2, โˆˆ) ๐‘๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘Ÿ๐‘‡ ๐‘ ๐‘œ๐‘š๐‘’ {๐‘†: ๐‘–1} ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐‘Ÿ๐‘† ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡ โˆถ ๐‘2

For correspondences involving roles, we

would need to be able to express

equivalences or disjointness axioms

involving complex roles, which are beyond

the expressivity of SROIQ. Therefore, the

correspondences

(๐‘Ÿ1, ๐‘Ÿ2, =), (๐‘Ÿ1, ๐‘Ÿ2, โŠฅ) , (๐‘Ÿ1, ๐‘Ÿ2, <) and (๐‘Ÿ1, ๐‘Ÿ2, >) cannot be internalised in

SROIQ. We will give their internalisations

in FOL

Example 12 Continuing , we add the

assumption of a global universe with

general integrated semantics:

The diagram of A is then

Page 13: Semantic Ontology Alignment: Survey and Analysis

12

๏ฟฝฬƒ๏ฟฝโ€ฒconsists of the concepts G,

S:Thing, S :Bien_etre and S :Enfant, the

object property ๐‘Ÿ๐‘ and the individual

S :amine and ๏ฟฝฬƒ๏ฟฝโ€ฒconsists of the concepts G,

T :Thing, T :Format ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ and

T :Masculin and the object property ๐‘Ÿ๐‘‡.

The ontologies

๐‘† ฬƒ ๐‘Ž๐‘›๐‘‘ ๐‘‡ ฬƒ ๐‘Ž๐‘Ÿ๐‘’ ๐‘‚๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๏ฟฝฬƒ๏ฟฝ = ๐‘๐‘™๐‘Ž๐‘ ๐‘  ๐‘†: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐บ ๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ โˆถ ๐‘Ÿ๐‘  ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐ต๐‘–๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’ ๐‘ ๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“: ๐‘†: ๐‘กโ„Ž๐‘–๐‘›๐‘” ๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™ โˆถ ๐ด๐‘š๐‘–๐‘›๐‘’ ๐‘‡๐‘ฆ๐‘๐‘’๐‘  ๐ต๐‘–๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’, ๐‘†: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘ : ๐ธ๐‘›๐‘“๐‘Ž๐‘›๐‘ก ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ โˆถ ๐‘†: ๐‘‡โ„Ž๐‘–๐‘›๐‘”

๐‘‚๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐‘‡ ฬƒ = ๐‘๐‘™๐‘Ž๐‘ ๐‘  ๐‘‡: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐บ ๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ โˆถ ๐‘Ÿ๐‘‡ ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก ๐‘ ๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“: ๐‘‡: ๐‘กโ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘› ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก ๐‘‡: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘ : ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ โˆถ ๐‘‡: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐‘‡โ„Ž๐‘’ ๐‘๐‘Ÿ๐‘–๐‘‘๐‘”๐‘’ ๐‘‚๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐ต ๐‘œ๐‘“ ๐ธ๐‘ฅ๐‘Ž๐‘š๐‘๐‘™๐‘’ ๐‘–๐‘  โˆถ ๐‘‚๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐ต = ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐บ ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘†: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“: ๐ผ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘Ÿ๐‘  ๐‘ ๐‘œ๐‘š๐‘’ ๐บ ๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ โˆถ ๐‘Ÿ๐‘‡ ๐ถโ„Ž๐‘Ž๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘’๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘๐‘ : ๐ผ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’๐น๐‘ข๐‘›๐‘๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐ท๐‘œ๐‘š๐‘Ž๐‘–๐‘› โˆถ ๐บ ๐‘…๐‘Ž๐‘›๐‘”๐‘’ โˆถ ๐‘‡: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก ๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘’๐‘  โˆถ ๐‘Ÿ๐‘  ๐‘ ๐‘œ๐‘š๐‘’ ๐‘†: ๐ต๐‘–๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’ ๐‘Ÿ๐‘‡ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘Ÿ๐‘  ๐‘ ๐‘œ๐‘š๐‘’ ๐‘†: ๐ธ๐‘›๐‘“๐‘Ž๐‘›๐‘ก ๐ท๐‘–๐‘ ๐‘—๐‘œ๐‘–๐‘›๐‘ก๐‘ค๐‘–๐‘กโ„Ž ๐‘Ÿ๐‘‡ ๐‘ ๐‘œ๐‘š๐‘’ โˆถ

๐‘‡: ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘Ÿ๐‘  ๐‘ ๐‘œ๐‘š๐‘’ {๐‘†: ๐ด๐‘š๐‘–๐‘›๐‘’} ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ โˆถ ๐‘Ÿ_๐‘ก ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘›

๐‘‡โ„Ž๐‘’ ๐‘๐‘œ๐‘™๐‘œ๐‘š๐‘–๐‘ก ๐‘œ๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ง๐‘’๐‘‘ ๐‘‘๐‘–๐‘Ž๐‘”๐‘Ÿ๐‘Ž๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘™๐‘–๐‘”๐‘›๐‘š๐‘’๐‘›๐‘ก ๐‘–๐‘› ๐ธ๐‘ฅ๐‘Ž๐‘š๐‘๐‘™๐‘’ ๐‘–๐‘  โˆถ ๐‘‚ ๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐ถ โˆถ ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘ฎ ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘†: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐‘†๐‘ข๐ต๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“: ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘Ÿ๐‘  ๐‘ ๐‘œ๐‘š๐‘’ ๐บ ๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ โˆถ ๐‘Ÿ๐‘  ๐ถโ„Ž๐‘Ž๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘’๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘๐‘ : ๐ผ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’๐น๐‘ข๐‘›๐‘๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐ท๐‘œ๐‘š๐‘Ž๐‘–๐‘› โˆถ ๐บ ๐‘…๐‘Ž๐‘›๐‘”๐‘’ โˆถ ๐‘‡: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ

๐‘‡: ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก ๐‘†๐‘ข๐ต๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐‘‡: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ

๐‘†: ๐ต๐‘–๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’ ๐‘†๐‘ข๐ต๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐‘†: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘Ÿ๐‘  ๐‘ ๐‘œ๐‘š๐‘’ ๐‘†: ๐ต๐‘–๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’ ๐‘Ÿ๐‘‡ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘‡: ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘› ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐‘‡: ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก ๐‘‡: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘‡: ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐‘‡: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘†: ๐ธ๐‘›๐‘“๐‘Ž๐‘ก๐‘› ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐‘†: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘Ÿ๐‘  ๐‘ ๐‘œ๐‘š๐‘’ ๐‘†: ๐ธ๐‘›๐‘“๐‘Ž๐‘›๐‘ก ๐ท๐‘–๐‘ ๐‘—๐‘œ๐‘–๐‘›๐‘ก ๐‘ค๐‘–๐‘กโ„Ž โˆถ

๐‘Ÿ๐‘‡ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ ๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™ โˆถ

๐‘†: ๐ด๐‘š๐‘–๐‘›๐‘’ ๐‘‡๐‘ฆ๐‘๐‘’๐‘  ๐‘†: ๐‘ƒ๐‘’๐‘Ÿ๐‘ ๐‘œ๐‘› ๐‘†: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘Ÿ๐‘  ๐‘ ๐‘œ๐‘š๐‘’ {๐‘†: ๐ด๐‘š๐‘–๐‘›๐‘’} ๐‘ ๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘‚๐‘“ ๐‘Ÿ๐‘‡ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘› ๐œŽ1

7.5 Contextualised Semantics

Normalization

The ontologies of the network can be

interpreted using different universes, which

however are related using binary relations.

Definition 13

Let A={๐‘๐‘– = (๐‘ 1๐‘– , ๐‘ 2

๐‘– , ๐‘…๐‘–)|๐‘– โˆˆ ๐ผ๐‘›๐‘‘} be an

alignment between two ontologies S and

T in a logic L, where Ind is a set of

indices. The basic bridge ontology (ฮฃ๐ต, ฮ”๐ต)

of A in the contextualised semantics

consists of

โˆ’๐‘Ž ๐‘ ๐‘–๐‘”๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ฮฃ๐ต ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ก๐‘Ž๐‘˜๐‘’๐‘  ๐‘กโ„Ž๐‘’ ๐‘ข๐‘›๐‘–๐‘œ๐‘›

๐‘œ๐‘“ ๐‘†๐‘–๐‘”1(๐ด) ๐‘Ž๐‘›๐‘‘ ๐‘†๐‘–๐‘”2(๐ด), ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’

โ€“ ฮฃ1 is the smallest subsignature of

Sig(S ) such that Symbols(ฮฃ1)

includes ๐‘ 1๐‘– and ๐‘†๐‘–๐‘”1(A) takes the

signature obtained by renaming every

๏ฟฝฬƒ๏ฟฝ ๏ฟฝฬƒ๏ฟฝ

๏ฟฝฬƒ๏ฟฝโ€ฒ B ๏ฟฝฬƒ๏ฟฝโ€ฒ ๐‘ก1

๐œŽ1

๐œŽ2

๐‘ก2

Page 14: Semantic Ontology Alignment: Survey and Analysis

13

s โˆˆ Symbols(ฮฃ1) to S :s and extends it

with S :โŠบ โˆˆ ๐‘ข๐‘›๐‘Ž๐‘Ÿ๐‘ฆ๐ฟ,

โ€“ ฮฃ2 is the smallest subsignature of

Sig(T ) such that Symbols(ฮฃ2 ) includes

๐‘†2๐‘– and ๐‘†๐‘–๐‘”2(A) takes the signature obtain-

ed by renaming every ๐‘  โˆˆ ๐‘†๐‘ฆ๐‘š๐‘๐‘œ๐‘™๐‘ (ฮฃ2 ) to

T :s and extends with T : โŠบ โˆˆ ๐‘ข๐‘›๐‘Ž๐‘Ÿ๐‘ฆ๐ฟ and

extends this union with ๐‘Ÿ๐‘‡๐‘† in ๐‘๐‘–๐‘›๐‘Ž๐‘Ÿ๐‘ฆ๐ฟ .

โ€“ a set ฮ”๐ต ๐‘œ๐‘“ ฮฃ๐ต-sentences that

axiomatise in a logic-dependent way that

the domain of ๐‘Ÿ๐‘‡๐‘† is T :โŠบand the range

of ๐‘Ÿ๐‘‡๐‘† is S :โŠบ.

Definition 14 Let c = (๐‘ 1, ๐‘ 2, R) be a

correspondence of a contextualised

alignment A. Let (ฮฃ๐ต, ฮ”๐ต) be the basic

bridge ontology of ๐ด and let โˆ† be a set of

ฮฃ๐ต โˆ’ ๐‘ ๐‘’๐‘›๐‘ก๐‘’๐‘›๐‘๐‘’๐‘  that includes ฮ”๐ต. We say

that (ฮฃ๐ต, โˆ†) internalises the semantics of c ,

denoted (ฮฃ๐ต, โˆ†)| =๐‘๐‘œ๐‘› ๐‘ If ๐‘€| =ฮฃ๐ตโˆ† ๐‘–๐‘“๐‘“ ๐‘€๐‘†:๐‘ 1

๐‘…๐ผ ๐‘€๐‘†:๐‘‡ ๐‘€๐‘Ÿ๐‘‡๐‘†(๐‘€๐‘‡:๐‘†2).

Definition 15 Assume that

(ฮฃ๐ต, โˆ†๐‘–) โ‰Š๐‘๐‘œ๐‘›

๐‘๐‘–for each ๐‘๐‘– โˆˆ ๐ด. The

parameters of Def. 14 are set as follows

๐‘† = ๐‘Ÿ๐‘’๐‘™๐ฟ(๐‘†)๐‘Ž๐‘›๐‘‘ ๐‘‡ = ๐‘Ÿ๐‘’๐‘™๐ฟ(๐‘‡), ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘Ÿ๐‘’๐‘™๐ฟ ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘™๐‘œ๐‘”๐‘–๐‘ ๐ฟ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘œ๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘–๐‘’๐‘  ๐‘๐‘’๐‘–๐‘›๐‘” ๐‘Ž๐‘™๐‘–๐‘”๐‘›๐‘’๐‘‘, -๏ฟฝฬƒ๏ฟฝโ€ฒ = (๐‘†๐‘–๐‘”(๐ด), โˆ…)

โˆ’๐‘ก1 ๐‘š๐‘Ž๐‘๐‘  ๐‘’๐‘Ž๐‘โ„Ž ๐‘†: ๐‘  โˆˆ๐‘†๐‘ฆ๐‘š๐‘๐‘œ๐‘™๐‘ (๐‘†๐‘–๐‘”1(๐ด)) ๐‘ก๐‘œ ๐‘  ๐‘Ž๐‘›๐‘‘ ๐‘† โˆถ โŠบ

๐‘ก๐‘œ ๐‘–๐‘ก๐‘ ๐‘’๐‘™๐‘“

-๏ฟฝฬƒ๏ฟฝโ€ฒ = (๐‘†๐‘–๐‘”(๐ด), โˆ…)

โˆ’๐‘ก2 ๐‘š๐‘Ž๐‘๐‘  ๐‘’๐‘Ž๐‘โ„Ž ๐‘‡: ๐‘  โˆˆ๐‘†๐‘ฆ๐‘š๐‘๐‘œ๐‘™๐‘ (๐‘†๐‘–๐‘”2 (๐ด)) ๐‘ก๐‘œ ๐‘ ๐‘Ž๐‘›๐‘‘ ๐‘‡:โŠบ ๐‘ก๐‘œ ๐‘–๐‘ก๐‘ ๐‘’๐‘™๐‘“, โ€“ ๐ต = (ฮฃ๐ต, โ‹ƒ ๐‘– โˆˆ ๐ผ๐‘›๐‘‘

โˆ†๐‘–),

โ€“ ๐œŽ1 ๐‘Ž๐‘›๐‘‘ ๐œŽ2 ๐‘Ž๐‘Ÿ๐‘’ ๐‘–๐‘›๐‘๐‘™๐‘ข๐‘ ๐‘–๐‘œ๐‘›๐‘ . Example 13 (Contextualised semantics in

FOL) In FOL we have the following

theories that internalise the semantics of

correspondences:

(๐‘“1, ๐‘“2, =) โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›, ๐‘ฆ1, . . . , ๐‘ฆ๐‘›. ๐‘†:โŠบ (๐‘ฅ1) โˆง. . .โˆง ๐‘†:โŠบ (๐‘ฅ๐‘›) โˆง ๐‘‡:โŠบ (๐‘ฆ1) โˆง. . .โˆง ๐‘‡:โŠบ (๐‘ฆ๐‘›) โˆง ๐‘ฆ1๐‘Ÿ๐‘‡๐‘†

๐‘ฅ1 โˆง. . .โˆง ๐‘ฆ๐‘›๐‘Ÿ๐‘‡๐‘†

๐‘ฅ๐‘›

=โ‡’ ๐‘†: ๐‘“1(๐‘ฆ1, . . . , ๐‘ฆ๐‘›)๐‘Ÿ๐‘‡๐‘† ๐‘‡: ๐‘“2(๐‘ฅ1, . . . , ๐‘ฅ๐‘›)

(๐‘“1, ๐‘“2, โŠฅ)ยฌโˆƒ๐‘ฅ1, . . . , ๐‘ฅ๐‘›, ๐‘ฆ1, . . . , ๐‘ฆ๐‘›. ๐‘†:โŠบ (๐‘ฅ1) โˆง. . .โˆง ๐‘†:โŠบ (๐‘ฅ๐‘›)

โˆง ๐‘‡:โŠบ (๐‘ฆ1) โˆง. . .โˆง ๐‘‡:โŠบ (๐‘ฆ๐‘›) โˆง ๐‘ฆ1๐‘Ÿ๐‘‡๐‘†

๐‘ฅ1 โˆง. . .โˆง ๐‘ฆ๐‘›๐‘Ÿ๐‘‡๐‘†๐‘ฅ๐‘›

โˆง ๐‘†: ๐‘“1(๐‘ฆ1, . . . , ๐‘ฆ๐‘›)๐‘Ÿ๐‘‡ ๐‘† ๐‘‡: ๐‘“2(๐‘ฅ1, . . . , ๐‘ฅ๐‘›)

(๐‘1, ๐‘2, =) โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›, ๐‘ฆ1, . . . , ๐‘ฆ๐‘›. ๐‘†:โŠบ (๐‘ฅ1) โˆง. . .โˆง ๐‘†:โŠบ (๐‘ฅ๐‘›) โˆง ๐‘‡:โŠบ (๐‘ฆ1) โˆง. . .โˆง ๐‘‡:โŠบ (๐‘ฆ๐‘›) โˆง ๐‘ฆ1๐‘Ÿ๐‘‡๐‘†

๐‘ฅ1 โˆง. . .โˆง ๐‘ฆ๐‘›๐‘Ÿ๐‘‡๐‘†

๐‘ฅ๐‘›

=โ‡’ ๐‘†: ๐‘1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) โ‡โ‡’ ๐‘‡: ๐‘2(๐‘ฆ1, . . . , ๐‘ฆ๐‘›) (๐‘1, ๐‘2, โŠฅ)ยฌโˆƒ๐‘ฅ1, . . . , ๐‘ฅ๐‘›, ๐‘ฆ1, . . . , ๐‘ฆ๐‘›. ๐‘†:โŠบ (๐‘ฅ1) โˆง. . .โˆง ๐‘†:โŠบ (๐‘ฅ๐‘›) โˆง ๐‘‡:โŠบ (๐‘ฆ1) โˆง. . .โˆง ๐‘‡:โŠบ (๐‘ฆ๐‘›) โˆง ๐‘ฆ1๐‘Ÿ๐‘‡๐‘†

๐‘ฅ1 โˆง. . .โˆง ๐‘ฆ๐‘›๐‘Ÿ๐‘‡๐‘†

๐‘ฅ๐‘›

โˆง ๐‘†: ๐‘1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) โˆง ๐‘‡: ๐‘2(๐‘ฆ1, . . . , ๐‘ฆ๐‘›) (๐‘1, ๐‘2, <)โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›, ๐‘ฆ1, . . . , ๐‘ฆ๐‘›. ๐‘†:โŠบ (๐‘ฅ1) โˆง. . .โˆง ๐‘†:โŠบ (๐‘ฅ๐‘›) โˆง ๐‘‡:โŠบ (๐‘ฆ1) โˆง. . .โˆง ๐‘‡:โŠบ (๐‘ฆ๐‘›) โˆง ๐‘ฆ1๐‘Ÿ๐‘‡๐‘†

๐‘ฅ1 โˆง. . .โˆง ๐‘ฆ๐‘›๐‘Ÿ๐‘‡๐‘†

๐‘ฅ๐‘›

=โ‡’ ๐‘†: ๐‘1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) =โ‡’ ๐‘‡: ๐‘2(๐‘ฆ1, . . . , ๐‘ฆ๐‘›) (๐‘1, ๐‘2, >)โˆ€๐‘ฅ1, . . . , ๐‘ฅ๐‘›, ๐‘ฆ1, . . . , ๐‘ฆ๐‘›. ๐‘†:โŠบ (๐‘ฅ1) โˆง. . .โˆง ๐‘†:โŠบ (๐‘ฅ๐‘›) โˆง ๐‘‡:โŠบ (๐‘ฆ1) โˆง. . .โˆง ๐‘‡:โŠบ (๐‘ฆ๐‘›) โˆง ๐‘ฆ1๐‘Ÿ๐‘‡๐‘†

๐‘ฅ1 โˆง. . .โˆง ๐‘ฆ๐‘›๐‘Ÿ๐‘‡๐‘†

๐‘ฅ๐‘›

=โ‡’ ๐‘‡: ๐‘2(๐‘ฆ1, . . . , ๐‘ฆ๐‘›) =โ‡’ ๐‘†: ๐‘1(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) However, the following example shows

that it is not always possible to express the

semantics of a correspondence in the

contextualised semantics in the same logic

as the one used in the aligned ontologies.

Example 14 (Contextualised semantics in

SROIQ)

The diagram of an alignment between two

SROIQ ๐‘œ๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘–๐‘’๐‘  ๐‘† ๐‘Ž๐‘›๐‘‘ ๐‘‡ is obtained

by applying the relativisation of the

aligned ontologies and to the

correspondences of the alignment. The

basic bridge ontology is

๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ โˆถ ๐‘Ÿ๐‘‡๐‘† ๐ท๐‘œ๐‘š๐‘Ž๐‘–๐‘› โˆถ ๐‘‡: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐‘…๐‘Ž๐‘›๐‘”๐‘’ โˆถ ๐‘†: ๐‘‡โ„Ž๐‘–๐‘›๐‘” The theories internalising the semantics of

the correspondences extend it as follows:

(๐‘1, ๐‘2 =) ๐ถ๐‘™๐‘Ž๐‘ ๐‘ : ๐‘†: ๐‘1 ๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก ๐‘ก๐‘œ โˆถ ๐ผ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’(๐‘Ÿ๐‘‡๐‘†) ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘2 (๐‘–1, ๐‘–2, =)๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™: ๐‘‡: ๐‘–2 ๐น๐‘Ž๐‘๐‘ก๐‘ : ๐‘Ÿ๐‘‡๐‘† ๐‘†: ๐‘–1 (๐‘1, ๐‘2, โŠฅ)๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘’๐‘ :

Page 15: Semantic Ontology Alignment: Survey and Analysis

14

(๐‘†: ๐‘1 ) ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘‡๐‘† ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘2 ๐‘๐‘œ๐‘กโ„Ž๐‘–๐‘›๐‘” (๐‘–1, ๐‘–2, โŠฅ)๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘’๐‘ : (๐‘‡: ๐‘–2) ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘‡๐‘† ๐‘ ๐‘œ๐‘š๐‘’ ๐‘†: ๐‘‡1 ๐‘๐‘œ๐‘กโ„Ž๐‘–๐‘›๐‘” (๐‘1, ๐‘2, >)๐ถ๐‘™๐‘Ž๐‘ ๐‘ : ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’(๐‘Ÿ๐‘‡๐‘†

)๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘2

๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐‘†: ๐‘1 (๐‘Ÿ1, ๐‘Ÿ2, >)๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ: ๐‘†: ๐‘Ÿ1 ๐‘†๐‘ข๐‘๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ๐ถโ„Ž๐‘Ž๐‘–๐‘› ๐ผ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’(๐‘Ÿ๐‘‡๐‘†) โˆ˜ ๐‘‡: ๐‘Ÿ2 โˆ˜ ๐‘Ÿ๐‘‡๐‘† (๐‘1, ๐‘2, <)๐ถ๐‘™๐‘Ž๐‘ ๐‘ : ๐‘†: ๐‘1 ๐‘†๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“: ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’(๐‘Ÿ๐‘‡๐‘†) ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘2

(๐‘Ÿ1, ๐‘Ÿ2, <)๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ: ๐‘†: ๐‘Ÿ1 ๐‘†๐‘ข๐‘๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ๐ถโ„Ž๐‘Ž๐‘–๐‘› ๐‘Ÿ๐‘‡๐‘† โˆ˜ ๐‘‡: ๐‘Ÿ1 โˆ˜ ๐ผ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’(๐‘Ÿ๐‘‡๐‘†) (๐‘1, ๐‘–2, โˆ‹)๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™: ๐‘‡: ๐‘–2 ๐น๐‘Ž๐‘๐‘ก๐‘  ๐‘Ÿ๐‘‡๐‘† ๐‘ ๐‘œ๐‘š๐‘’ ๐‘†: ๐‘1 (๐‘–1, ๐‘2, โˆˆ)๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™: ๐‘†: ๐‘–1 ๐น๐‘Ž๐‘๐‘ก๐‘  ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’(๐‘Ÿ๐‘‡๐‘†) ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘2 For the correspondence (๐‘Ÿ1, ๐‘Ÿ2, =) where

๐‘Ÿ1๐‘Ž๐‘›๐‘‘ ๐‘Ÿ2 are roles, it is not possible to

express in SROIQ that

๐‘Ÿ1 ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘‡๐‘†โˆ’1, ๐‘Ÿ2, ๐‘Ÿ๐‘‡๐‘† ๐‘Ž๐‘Ÿ๐‘’ ๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก ๐‘…๐‘œ๐‘™๐‘’,

๐‘Šโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘Ÿ๐‘‡๐‘† ๐‘–๐‘  the domain relation. A

similar problem appears for the

correspondence (๐‘Ÿ1, ๐‘Ÿ2, โŠฅ).

To obtain a theory that internalises the

semantics of this correspondence, we must

use a more expressive logic, like first order

logic. This will be done in the next section.

Example 15 For the alignment in Ex. 4,

we add the assumption that we have

different universes for the ontologies,

which are related by relations:

Alignment A:S To T:

Assuming Contextualised Domain:

The Network of A is then

where the constituents of the diagram,

except B . The bridge ontology of

A now becomes :

๐‘‚๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐ต: ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘†: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘‡ โˆถ ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐‘‚๐‘๐‘—๐‘’๐‘ก๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ โˆถ ๐‘Ÿ๐‘‡๐‘† ๐ท๐‘œ๐‘š๐‘Ž๐‘–๐‘› ๐‘‡: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐‘…๐‘Ž๐‘›๐‘”๐‘’ ๐‘†: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘† โˆถ ๐ต๐‘–๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’

๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก ๐‘‡๐‘œโˆถ ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘Ÿ๐‘‡๐‘† ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘‡: ๐‘‡r๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘‡: ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘› ๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘’๐‘ : ๐‘†: ๐ธ๐‘›๐‘“๐‘Ž๐‘›๐‘ก ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘Ÿ๐‘‡๐‘† ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ ๐‘๐‘œ๐‘กโ„Ž๐‘–๐‘›๐‘” ๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™: ๐‘†: ๐ด๐‘š๐‘–๐‘›๐‘’ ๐‘‡๐‘ฆ๐‘๐‘’๐‘ โˆถ ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘Ÿ๐‘‡๐‘† ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘› ๐‘‡โ„Ž๐‘’ ๐‘๐‘œ๐‘™๐‘œ๐‘š๐‘–๐‘ก ๐‘œ๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘–๐‘  ๐‘๐‘’๐‘ก๐‘ค๐‘œ๐‘Ÿ๐‘˜ ๐‘–๐‘ : ๐‘‚๐‘›๐‘ก๐‘œ๐‘™๐‘œ๐‘”๐‘ฆ ๐ถ โˆถ ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘‡: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆโˆถ ๐‘Ÿ๐‘‡๐‘† ๐ท๐‘œ๐‘š๐‘Ž๐‘–๐‘› ๐‘‡: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐‘…๐‘Ž๐‘›๐‘”๐‘’โˆถ ๐‘†: ๐‘‡โ„Ž๐‘–๐‘›๐‘” ๐ถ๐‘™๐‘Ž๐‘ ๐‘  ๐‘† โˆถ ๐ต๐‘–๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’ ๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก ๐‘‡๐‘œโˆถ ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘Ÿ๐‘‡๐‘† ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘‡: ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ ๐ถ๐‘™๐‘Ž๐‘ ๐‘  โˆถ ๐‘‡: ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘› ๐‘ ๐‘ข๐‘๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘‚๐‘“ ๐‘‡

โˆถ ๐น๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก ๐ธ๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘ก๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘’๐‘ : ๐‘†: ๐ธ๐‘›๐‘“๐‘Ž๐‘›๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘Ÿ๐‘‡๐‘† ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘™๐‘’๐‘ข๐‘Ÿ ๐‘๐‘œ๐‘กโ„Ž๐‘–๐‘›๐‘” ๐ผ๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™: ๐‘†: ๐ด๐‘š๐‘–๐‘›๐‘’ ๐‘‡๐‘ฆ๐‘๐‘’๐‘ โˆถ ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘Ÿ๐‘‡๐‘† ๐‘ ๐‘œ๐‘š๐‘’ ๐‘‡: ๐‘€๐‘Ž๐‘ ๐‘๐‘ข๐‘™๐‘–๐‘›, ๐‘†: ๐ต๐‘–๐‘’๐‘›_๐ธ๐‘ก๐‘Ÿ๐‘’ Note That the Correspondance Of A do not

include an equivalence between roles, and

thus we can build a bridge ontology in

SROIQ

The functors ๐›ผโˆ— and ๐›ฝโˆ— are defined as in

the case of inclusive integrated semantics

8. Conclusion

In this paper, we have study various

ontologies strategies, and evaluate

partially Ontologies alignments, with

different semantics, we have showed the

alignment of two ontologies on the simple

semantics, integrated and contextualized

semantics, and I have choice one example

for all the manuscript, example who have

introduced are benefic to the syntax of

DOL Language, The goal of this analysis

paper is to give difference between

different syntax paradigm, difficult key

word uses in codification by DOL, FOL,

SROIQ , SPRQL, Therefore, these theory

are applicable to a wide range of

๏ฟฝฬƒ๏ฟฝ ๏ฟฝฬƒ๏ฟฝ

๏ฟฝฬƒ๏ฟฝโ€ฒ B ๏ฟฝฬƒ๏ฟฝโ€ฒ

๐‘ก1 ๐œŽ1 ๐œŽ2 ๐‘ก2

Page 16: Semantic Ontology Alignment: Survey and Analysis

15

knowledge representation and ontology-

development systems, ontology alignment

and combination have a potentially large

impact on future alignment practices and

reasoning, Regardless of the semantic

paradigm employed, `reasoning' with

alignments involves at least three levels:

(1) the finding/discovery of alignments

(often based heavily on statistical

methods), (2) the construction of the

aligned ontology (the `colimit'), and (3)

reasoning over the aligned result,

respectively debugging and repair, closing

the loop to (1). Our contributions in this

paper address levels (2) .

9. References

[1] https://en.wikipedia.org/wiki/Web_On-

tology_Language

[2] Vahidalizadehdizaj, Mohammad, Tao,

Lixin, Jadav, Jigar, Altowayan, Abdolaziz,

A New Plugin To Support New Relations

In Protรฉgรฉ, 2015

[3] Jian, Ningsheng, Hu, Wei, Cheng,

Gong, Qu, Yuzhong, 2005,โ€ FalconAO:

Aligning Ontologies with Falconโ€, K-Cap

2005 Workshop on Integrating Ontologies

[4] Mohammad Mehdi Keikha1 and

Mohammad Ali Nematbakhsh2 and

Behrouz Tork Ladani3, โ€œSTRUCTURAL

WEIGHTS IN ONTOLOGY

MATCHINGโ€, International Journal of

Web & Semantic Technology (IJWesT)

Vol.4, No.4, October 2013

[5] Jยจurgen Bock, Carsten Dยจanschel and

Matthias Stumpp, โ€œMapPSO and MapEVO

Results for OAEI 2011โ€

[6] Ehrig M., Staab S., Sure Y. (2005)

Bootstrapping Ontology Alignment

Methods with APFEL. In: Gil Y., Motta

E., Benjamins V.R., Musen M.A. (eds) The

Semantic Web โ€“ ISWC 2005. ISWC 2005.

Lecture Notes in Computer Science, vol

3729. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/11574620_16

[7] Li, Juanzi, Tang, Jie, Li, Yi, Luo,

Qiong ยซ RiMOM: A Dynamic

Multistrategy Ontology Alignment

Frameworkโ€ Volume :21, IEEE Trans.

Knowl. Data Eng. Doi:

10.1109/TKDE.2008.202

[8] Massmann, Sabine, Engmann, Daniel,

Rahm, Erhard, ยซ COMA++: Results for the

Ontology Alignment Contest OAEI 2006โ€,

2006

[9] Hecht, Thomas, Buche, Patrice, Dibie,

Juliette, Ibanescu, Mariana, Trojahn,

Cassia, ยซ Alignement dโ€™ontologies :

exploitation des ontologies liรฉes sur le web

de donnรฉes ยป, 2014

[10] Thaler, Stefan, Simperl, Elena,

Siorpaes, Katharina โ€œSpotTheLink: A

Game for Ontology Alignmentโ€ 246-253,

2011

[11] Doan, A., Domingos, P. and Halevy,

A.: Learning source descriptions for data

Integration. In: ProcWebDBWorkshop,

pp. 81โ€“92, (2000).

[12] Tissot H, Dobson R. Combining string

and phonetic similarity matching to

identify misspelt names of drugs in

medical records written in Portuguese. J

Biomed Semantics. 2019;10(Suppl 1):17.

Published 2019 Nov 12.

doi:10.1186/s13326-019-0216-2

[13] Duy Hoa Ngo ยซ Enhancing Ontology

Matching by Using Machine Learning,

Graph Matching and Information Retrieval

Techniquesโ€ HAL Id: tel-00767318, 2012

[14] Harispe, Sรฉbastien, Ranwez, Sylvie,

Janaqi, Stefan, Montmain, Jacky,

ยซ Semantic Similarity from Natural

Language and Ontology Analysisโ€,

Synthesis Lectures on Human Language

Technologies ,

10.2200/S00639ED1V01Y201504HLT027

, 2015

[15, 16] K. Saruladha, G. Aghila, B.

Sathiya ยซ A Comparative Analysis of

Ontology and Schema Matching Systemsโ€,

International Journal of Computer

Applications (0975 โ€“ 8887) Volume 34โ€“

No.8, November 2011

[17] Baader, Franz, Horrocks, Ian, Sattler,

Uli, โ€œChapter 3 Description Logics ยป,

Page 17: Semantic Ontology Alignment: Survey and Analysis

16

ยซ Foundations of Artificial Intelligenceโ€,

doi: 10.1016/S1574-6526(07)03003-9,

2008

[18] Zimmermann, Antoine, Duc, Chan,

ยซ Reasoning with a Network of Aligned

Ontologiesโ€, Doi-10.1007/978-3-540-

88737-9_5, 2008

[19, 21, 22, 23] Mihai Codescu, Till

Mossakowski, and Oliver Kutz, โ€œ A

Categorical Approach to Ontology

Alignment โ€ , 2014

[24] Mossakowski, Till, Codescu, Mihai,

Neuhaus, Fabian, Kutz, Oliver, โ€œThe

Distributed Ontology, Modeling and

Specification Language โ€“ DOLโ€, CHAP

โ€˜489-520โ€™p, DOi - 10.1007/978-3-319-

15368-1_21, SN: 978-3-319-15367-4,

2015

[25] Euzรฉnat, J., Shvaiko, P.: Ontology

Matching. Springer, (2013)

[26] Ehrig, M: Ontology Alignment:

Bridging the Semantic Gap. Springer,

(2007)

[27] Cruz, I., Antonelli, F. P., Stroe, C.:

Efficient selection of mappings and

automatic quality-driven combination of

matching methods. International Workshop

on Ontology Matching, (2009)

[29] J. Euzenat and P. Shvaiko. Ontology

matching. Springer, Heidelberg, 2nd

edition, 2013

[30] . J. Hois and O. Kutz. Counterparts in

Language and Spaceโ€”Similarity and S -

Connection. In C. Eschenbach and M.

Grยจuninger, editors, Formal Ontology in

Information Systems (FOIS 2008), pages

266โ€“279. IOS Press,2008.

[31] J. Hois and O. Kutz. Natural

Language meets Spatial Calculi. In C.

Freksa, N. S. Newcombe, P. Gยจardenfors,

and S. Wยจolfl, editors, Spatial Cognition

VI. Learning, Reasoning, and Talking

about Space., volume 5248 of LNAI, pages

266โ€“282. Springer, 2008.

[32] G. Guizzardi and G. Wagner. Towards

ontological foundations for agent

modelling concepts using the unified

fundational ontology (UFO). In Agent-

Oriented Information Systems II, pages

110โ€“124. Springer Berlin Heidelberg,

2005.

[33] P. D. Mosses, editor. CASL Reference

Manual. Lecture Notes in Computer

Science: 2960. Springer, 2004.

[34] Z. Khan and C. M. Keet. Romulus:

The repository of ontologies for multiple

uses populated with mediated foundational

ontologies. Journal on Data Semantics,

pages 1โ€“18, 2015

[35] A. Borgida and L. Serafini.

Distributed Description Logics:

Assimilating Information from Peer

Sources. Journal on Data Semantics,

1:153โ€“184, 2003.6

[36] O. Kutz, C. Lutz, F. Wolter, and M.

Zakharyaschev. E -Connections of Abstract

Description Systems. Artificial

Intelligence, 156(1):1โ€“73, 2004

[37] M. Fitting and R. L. Mendelsohn.

Firstโ€“order modal logic. Kluwer Academic

Publishers, Dordrecht, 1998

[38] G. Brewka, F. Roelofsen, and L.

Serafini. Contextual default reasoning. In

M. M. Veloso, editor, IJCAI 2007,

Proceedings of the 20th International Joint

Conference on Artificial Intelligence,

Hyderabad, India, January 6-12, 2007,

pages 268โ€“273, 2007

[39] F. Baader, C. Lutz, H. Sturm, and F.

Wolter. Fusions of description logics and

abstract description systems. J. Artif. Intell.

Res. (JAIR), 16:1โ€“58, 2002.

[40] M. Codescu, T. Mossakowski, and O.

Kutz. A categorical approach to ontology

alignment. In Proc. of the 9th

International

Workshop on Ontology Matching (OM-

2014), ISWC-2014, Riva del Garda,

Trentino, Italy., CEUR-WS online

proceedings, 2014

[41] A. Zimmermann, M. Krยจotzsch, J.

Euzenat, and P. Hitzler. Formalizing

Ontology Alignment and its Operations

with Category Theory. In Proc. of FOIS-

06, pages 277โ€“288, 2006

Page 18: Semantic Ontology Alignment: Survey and Analysis

17

[42] M. Horridge, N. Drummond, J.

Goodwin, A. Rector, R. Stevens, and H. H.

Wang. The Manchester OWL Syntax. In

OWL: Experiences and Directions

(OWLED- 06, 2006)

[43] A . Zimmermann and J. Euzenat.

Three semantics for distributed systems

and their relations with alignment

composition. In Proc. 5th International

Semantic Web Conference (ISWC), LNCS

4273, pages 16โ€“29, Athens (GA US),

2006.

[44] Z. Khan and C. M. Keet. Romulus:

The repository of ontologies for multiple

uses populated with mediated foundational

ontologies. Journal on Data Semantics,

pages 1โ€“18, 2015.

[45] P. D. Mosses, editor. CASL Reference

Manual. Lecture Notes in Computer

Science: 2960. Springer, 2004.

.

He is a computer science Student at the Faculty of

Exact Science of Oran 1 University (Algeria). He

earned his Master of Science degree in 2016, From

Oran 1 Ahmed Ben Bella University. His research

interests focus on subject of Artificial Intelligence