section 9 tb meteorology

Upload: lunefiekert

Post on 03-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Section 9 TB meteorology

    1/181

    Sectie9 TB 1

    Section 9 FLIGHT HAZARD

    1. Icing

    2. Turbulence

    3. Windshear4. Thunderstorms

    5. Hazards in mountainous areas

  • 7/28/2019 Section 9 TB meteorology

    2/181

    Sectie9 TB 2

    Welke Hazards zijn hier eventueel aanwezig?

    shear

    fog (vis)

    Icing

    MTI

  • 7/28/2019 Section 9 TB meteorology

    3/181

    Sectie9 TB 3

  • 7/28/2019 Section 9 TB meteorology

    4/181

    Sectie9 TB 4

    1. Icing

    loss of performance

    large increase in fuel consumption

    difficulty with aircraft control

  • 7/28/2019 Section 9 TB meteorology

    5/181

    Sectie9 TB 5

  • 7/28/2019 Section 9 TB meteorology

    6/181

    Sectie9 TB 6

  • 7/28/2019 Section 9 TB meteorology

    7/181

    Sectie9 TB 7

    Conditions for ice accretion

    Meteorological factors

    Aerodynamic factors

    on the ground and during the flight

  • 7/28/2019 Section 9 TB meteorology

    8/181

    Sectie9 TB 8

    Meteorological factors

    1. temperature of the outside air in clouds < 0 C

    2. supercooled water content of the cloud

    3. duration of the flight in the clouds where there is a risk of icing

    4. droplet and crystal size distribution*

  • 7/28/2019 Section 9 TB meteorology

    9/181

    Sectie9 TB 9

    droplet and crystal size distribution

    Smaller drops easely follow stream lines

    Bigger drops dont. (and hit the surface!)*

  • 7/28/2019 Section 9 TB meteorology

    10/181

    Sectie9 TB 10

    The formation of ice accretion in clouds depends on

    the quantity and on the size of the supercooled water drops

    above the freezing level

    the temperature.

    the lower the temperature, the smaller the droplet that can

    exist in supercooled form

  • 7/28/2019 Section 9 TB meteorology

    11/181

    Sectie9 TB 11

    The supercooled water content depends on the temperature.

    Between 0C and -13C *:almost only supercooled water drops (large and small).

    Between -13C and -23C:

    the large supercooled water drops freeze on ice nuclei(= ice) small supercooled water drops dont. Mix*

    Between -23C and -40C:

    Only small supercooled water drops can exist

    Below -40C

    there is no more supercooled water available for ice accretion*

  • 7/28/2019 Section 9 TB meteorology

    12/181

    Sectie9 TB 12

    Aerodynamic factors

    speed of the aircraft

    the faster the aircraft, the greater the risk of ice deposit*.

    temperature of the aircraft's surface

    shape (thickness) of the aircraft cell part (wings, antenna,.)

    the smaller the curvature, the greater the risk of ice deposit

    angle of attack*

  • 7/28/2019 Section 9 TB meteorology

    13/181

    Sectie9 TB 13

  • 7/28/2019 Section 9 TB meteorology

    14/181

    Sectie9 TB 14

    Carburettor icing *

    caused by

    1. the sudden temperature drop as

    latent heat is absorbed when fuel

    evaporates

    2. due to adiabatic cooling following

    the pressure reduction as air is

    accelerated through the carburettor

    venturi

    in cloud or in clear air

    most critical range of temperature is from3C and +15C

    (warm air can contain more moist)

  • 7/28/2019 Section 9 TB meteorology

    15/181

    Sectie9 TB 15

    The supercooled water drops in different clouds

    stratiform cloudsonly light icing between 0C / -13C

    Except:

    - Sc formed by convetion over sea in winter (Old Sc)

    - Sc formed by spreading out of CU below subsidence inversion

    - in an active front

    - in orographic clouds

    cumuliform clouds TCU/CB mod/sev icing between 0C / -23C

  • 7/28/2019 Section 9 TB meteorology

    16/181

    Sectie9 TB 16

    The types of ice accretion

    The formation of a deposit of ice on objects:

    directly from water vapour, by sublimation* (deposition)

    ( gas ice)

    by the freezing of liquid water drops ( liquid ice)

    Types: 1. Clear ice or glaze (IJzel)

    2. Rime ice (Ruige Rijp)

    3. Mixed ice or cloudy ice (Mixed ijs)

    4. Hoar frost (Rijp)

  • 7/28/2019 Section 9 TB meteorology

    17/181

    Sectie9 TB 17

    1. Clear ice or glaze (IJzel*)

    Conditions of formation: - large, supercooled water drops (mainlyprecipitation)

    - temperatures between FZL* and -18CAspect of clear ice: - transparent, translucent, glassy appearance

    - high weight- great adhesion to the frame,

    cannot be broken away easily

    Formation of clear ice: - CU, CB and NS at temperatures just below

    freezing

    - in supercooled rain (T < 0C)

  • 7/28/2019 Section 9 TB meteorology

    18/181

    Sectie9 TB 18

    Clear ice

  • 7/28/2019 Section 9 TB meteorology

    19/181

    Sectie9 TB 19

    extremely dangerous form of clear ice occurs in the so-called

    ice triangle => rain ice caused by freezing rain

    usually ahead of a warm front

    sev icing in only a few minutes

  • 7/28/2019 Section 9 TB meteorology

    20/181

    Sectie9 TB 20

  • 7/28/2019 Section 9 TB meteorology

    21/181

    Sectie9 TB 21

  • 7/28/2019 Section 9 TB meteorology

    22/181

    Sectie9 TB 22

  • 7/28/2019 Section 9 TB meteorology

    23/181

    Sectie9 TB 23

    Remarks:

    Cold layer at sfc 2 FZLs

    (Ice triangle at sfc)

    Cold layer 2500` thick

    Supercooled drops and/or snow

    Becoming warm rain

    FZRA

    Ca 2000ft

    Ca 5000ft

  • 7/28/2019 Section 9 TB meteorology

    24/181

    Sectie9 TB 24

    Main dangers of clear ice

    can grow rapidly and it is difficult to remove

    if shaken off it flies away in large lumps, which may damage

    the surface or may strike the fan and compressor blades

    when it occurs on the propeller, may lead to serious vibration.

  • 7/28/2019 Section 9 TB meteorology

    25/181

    Sectie9 TB 25

    Conditions of formation: - small supercooled water dropsCloud drops! (clouds withlow LWC)

    - low temperatures (well below 0C)

    2. Rime ice (Ruige Rijp)

    Aspect of rime ice: - white opaque deposit- little weight

    - low density, easy to remove

    Formation of rime ice : - in top of CB or in Ns

    - in freezing fog (with wind!)

  • 7/28/2019 Section 9 TB meteorology

    26/181

    Sectie9 TB 26

    Main dangers of rime ice:

    little weight but it alters the aerodynamic characteristics of the

    wings and it may block the air intakes.

    http://upload.wikimedia.org/wikipedia/commons/9/95/Windbuchencom.jpg
  • 7/28/2019 Section 9 TB meteorology

    27/181

    Sectie9 TB 27

    http://upload.wikimedia.org/wikipedia/commons/9/95/Windbuchencom.jpghttp://upload.wikimedia.org/wikipedia/commons/9/95/Windbuchencom.jpg
  • 7/28/2019 Section 9 TB meteorology

    28/181

    Sectie9 TB 28

    Eventueel Weerplaatjes/ sneeuw en rijp dec 2007

  • 7/28/2019 Section 9 TB meteorology

    29/181

    Sectie9 TB 29

    FZFG

    FZBR

    FZRA

  • 7/28/2019 Section 9 TB meteorology

    30/181

    Sectie9 TB 30

    3. Cloudy ice or mixed ice

    mixed ice - formed when supercooled water

    droplets are of various sizes or are intermingledwith snow or ice particles.

    large range of drop sizes at any temperatures between 0 and -40C

    difficult to remove and, because of its roughness, may seriously

    increase the drag of the aircraft

  • 7/28/2019 Section 9 TB meteorology

    31/181

  • 7/28/2019 Section 9 TB meteorology

    32/181

    Sectie9 TB 32

  • 7/28/2019 Section 9 TB meteorology

    33/181

    Sectie9 TB 33

    4. Hoar frost (Rijp)

    Conditions of formation: - in clear air

    - T sfc < frost point of the air

    Aspect of hoar frost: - white, crystalline deposit

    - little weight

    Formation of hoar frost:

    by deposition of water vapour directly in ice.

    the only icing where no liquid water is involved..!

    occurs frequently on parked aircraft during a clear night

    when the temperature ofairframe surface falls below 0C*

    in flight, if the aircraft moves rapidly into a warmer and

    damp layer of air by descent or from ascent into an inversion May occur on bottom sfc of wings holding fuel T

  • 7/28/2019 Section 9 TB meteorology

    34/181

    Sectie9 TB 34

  • 7/28/2019 Section 9 TB meteorology

    35/181

    Sectie9 TB 35

    Main dangers of hoar frost: some loss of radio facilities,

    frost on the windscreen before landing.

    frost on the airframe may increase the stalling speed.

    hoar frost

  • 7/28/2019 Section 9 TB meteorology

    36/181

    Sectie9 TB 36

    Martinair kist op Tunis bij T=28 en Td=22

    Rijp?

  • 7/28/2019 Section 9 TB meteorology

    37/181

    Sectie9 TB 37

    Intensity of Icing

    Light. ( ) problem if flight is prolonged more than one hour in the

    environment, usede-icing/anti-icing equipment

    Moderate. ( ) short encounter becomes potentially hazardous

    and use of de-icing/anti-icing equipment is

    necessary or a diversion is necessary to escape

    the icing conditions.

    Severe. ( ) rate of accumulation is such that de-icing/anti-icingequipment fails to remove or control the hazard.

    Immediate diversion is necessary

  • 7/28/2019 Section 9 TB meteorology

    38/181

    Sectie9 TB 38

    Dangers of aircraft icing

    1. Increase in weight2. Loss of lift, deformation of aerodynamic characteristics.

    3. Increase in drag. The stall speed of an ice covered aircraft

    may be 20 to 30 percent higher than normal.

    4. Loss of power, carburettor icing

    5. Loss of control, icing on control surface hinges

    6. Loss of thrust, propeller icing

    7. Loss of vision, windscreen freezing

    8. Loss of communication, icing of aerials

    9. Pitot tube icing10. Unbalance of aircraft, unbalance of propellers

  • 7/28/2019 Section 9 TB meteorology

    39/181

    Sectie9 TB 39

    Dangerous zones of icing in clouds and fronts

    Convective cloudsBetween FZL and -23oC moderate or severe icing - clear ice/ cloudy ice

    Between -23oC and -40oC light icing - rime ice

    Below -40C small risk of light icing

    Non-frontal stratified clouds, St, Sc, Ac

    Between FZL and -10oC moderate icing

    Below -10oC light icing

  • 7/28/2019 Section 9 TB meteorology

    40/181

    Sectie9 TB 40

    Frontal clouds

    Warm front Cold front

    non-active 0 to -10C

    < -10C

    risk of mod icing

    risk of light icing

    0 to -10C

    < -10C

    risk of mod icing

    risk of light icing

    with embd CB

    active 0 to -15C

    < -15C

    risk of mod (sev) icing

    risk of light icing

    0 to -23C

    -23 to -40C

    risk of mod to sev icing

    risk of light icing

    Icing at above 0 C

    tanks of an aeroplane on the ground contain fuel that has a

    temperature below zero, moisture condensation

  • 7/28/2019 Section 9 TB meteorology

    41/181

    Sectie9 TB 41

    Ground de-icing and anti-icing

    de-icing:removing ice formations

    anti-icing:preventing new accretions from forming

    freezing point depressant (FPD) fluids

    take care of holdover time*

  • 7/28/2019 Section 9 TB meteorology

    42/181

    Sectie9 TB 42

  • 7/28/2019 Section 9 TB meteorology

    43/181

    Sectie9 TB 43

    Recommendations

    Know the level of icing for which your airplane is certified

    and never intentionally exceed that level.

    Never leave the ground with ice or snow adhering to any part

    of the airframe.

    Never fly in known icing conditions with any anti-icing or de-

    icing components inoperable.

    When you observe ice on the wings, assume that there is even

    more ice on the tail and that it will have a more profound

    effect.

    Use de-icing and anti-icing components strictly according to

    manufacturer's recommendations.

  • 7/28/2019 Section 9 TB meteorology

    44/181

    Sectie9 TB 44

    Use signif icant weather chart(SWC).

  • 7/28/2019 Section 9 TB meteorology

    45/181

    Sectie9 TB 45

    Use signif icant weather chart(SWC).

    Mod Icing btn FL180en XXX

    onderkant SWC !!

  • 7/28/2019 Section 9 TB meteorology

    46/181

    Sectie9 TB 46

    2. Turbulence

    Definition:

    Turbulence isshort-period and small-scale oscillations in wind.

    It is very unorganised atmospheric motion including gusts and

    lulls in the wind

    Aviation definition of the turbulence:

    Variations in the wind along the aircraft flight path of apattern, intensity and duration that disturb the aircrafts

    attitude about its major axis but do not significantly alter its

    flight path.

  • 7/28/2019 Section 9 TB meteorology

    47/181

    Sectie9 TB 47

    The ICAO turbulence definition

    Very low below 0.05g Light oscillations

    Low 0.05 to 0.2g Choppy; slight, rapid, rhythmic bumps or

    cobblestoning

    nothing spoiled

    Moderate 0.2 to 0.5g Strong intermittent joltscoffee spoiled

    Severe 0.5 to 1.5g Aircraft handling made difficult

    stewardess spoiled

    Very severe above 1.5g Increasing handling difficulty, structuraldamage possible.

    aircraft spoiled *

  • 7/28/2019 Section 9 TB meteorology

    48/181

    Sectie9 TB 48

    Types of turbulence:

    Convective turbulence

    Mechanical or frictional turbulence

    Orographic turbulence

    Wake turbulence

    Clear air turbulence

    Frontal turbulence

  • 7/28/2019 Section 9 TB meteorology

    49/181

    Sectie9 TB 49

    1. Convective turbulence

    results from convection

    dry thermals or CU

    CB severe turbulance under, in and above

  • 7/28/2019 Section 9 TB meteorology

    50/181

    Sectie9 TB 50

    2. Mechanical or frictional turbulence

    due to obstructions such as steep hills, ridges, buildings,

    trees or cliffs along the seashore or inland waters

    expected when wind speeds are higher than 20kts

    SCHUIFSPANNINGSTURBULENTIE DOOR HWS

  • 7/28/2019 Section 9 TB meteorology

    51/181

    Sectie9 TB 51

    SCHUIFSPANNINGSTURBULENTIE DOOR HWS

    DE STRUCTUUR VAN DE WIND

  • 7/28/2019 Section 9 TB meteorology

    52/181

    Sectie9 TB 52

    DE STRUCTUUR VAN DE WIND

    TIJD

    Hoe dichter bij de grond:

    Hoe meer variatie in

    richting en snelheid.

    De ruwheid* is

    zichtbaar aan het

    karakter van de wind.

    i d

  • 7/28/2019 Section 9 TB meteorology

    53/181

    Sectie9 TB 53

    wind

    G

    E

    B

    O

    U

    W

    Op afstand 30 x H nog 25% verstoring op hoogte H

  • 7/28/2019 Section 9 TB meteorology

    54/181

    Sectie9 TB 54

    3. Orographic turbulence

    mountainous areas are often turbulent

    in areas with marked mountain waves (MTW)Ac

    lenticularis

    Ac lenticuaris

    Rotor cloud

    Stable!!!*

  • 7/28/2019 Section 9 TB meteorology

    55/181

    Sectie9 TB 55

    4. wake turbulence

    wing-tip vortices

    very hazardous, especially during take-offs and landings*

    persistent for 5 minutes or even more

  • 7/28/2019 Section 9 TB meteorology

    56/181

    Sectie9 TB 56

    Wing-tip vortices

    Walk away from generating aircraft with wind

    Hazards:

    In flight: possible sudden roll over!

    On ground: mainly small aircraft too close behind

    big one (wide body)*

  • 7/28/2019 Section 9 TB meteorology

    57/181

    Sectie9 TB 57

  • 7/28/2019 Section 9 TB meteorology

    58/181

    Sectie9 TB 58

  • 7/28/2019 Section 9 TB meteorology

    59/181

    Sectie9 TB 59

    5. Clear air turbulence: CAT

    clear air turbulence occurs in the free atmosphere away

    from any visible convective activity

    mostly associated with a jet stream

    in the dense cirrus clouds along jet streams CAT may also occur*

  • 7/28/2019 Section 9 TB meteorology

    60/181

    Sectie9 TB 60

    CAT with upper level

    trough and ridge

    CAT ith CB clo ds*

  • 7/28/2019 Section 9 TB meteorology

    61/181

    Sectie9 TB 61

    CAT with CB clouds*

    USA: keep clear of CB 30 miles.

    i ( )

  • 7/28/2019 Section 9 TB meteorology

    62/181

    Sectie9 TB 62

    Mountain waves (MTW)

    Alsowithout Ac lenticularis (clear air)

    Height of

    MTW up to

    20 km! *

    Effect of MTW up to > 1000 km downwind

  • 7/28/2019 Section 9 TB meteorology

    63/181

    Sectie9 TB 63

    6. Frontal turbulence

  • 7/28/2019 Section 9 TB meteorology

    64/181

    Sectie9 TB 64

    Intensities of turbulence

    LIGHT - slight erratic changes in altitude and/or attitude

    - slight strain against seat belts or shoulder straps- no difficulty is encountered in walking

    MODERATE- changes in altitude and/or attitude

    - definite strain against seat belts or shoulder straps

    - unsecured objects are dislodged

    - food service and walking are difficult

    SEVERE - large, abrupt changes in altitude and/or attitude

    - aircraft momentarily out of control

    - forced violently against seat belts or shoulder straps

    - unsecured objects are tossed about

    - food service and walking are impossible

    EXTREME - aircraft is violently tossed and is practically impossible

    to control

    - may cause structural damage *

  • 7/28/2019 Section 9 TB meteorology

    65/181

    Sectie9 TB 65

    WINDSHEAR

    Definition:

    change in windspeed and/or wind direction over short distance

    VERTICALE WINDSCHERING (VWS)

  • 7/28/2019 Section 9 TB meteorology

    66/181

    Sectie9 TB 66

    is de verandering van dehorizontalewindsnelheid en/of -richting per lengte-eenheid tussen tweeverticaal bovenelkaar staandepunten.

    Horizontaal vlakHorizontaal vlak

    H

    O

    O

    G

    TE

    VWS is dus een snelle verandering over een korte afstand

    van de horizontale wind in een verticaal vlak.

    D d i d h i l i d lh id / fHORIZONTALE WINDSCHERING (HWS)

  • 7/28/2019 Section 9 TB meteorology

    67/181

    Sectie9 TB 67

    De verandering van dehorizontalewindsnelheid en/of -richting per lengte-eenheid tussen twee punten, die beideninhetzelfde horizontale vlakliggen.

    HORIZONTALE BREEDTE HORIZONTALE BREEDTE

    HORI

    ZONTALE

    LENGTE

    HORI

    ZONTALE

    LENGTE

    HWS is dus een snelle verandering over korte afstand van de

    horizontale wind in een horizontaal vlak.

    Voetbalveld.

    SCHERING VAN DE VERTICALE WIND (SVW)

  • 7/28/2019 Section 9 TB meteorology

    68/181

    Sectie9 TB 68

    De verandering van deverticalewindsnelheid en/of -richtingper lengte-eenheid tussen twee punten, die inhetzelfde

    horizontale vlakliggen.

    HOOGT

    E HOOGT

    E

    BODEM BODEM

    SVW is dus een snelle verandering over korte afstand

    van de verticale windcomponent in een horizontaal vlak.

    WINDSCHERINGSVARIATIES TOEGEPASTOP DE LUCHTVAART

  • 7/28/2019 Section 9 TB meteorology

    69/181

    Sectie9 TB 69

    OP DE LUCHTVAART

    Windschering (windshear)is de variatie in grootte van dewindvector of zijn componenten langs en dwars op devliegroute.

    Men onderscheidt: Head- of tailwindshear, de variatie in sterkte van de

    neus- of staartwind-component;

    Crosswindshear, de variatie van de dwarswind-

    component en Vertical windshear, de variatie van de verticale

    windcomponenten.

  • 7/28/2019 Section 9 TB meteorology

    70/181

    Sectie9 TB 70

    Types of windshear

    1. Nocturnal type; occurs during the night and in the early morning

    in undisturbed radiation weather

    2. Synoptic type; usually associated with fronts, but they also occur

    otherwise

    3. Orographic type; caused by orographic influences

    4. Thunderstorm type; in and near thunderstorms associated with gust

    fronts, downbursts, microbursts, macrobursts,

    outbursts

  • 7/28/2019 Section 9 TB meteorology

    71/181

    Sectie9 TB 71

    http://www.youtube.com/watch?v=OtnL4KYVtD

    E&feature=related

    Sh I i !

  • 7/28/2019 Section 9 TB meteorology

    72/181

    Sectie9 TB 72

    Shear on Inversions!

    T Wind

    21008 kt

    25018 kt

    NACHTELIJK WINDMAXIMUM een voorbeeld van vws

  • 7/28/2019 Section 9 TB meteorology

    73/181

    Sectie9 TB 73

    NACHTELIJK WINDMAXIMUM, een voorbeeld van vws

    x 1000 ftx 100 ftX 1000 ft

    Top inversie

    DAG

  • 7/28/2019 Section 9 TB meteorology

    74/181

    Sectie9 TB 74

    http://www.metacafe.com/watch/30410/boeing_747_extreme_landing/

    http://www.metacafe.com/watch/30410/boeing_747_extreme_landing/http://www.metacafe.com/watch/30410/boeing_747_extreme_landing/
  • 7/28/2019 Section 9 TB meteorology

    75/181

    Sectie9 TB 75

    Synoptic type

    associated with cold and warm fronts

    FRONTALE WINDSCHERING, een ander voorbeeld van

  • 7/28/2019 Section 9 TB meteorology

    76/181

    Sectie9 TB 76

    VWS

  • 7/28/2019 Section 9 TB meteorology

    77/181

    Sectie9 TB 77

    the sea-breeze front

    What shear?

  • 7/28/2019 Section 9 TB meteorology

    78/181

    Sectie9 TB 78

    Orographic type

    mountain waves may lead to severe turbulence and windshear

    Thunderstorm type

    thunderstorms and cumulonimbus can cause the most severe

    windshears

    all kinds of windshear can happen

  • 7/28/2019 Section 9 TB meteorology

    79/181

    GEBIED MET BERGGOLVEN

  • 7/28/2019 Section 9 TB meteorology

    80/181

    Sectie9 TB 80

    Strong winds (>30 kts)Perpendicular to mountains

    Stable atmosphere

    DRY ROTOR

  • 7/28/2019 Section 9 TB meteorology

    81/181

    Sectie9 TB 81

    DRY ROTOR

    Axis?

    STERKTE VAN DE WINDSCHERING

  • 7/28/2019 Section 9 TB meteorology

    82/181

    Sectie9 TB 82

    De ICAO geeft de volgende kwalificatie van de sterktevan windschering:

    Zwakke windschering bij 0 - 4 kt /100 ft

    Matige windschering bij 5 - 8 kt /100 ft

    Sterke windschering bij 9 - 12 kt /100 ft

    Zware windschering bij 12 kt /100 ft

    Thunderstorm type

  • 7/28/2019 Section 9 TB meteorology

    83/181

    Sectie9 TB 83

    yp

    thunderstorms and cumulonimbus can cause the most severe

    windshears

    all kinds of windshear can happen

    Downdrafts, microbursts, macroburst, gustfront, rollcloud etc

    DE DOWNDRAUGHT ( Amerikaans: downdraft)

  • 7/28/2019 Section 9 TB meteorology

    84/181

    Sectie9 TB 84

    DE DOWNDRAUGH ( Amer kaans downdraft)

    In de onderste helft en onder de bui kan een krachtigeneerwaartse stroming ontstaan.

    De algemene term ervoor is downdraught.

    De algemene term van de voor de luchtvaart gevaarlijkevorm heet downburst.

    ONTSTAANSOORZAKEN VAN DEDOWNDRAUGHT

  • 7/28/2019 Section 9 TB meteorology

    85/181

    Sectie9 TB 85

    DOWNDRAUGHT

    In de wolk : Afkoeling van de lucht door het smelten van ijsvormige

    neerslagelementen onder het 0 0c-niveau. Meesleuren van de lucht tussen de neerslag-elementen.

    Onder de wolk: Afkoeling van de lucht door het verdampen van de

    vloeibare neerslagelementen. Meesleuren (drag) van de lucht tussen de neerslag-

    elementen.

    SOORTEN DOWNDRAUGHT

  • 7/28/2019 Section 9 TB meteorology

    86/181

    Sectie9 TB 86

    MACROBURST:Een krachtige neerwaartse stroming met eendoorsnede > 4 km.

    Komt voor in het gebied met de zwaarste neerslag.

    Kan in een groot gebied tornado-achtige schadeaanbrengen.

    Aan de grond kan de windsnelheid oplopen tot 130 kt.

    De levensduur varieert, vanaf het moment dat de grond isbereikt, van 5 tot 20 minuten.

    SOORTEN DOWNDRAUGHT (vervolg 1)

  • 7/28/2019 Section 9 TB meteorology

    87/181

    Sectie9 TB 87

    MICROBURST:Een zeer krachtige neerwaartse stroming met eendoorsnede 4 km.

    Komt voor in het gebied met de zwaarste neerslag.

    De verticale snelheid kan 30-60 ft boven de grond 1000-2000 ft/min (5-10 m/s) bereiken.

    Aan de grond kan de windsnelheid oplopen tot >160 kt.

    De levensduur varieert, vanaf het moment dat de grond isbereikt, van 2 tot 5 minuten.

    SOORTEN DOWNDRAUGHT (vervolg 2)

  • 7/28/2019 Section 9 TB meteorology

    88/181

    Sectie9 TB 88

    SOORTEN DOWNDRAUGHT (vervolg 2)

    MIDAIR MICROBURST:Een microburst die het aardoppervlak niet bereikt en deluchtstroming daar niet benvloedt.

    DROGE MICROBURST:Een microburst uit een bui met een hoge basis, waarvande regen verdampt voordat die het aardoppervlak kanbereiken. De microburst bereikt het aardoppervlak

    echter wel.

  • 7/28/2019 Section 9 TB meteorology

    89/181

    Sectie9 TB 89

  • 7/28/2019 Section 9 TB meteorology

    90/181

    Sectie9 TB 90

    FOOTPRINT VAN EEN DOWNBURST UITEEN STATIONAIRE BUI

  • 7/28/2019 Section 9 TB meteorology

    91/181

    Sectie9 TB 91

    EEN STATIONAIRE BUI

    Gustfront van de horizontaal

    uitstromende koude lucht

    Omtrek bui

    Centrum

    downburst

    FOOTPRINT VAN EEN DOWNBURST UITEEN BEWEGENDE BUI

  • 7/28/2019 Section 9 TB meteorology

    92/181

    Sectie9 TB 92

    EEN BEWEGENDE BUI

    Bewegingsrichting

    Omtrek bui

    Gustfront van de horizontaal

    uitstromende koude lucht

    Downburst

    centrum

    EVOLUTIE VAN EEN DOWNBURST

  • 7/28/2019 Section 9 TB meteorology

    93/181

    Sectie9 TB 93

    0 3 5 10 15

    Verlopen tijd in minuten

    Onderkant van de bui

  • 7/28/2019 Section 9 TB meteorology

    94/181

    Sectie9 TB 94

    WINDSCHERINGSDETECTIE

  • 7/28/2019 Section 9 TB meteorology

    95/181

    Sectie9 TB 95

    Er zijn drie operationele windscherings-systemen ingebruik op de grond:

    Low Level Windshear Alert System( LLWAS)

    De windprofiler,een Doppler-radar

    SODAR,een akoestische radar

    In gebruik of in ontwikkeling voor airborne systemen:

    Doppler-radar

    Infrarood detectiesysteem

    Laser detectie systeem

  • 7/28/2019 Section 9 TB meteorology

    96/181

    Sectie9 TB 96

  • 7/28/2019 Section 9 TB meteorology

    97/181

    Sectie9 TB 97

    horizontal windshear

    vertical windshear

    shear of the vertical wind

  • 7/28/2019 Section 9 TB meteorology

    98/181

    Sectie9 TB 98

    GET OUT !!!!

    Effect of windshear on flight:

  • 7/28/2019 Section 9 TB meteorology

    99/181

    Sectie9 TB 99

    Effect of windshear on flight:

    Windshear is the variation of the components of the wind

    vector along and perpendicular to the flight route.

    Head windshear / tail windshear: variation of the windspeed of the

    head/tail wind.

    Shearing of vertical wind: variation of the vertical wind.

    Cross windshear: variation of the wind component perpendicular to

    the flight route.

    Windshear in practice:

  • 7/28/2019 Section 9 TB meteorology

    100/181

    Sectie9 TB 100

    Windshear in practice:

    Often simplified to Negative or Positive Shear

    Positive: performance increase, more lift, greater IAS

    Negative: performance decrease, less lift, smaller IAS.

    THUNDERSTORMS (onweersBUI*)

    USA STORM i BUI !!!!!

  • 7/28/2019 Section 9 TB meteorology

    101/181

    Sectie9 TB 101

    USA STORM is een BUI !!!!!

    Conditions for thunderstorm development

    a thunderstorm is a CB accompanied by thunder and lightning.

    1. Most of cloud must be above the FZL => WBF

    2. atmosphere must be unstable , at least 10.000 ft, strongupdraft, 10-35 m/s

    3. top of the clouds above the level of -20C (not necessary in

    the tropics)

    4. Sufficient lifting forces

    5. adequate supply of moisture from below

    lifting forces can be caused by:

  • 7/28/2019 Section 9 TB meteorology

    102/181

    Sectie9 TB 102

    g y

    - local differential heating over land, solar insolation and formation

    of thermal lows

    - night time radiation cooling from the top

    - orographic effects (lifting)

    - frontal activity (frontal lifting)

    - low level convergence, along a trough for example

    - due to differential advections: cold air advection aloft and warm air

    advection in low levels.

    Life cycle of an individual thunderstorm cell

  • 7/28/2019 Section 9 TB meteorology

    103/181

    Sectie9 TB 103

    Life cycle of an individual thunderstorm cell

    Single Cumulonimbus cells rarely exceed a few km in diameter

    In the individual cell three stages of development can be recognised:

    1. Cumulus stage

    2. Mature stage3. Dissipating stage

    The life cycle of an individual cell is in the order of 30 minutes

    http://upload.wikimedia.org/wikipedia/commons/3/39/Cumulonimbus_NOAA_gov.jpg
  • 7/28/2019 Section 9 TB meteorology

    104/181

    Sectie9 TB 104

    1 C l t

    http://upload.wikimedia.org/wikipedia/commons/3/39/Cumulonimbus_NOAA_gov.jpghttp://upload.wikimedia.org/wikipedia/commons/3/39/Cumulonimbus_NOAA_gov.jpg
  • 7/28/2019 Section 9 TB meteorology

    105/181

    Sectie9 TB 105

    1. Cumulus stage

    only updrafts

    no precipitation

    10-15min duration

    1. Cumulus stage

  • 7/28/2019 Section 9 TB meteorology

    106/181

    Sectie9 TB 106

    CU and TCU

    Only updrafts

    No precip.

    Higher FZL in

    CLD

    2 Mature stage

  • 7/28/2019 Section 9 TB meteorology

    107/181

    Sectie9 TB 107

    2. Mature stage

    up- and downdrafts

    precipitation

    downburst and outburst

    gust front

    hail, turbulence,

    lightning and gusts

    greatest activity of the stormsand thunderstorms

    Max vertical speeds 3040 m/s

    2. Mature stage

  • 7/28/2019 Section 9 TB meteorology

    108/181

    Sectie9 TB 108

    both down and updrafts

    often tilted!*

    FZL higher in updrafts

    1) Warm air updraft

    2) Release of latent heat

    FZL lower in downdrafts

    1) Drag of cold upper air

    2) Melting and evaporation

    need energy

    3. Dissipating stage

  • 7/28/2019 Section 9 TB meteorology

    109/181

    Sectie9 TB 109

    3. Dissipating stage

    downdrafts dominate

    precipitation decreases

    and finally stops

    no more lightning

    turbulence inside the

    cloud will rapidly decrease

    Clouds dissolve

    Anvil- Ci clouds often remain

    longtime

    Classification of thunderstorms

  • 7/28/2019 Section 9 TB meteorology

    110/181

    Sectie9 TB 110

    Classification of thunderstorms

    Air mass thunderstorms

    Thermal thunderstorms, a result of irregular local heating of

    the surface. Uplift due to solar radiation.

    Cold mass thunderstorms:thunderstorms or night/ winter

    thunderstorms over sea and coastal areas. They often occur at

    the rear of a cold front. The temperature in the higher layers islow, causing a steep environmental lapse rate.

    Orographic thunderstorms: when moist potentially unstable

    air is forced to rise against a mountain range, it becomes

    statically unstable.

    Prefrontal thunderstorms: in unstable airmass ahead of a kata

    cold front (fast running front), generally organised along a

    squall line.

    Example Pre-frontal TS

    Sly warm flow

  • 7/28/2019 Section 9 TB meteorology

    111/181

    Sectie9 TB 111

    Often Thermal

    Low beforeColdfront arrives

    y

    over W Eur

    Very hightemperatures

    over France

    F t l th d t

  • 7/28/2019 Section 9 TB meteorology

    112/181

    Sectie9 TB 112

    Frontal thunderstorms

    When the warm air in the warm sector is unstable, the forced lifting along

    the frontal surface may lead to the formation of embedded cumulonimbusin the frontal clouds along the front at the surface. They are not random

    but organised along a line along the surface front. They are associated

    with active cold fronts.

    Convergence thunderstorms

    These thunderstorms are observed along the ITCZ, an E-ly wave, a

    trough and if the airmass is potentially unstable there is also a risk of

    thunderstorms along the sea-breeze front.*

    Frontal thunderstorms

  • 7/28/2019 Section 9 TB meteorology

    113/181

    Sectie9 TB 113

    Mostly on Coldfronts

    stratiform

    Convergence thunderstorms

  • 7/28/2019 Section 9 TB meteorology

    114/181

    Sectie9 TB 114

    Trough

    L

    surfaceTrough

    CB

    Convergence thunderstorms

  • 7/28/2019 Section 9 TB meteorology

    115/181

    Sectie9 TB 115

    May develop near/in:

    1. ITCZ

    2. Troughs

    3. Lows

    4. Easterly Waves

    5. Cyclonic cols

    6. Etc

    Frequency of thunderstorms

  • 7/28/2019 Section 9 TB meteorology

    116/181

    Sectie9 TB 116

    Thunderstorms are wide spread, around 50 000 thunderstorms

    per day !! The frequency of thunderstorms over land is highest in

    summer during daytime; over sea the frequency is highest in

    winter during the late night.*

    The frequency of occurrence changes from one region to another

    - In Polar areas: nearly no thunderstorms

    - Between latitudes 70-80: 1 day a year with thundery weather.- In mid-latitude: 32 days with thundery weather.

    - In subtropical areas: only 10 days

    - Near equator: 136 days with thundery weather.

    Thunderstorm Classification

  • 7/28/2019 Section 9 TB meteorology

    117/181

    Sectie9 TB 117

    Single cell/ Airmass

    Multi cell

    Super cell

    Squall lines

    http://upload.wikimedia.org/wikipedia/commons/3/39/Cumulonimbus_NOAA_gov.jpg
  • 7/28/2019 Section 9 TB meteorology

    118/181

    Sectie9 TB 118

    Single cell or Airmass TS

    Lifetime to 1 hour

    3 to 8 km diameter

    Multi cell TSUpper wind

    http://upload.wikimedia.org/wikipedia/commons/3/39/Cumulonimbus_NOAA_gov.jpghttp://upload.wikimedia.org/wikipedia/commons/3/39/Cumulonimbus_NOAA_gov.jpghttp://upload.wikimedia.org/wikipedia/commons/3/39/Cumulonimbus_NOAA_gov.jpghttp://upload.wikimedia.org/wikipedia/commons/3/39/Cumulonimbus_NOAA_gov.jpghttp://upload.wikimedia.org/wikipedia/commons/3/39/Cumulonimbus_NOAA_gov.jpghttp://upload.wikimedia.org/wikipedia/commons/3/39/Cumulonimbus_NOAA_gov.jpghttp://upload.wikimedia.org/wikipedia/commons/3/39/Cumulonimbus_NOAA_gov.jpg
  • 7/28/2019 Section 9 TB meteorology

    119/181

    Sectie9 TB 119

    By growing new cells on forward right side, system moves

    to the right of upper winds!

    Upper wind

    Movement

    New cells

    Oldest Cell

  • 7/28/2019 Section 9 TB meteorology

    120/181

    Sectie9 TB 120

    Multi cell TS

    Often called MCC or MCS (depending on size)

    (Mesoscale Convective Complex or System)

    Anvils up to 100 km away

    Up to 300 x 300 km!

    Lifetimes up to 12 hours

  • 7/28/2019 Section 9 TB meteorology

    121/181

    Sectie9 TB 121

  • 7/28/2019 Section 9 TB meteorology

    122/181

    Sectie9 TB 122

    Fig. 8.49 Schematic of an idealized multicell storm developing in an

    environment

    with strong vertical shear in the direction of the vertically averaged wind. The

    vertical profile of equivalent potential temperature e in the environment is

    shown at the left, together with the wind profile. Arrows in the right panel

    denote motion relative to the moving storm.

    Super cell

  • 7/28/2019 Section 9 TB meteorology

    123/181

    Sectie9 TB 123

    Acts as a Low

    Rotation

    Very big

    Very active

    ONE CELL

    Tornados

    Rare in Europe

  • 7/28/2019 Section 9 TB meteorology

    124/181

    Sectie9 TB 124

    Fig. 8.56 Structure of a typical tornadic supercell storm. Motion of the warm air is

    relative to the ground. [Based on NOAA National Severe Storm Laboratory

    publications and an unpublished manuscript by H. B. Bluestein. From R. A.

    Houze, Cloud Dynamics, Academic Press (1993) p. 279.]

    Supercell 26 juli 1983

    moving NNE

  • 7/28/2019 Section 9 TB meteorology

    125/181

    Sectie9 TB 125

    Developing MCC

    Bigger than the

    NetherlandsHail at 07.00 Lt Den

    Helder golfball size

    Well developed Low

    on sfc charts

    2,5 m water upset

    Harlingen*

    Squall lines

    Squall= sudden wind

  • 7/28/2019 Section 9 TB meteorology

    126/181

    Sectie9 TB 126

    More or less closed LINE

    of active CBs moving in

    one direction

    >200 km long Gustfront up to max 32

    km in front of Squall line!!

    Rotor/Arcus cloud

    Sand or dust rotor

    Next cross section A-B

    icrease to >16 kts lasting

    1 min at least

    cross section A-B

  • 7/28/2019 Section 9 TB meteorology

    127/181

    Sectie9 TB 127

    Cold air from shower giving gustfront

    Warm air to shower to feed CB

    09024

    24032G46Gustfront

    Squall lines

  • 7/28/2019 Section 9 TB meteorology

    128/181

    Sectie9 TB 128

    formed near:

    1. cold fronts

    2. troughs

    3. ITCZ

    Squall lines develop mostly in hot summer weather along

    lines of convergence or pre-frontal convergence.

    When all active TS condition are met.*

    The gust front

  • 7/28/2019 Section 9 TB meteorology

    129/181

    Sectie9 TB 129

    Outflow of cold air in a (thunder)shower

    dangerous for aircraft on takeoffs and landings

    HWS and VWS

    24 to 32km

    ahead of the

    storm centre

  • 7/28/2019 Section 9 TB meteorology

    130/181

    Sectie9 TB 130

    Rolwolk!

  • 7/28/2019 Section 9 TB meteorology

    131/181

    Sectie9 TB 131

    GET OUT!

  • 7/28/2019 Section 9 TB meteorology

    132/181

    Sectie9 TB 132

  • 7/28/2019 Section 9 TB meteorology

    133/181

    Sectie9 TB 133

    Hail

    H il i f f i i i hi h i f b ll i l

    http://en.wikipedia.org/wiki/Precipitation_%28meteorology%29http://en.wikipedia.org/wiki/Precipitation_%28meteorology%29
  • 7/28/2019 Section 9 TB meteorology

    134/181

    Sectie9 TB 134

    Hail is a form ofprecipitation which consists of balls or irregular

    lumps of ice (hailstones). Hailstones on Earth usually consist mostly

    ofwater ice and measure between 5 and 50 millimetres in diameter,with the larger stones coming from severe thunderstorms.[1] Hail is

    always produced by cumulonimbi (thunderclouds), usually at the

    front of the storm system, and is composed of transparent ice or

    alternating layers of transparent and translucent ice at least 1 mmthick. Small hailstones are less than 5 mm in diameter, and are

    reported as SHGS. Unlike ice pellets, they are layered and can be

    irregular and clumped together.

    Wikipedia

    Hail development:

    1) Precip partical

    http://en.wikipedia.org/wiki/Precipitation_%28meteorology%29http://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Icehttp://en.wikipedia.org/wiki/Millimetrehttp://en.wikipedia.org/wiki/Thunderstormhttp://en.wikipedia.org/wiki/Cumulonimbushttp://en.wikipedia.org/wiki/Snow_pelletshttp://en.wikipedia.org/wiki/Ice_pellethttp://en.wikipedia.org/wiki/Ice_pellethttp://en.wikipedia.org/wiki/Snow_pelletshttp://en.wikipedia.org/wiki/Cumulonimbushttp://en.wikipedia.org/wiki/Thunderstormhttp://en.wikipedia.org/wiki/Millimetrehttp://en.wikipedia.org/wiki/Icehttp://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Precipitation_%28meteorology%29
  • 7/28/2019 Section 9 TB meteorology

    135/181

    Sectie9 TB 135

    ) p p

    enters updraft

    2) Riming startsabove FZL

    3) Heavier particle

    falls down, melts

    partialy below FZL

    4) Enters updrafts

    againriming

    5) Etc etc

    Second posibility:

    Riming hailstone stays at same level

    Updraft = fallspeed growing by riming

    Hail development:

  • 7/28/2019 Section 9 TB meteorology

    136/181

    Sectie9 TB 136

    Melting and freezing,

    Melting and freezing

    Thats why a hailstone is layered..!

    Hail

  • 7/28/2019 Section 9 TB meteorology

    137/181

    Sectie9 TB 137

    due to strong updraft a melting snowflake will go up and down

    for several times and freeze due to riming proces

    Hailstones can achieve a large size and can be met at any height

    in the cloud(45.000 ft) and outside the cloud!!!!

    http://www.stormgasm.com/4-17-02LPday/tom%20pics/hail.jpg
  • 7/28/2019 Section 9 TB meteorology

    138/181

    Sectie9 TB 138

    Flying below anvil close to CB dangerous for hail!!

    Hail

    F t f it !!!

    http://en.wikipedia.org/wiki/Image:Granizo.jpg
  • 7/28/2019 Section 9 TB meteorology

    139/181

    Sectie9 TB 139

    From a pea to a grapefruit !!!

    6 cm

    Nederland

    17 cm

    Max ca. 20 cm.USA

    Hagelfeiten.De grootste hagelsteen die in de wereld viel had een doorsnedevan 17,8 centimeter. De hagelsteen viel op 22 juni 2003 in Aurora(N b k ) D t k t lh id 160 kil t

    http://en.wikipedia.org/wiki/Image:Granizo.jpg
  • 7/28/2019 Section 9 TB meteorology

    140/181

    Sectie9 TB 140

    (Nebraska). De steen kwam met een snelheid van 160 kilometerper uur neer.

    De zwaarste hagelsteen viel op 3 september 1970 in Coffeyville(Kansas) en woog 757 gram. Het ijsblok wordt bewaard in eenvriezer in Boulder en staat vermeld in het Guinness Book of WorldRecords. Van de hagelsteen is een plastic replica gemaakt, zodat

    iedereen het kan zien.

    Ook een grote hagelsteen viel in Potter (Nebraska) op 6 juli 1928en was 13,7 centimeter.Ooggetuigen zeiden dat tussen de individuele hagelstenen 3 tot4.5 meter ruimte zat.In juli 1990 werd Denver (Colorado) door zware hagel getroffen.Hier was voor $625 miljoen recordschade.Idem ca. 15 jaar geleden in Munchen

    Large hailstones can cause enormous damage to aircraft

  • 7/28/2019 Section 9 TB meteorology

    141/181

    Sectie9 TB 141

  • 7/28/2019 Section 9 TB meteorology

    142/181

    Sectie9 TB 142

  • 7/28/2019 Section 9 TB meteorology

    143/181

    Sectie9 TB 143

  • 7/28/2019 Section 9 TB meteorology

    144/181

    Sectie9 TB 144

  • 7/28/2019 Section 9 TB meteorology

    145/181

    Sectie9 TB 145

  • 7/28/2019 Section 9 TB meteorology

    146/181

    Sectie9 TB 146

  • 7/28/2019 Section 9 TB meteorology

    147/181

    Sectie9 TB 147

  • 7/28/2019 Section 9 TB meteorology

    148/181

    Sectie9 TB 148

  • 7/28/2019 Section 9 TB meteorology

    149/181

    Sectie9 TB 149

    http://www.youtube.com/watch?v=wZr8jXo1Uso

    The anvil

    http://www.youtube.com/watch?v=wZr8jXo1Usohttp://www.youtube.com/watch?v=wZr8jXo1Uso
  • 7/28/2019 Section 9 TB meteorology

    150/181

    Sectie9 TB 150

    Top of CB

    Anvil points in the direction of the winds in the top of theCBs, and so indicates the direction of the cell motion

    anvil

    Electricity in the atmosphere

  • 7/28/2019 Section 9 TB meteorology

    151/181

    Sectie9 TB 151

    There is always some weak electrical charge in

    atmosphere

    In clouds the ice particles make the difference

    Electricity in the atmosphere PRINCIPLE*

  • 7/28/2019 Section 9 TB meteorology

    152/181

    Sectie9 TB 152

    *collides with

    * *Large negativefall

    * Small positive rise

    - - - -- - - -

    + + + +

    + + + +

  • 7/28/2019 Section 9 TB meteorology

    153/181

    Sectie9 TB 153

  • 7/28/2019 Section 9 TB meteorology

    154/181

    Sectie9 TB 154

    Sometimes an aircraft is a bridge/trigger for

    discharge to the ground:

    Selftriggering effect *

  • 7/28/2019 Section 9 TB meteorology

    155/181

    Sectie9 TB 155

  • 7/28/2019 Section 9 TB meteorology

    156/181

    Sectie9 TB 156

  • 7/28/2019 Section 9 TB meteorology

    157/181

    Sectie9 TB 157

    Words to know

    1) Stepped leader2) Leader

    3) Streamer

    4) Return strokeBlz 9-42

  • 7/28/2019 Section 9 TB meteorology

    158/181

    Sectie9 TB 158

    Lightning damage on propellor tip

  • 7/28/2019 Section 9 TB meteorology

    159/181

    Sectie9 TB 159

    (Airborne) Radar To high

  • 7/28/2019 Section 9 TB meteorology

    160/181

    Sectie9 TB 160

    Proper tilt is essential

    To high

    To low

  • 7/28/2019 Section 9 TB meteorology

    161/181

    Sectie9 TB 161

    Shadowing

  • 7/28/2019 Section 9 TB meteorology

    162/181

    Sectie9 TB 162

    radar CB1 CB2

    On the scope:

    Only CB1

    CB1

    Attenuation

  • 7/28/2019 Section 9 TB meteorology

    163/181

    Sectie9 TB 163

    radar

    By absorbtion of radar energy, false backside

  • 7/28/2019 Section 9 TB meteorology

    164/181

    Sectie9 TB 164

    Turbulence: in and close to Rotors*in and close to Lenticularis

    in waves

    Downbursts, micro- and macro

  • 7/28/2019 Section 9 TB meteorology

    165/181

    Sectie9 TB 165

    Famous:

  • 7/28/2019 Section 9 TB meteorology

    166/181

    Sectie9 TB 166

    Famous:

    Fujita and Caracena 1977

    1) Eastern 902

    2) Eastern 66

  • 7/28/2019 Section 9 TB meteorology

    167/181

    Sectie9 TB 167

  • 7/28/2019 Section 9 TB meteorology

    168/181

    Sectie9 TB 168

    Tornados

  • 7/28/2019 Section 9 TB meteorology

    169/181

    Sectie9 TB 169

    Tornados Neerslaggebied

    Groen/geel

  • 7/28/2019 Section 9 TB meteorology

    170/181

    Sectie9 TB 170

    Let op: echos in

    de vorm vanboog of

    komma (Eng

    Hook Echo)

    Tornado

    mogelijk

    GET OUT!!!

    Tornados

    Twister, wervelwind,

    zware windhoos etc

  • 7/28/2019 Section 9 TB meteorology

    171/181

    Sectie9 TB 171

    A tornado is defined as aviolently rotating column

    of air extending from a

    thunderstorm to the

    ground.

    zware windhoos etc

    Diameter 10 to 100 m normaly

    Max around 2 km!!

    Rotating windspeed:100 to 150 m/s (550 km uur)

    Damaging path: 10 km average

    Low pressure inside (900 hPa avg)*

    Waterspout (little

    tornado over

    warm water)

    Warm air moves UP !!!

    Tornados

  • 7/28/2019 Section 9 TB meteorology

    172/181

    Sectie9 TB 172

    Whole CB system rotates

    Most Tornados rotate (99%) Cyclonic (Coriolis)*

    Whole world knows Tornados

    Mostly in the Tornado Alley USA

    Tornados

  • 7/28/2019 Section 9 TB meteorology

    173/181

    Sectie9 TB 173

    Tornado Alley

  • 7/28/2019 Section 9 TB meteorology

    174/181

    Sectie9 TB 174

  • 7/28/2019 Section 9 TB meteorology

    175/181

    Sectie9 TB 175

    CBs need moisture and heat, so mainly form over agricultural areas

    Tropical jungles are not hot enough.

    Desserts are not moist enough.

    Tornado from Tornado

    Alley

  • 7/28/2019 Section 9 TB meteorology

    176/181

    Sectie9 TB 176

    Let op schuine stand !

    Moerdijk F28*

    Tornadoes in Nederland?

    1) Borculo augustus 1925 de cycloon van Borculo 3 doden

    2) N d 1927 10 d d

  • 7/28/2019 Section 9 TB meteorology

    177/181

    Sectie9 TB 177

    2) Neede 1927 10 doden

    3) Tricht 1967 7 doden

    4) Ameland 1972 4 doden

    5) Moerdijk ongeluk 1981 F28 verongelukt 2 slurven onder bui

    6) Ameland 1992 1 dode*

    7) Plus nog ca. 25 kleinere windhozen, waterhozen, downbursts

    etc. met schade per jaar!

  • 7/28/2019 Section 9 TB meteorology

    178/181

    Sectie9 TB 178

    Bron KNMI

    Tornado van Tricht

    Rotation speed of air defines Fujita scale: (for Tornados)Fujita

    schaal

    F064-117 Schade aan schoorstenen, takken

  • 7/28/2019 Section 9 TB meteorology

    179/181

    Sectie9 TB 179

    F0km/u breken af

    F1118-180

    km/u

    Schade aan daken, autos worden van

    weg afgeduwd

    F2

    181-

    251

    km/u

    Bomen worden ontworteld, caravans

    vernield

    F3

    252-

    330

    km/u

    Daken en muren worden weggerukt,

    autos worden opgetild

    F4

    331-

    417

    km/u

    Huizen worden vernield en autos

    gegooid

    F5

    418-

    509

    km/u

    Huizen worden van fundamenten

    gelicht

    Dustdevils

    (Wind- of stofhoos)

    A li

  • 7/28/2019 Section 9 TB meteorology

    180/181

    Sectie9 TB 180

    In Australia:

    Willy Willy

    Only Thermals (often Dry thermals = no cloud)

    ( droge thermiek of Blau thermiek)

    Dustdevils can cause gusts up to 35 kt ! *

    Dustdevil boven verbrande aardeLet op: altijd mooi weer

    F t T A d B

  • 7/28/2019 Section 9 TB meteorology

    181/181

    Foto: T.A. de Boer.