seattle, wa– may 21-23, 2012 a re-evaluation of the ... · economics of the mbr process ... mbr...

13
2/ 2 3/ 2015 1 AMTA Technology Transfer Workshop “MBR/MF/UF Membrane Treatment in the Pacific Northwest” in cooperation with WEF Seattle, WA – May 21-23, 2012 AMTA Workshop America’ s Authority in Membrane Technology 1 A Re-Evaluation of the Economics of the MBR Process – Has a Tipping Point Been Reached? Randal Samstag, Sudhan Paranjape and Roderick D. Reardon Carollo Engineers AMTA Workshop America’ s Authority in Membrane Technology 2 Technology Overview AMTA Workshop America’ s Authority in Membrane Technology 3 Traditional Versus Membrane Bioreactor (MBR) Wastewater Treatment MEMBRANE BIOREACTOR Permeate Pump Raw Sewage Air Scour WAS Process Air MLSS Recycle Aeration Membrane Tank Secondary Clarifier Aeration Return Activated Sludge Tertiary Granular Media or Cloth Filter Waste Activated Sludge (WAS) TRADITIONAL Process Air AMTA Workshop America’ s Authority in Membrane Technology 4 Key Elements of an MBR Useofmembrane filtrationtoseparate biomass from effl u ent H igherMLS S concentrations inaerationbasins H ighsoli ds recycle rate from membrane tanktoaeration basin Membranes continuously/intermittentlyscoured withair Biologi c alelem ent s remain essentiallythe same

Upload: nguyenkhuong

Post on 11-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

2/23/20 15

1

July 2007

AMTA Technology Transfer Workshop“MBR/MF/UF Membrane Treatment in the Pacific Northwest”

in cooperation with WEF

Seattle, WA – May 21-23, 2012

AMTA Workshop

America’s Authority in Membrane Technology 1

A Re-Evaluation of theEconomics of the MBR Process –

Has a Tipping Point Been Reached?Randal Samstag, Sudhan Paranjape and

Roderick D. ReardonCarollo Engineers

AMTA Workshop

America’s Authority in Membrane Technology 2

Technology Overview

AMTA Workshop

America’s Authority in Membrane Technology 3

Traditional Versus Membrane Bioreactor (MBR)Wastewater Treatment

MEMBRANEBIOREACTOR

PermeatePumpRaw Sewage

Air Scour

WAS

Process Air

MLSS Recycle

Aeration Membrane Tank

SecondaryClarifierAeration

ReturnActivated Sludge

Tertiary GranularMedia or Cloth

Filter

Waste ActivatedSludge (WAS)

TRADITIONAL

Process Air

AMTA Workshop

America’s Authority in Membrane Technology 4

Key Elements of an MBR

Us e ofmembrane filtration to s eparate biomas s fromefflu ent

H igherM L S S c onc entrations in aeration bas ins

H ighs olid s rec yc le rate from membrane tankto aerationbas in

M embranes c ontinu ou s ly /intermittently s c ou red with air

B iologic alelements remain es s entially the s ame

2/23/20 15

2

AMTA Workshop

America’s Authority in Membrane Technology 5

Use of MBR Introduces Several New Components

Fine s c reens (1–3 mm)

M embranes and membrane tanks (forimmers edmembranes )

M embrane feed pu mps (forpu mped s ys tems )

A irs c ou rblowers

Filtrate/bac kpu ls e pu mps orfiltrate flow c ontrolvalve

C hemic alc lean-in-plac e (C IP )s ys tem

AMTA Workshop

America’s Authority in Membrane Technology 6

MBR Introduces Several New Components

MechanicalFine Screens

Membrane Tanks

Waste Sludge

PermeatePumps

Scour Air Blowers

HypochloriteCitric Acid

Screenings

Activated SludgeProcess

Mixed Liquor Recirculation

(by gravity)

MembraneFeedPump

GritRemoval

Influent

MechanicalCoarse Screens

Screenings

PrimaryClarifier

(Optional)

Waste Sludge

AMTA Workshop

America’s Authority in Membrane Technology 7

Process Considerations

AMTA Workshop

America’s Authority in Membrane Technology 8

MBR also Introduces Additional ProcessConsiderations

H ighmixed liqu ors u s pend ed s olid s (M L S S )c onc entrations (6, 0 0 0 –12 , 0 0 0 mg/l)

L ongs olid s retention times (S RTs )(12 –30 d ays )

Retu rn s lu d ge s atu rated with d is s olved oxygen (5 –6 mg/l)

2/23/20 15

3

AMTA Workshop

America’s Authority in Membrane Technology 9

Effects of High MLSS Concentrations

H igherM L S S res u lts in

Greatervis c os ity, whic h means

L owerflu x, whic h means

Greatermembrane area req u ired

L oweralpha, whic h means

H igherenergy c ons u mption

AMTA Workshop

America’s Authority in Membrane Technology 10

Effects of High MLSS Concentrations

Effec tofM L S S on oxygen trans fer-A 10% variation inalpha results in an almost equal variation in the powerconsumption of the aeration system

AMTA Workshop

America’s Authority in Membrane Technology 11

Effects of High MLSS Concentrations

Effec tofM L S S on M embrane Flu x

0 . 0 0

0 . 1 0

0 . 2 0

0 . 30

0 . 40

0 . 50

0 . 60

0 . 7 0

0 . 8 0

0 . 90

1 . 0 0

0 2 0 0 0 40 0 0 60 0 0 8 0 0 0 1 0 0 0 0 120 0 0 140 0 0 160 0 0 1 8 0 0 0 2 0 0 0 0

MLSS (mg/L)

Perm

eab

ilit

yat

20o

C(J

/Jo

)

Courtesy of US Filter

AMTA Workshop

America’s Authority in Membrane Technology 12

Effects of High MLSS Concentrations

Effec tofM L S S on Footprint

0

1 0 , 0 0 0

2 0 , 0 0 0

30 , 0 0 0

40 , 0 0 0

50 , 0 0 0

60 , 0 0 0

7 0 , 0 0 0

MBR (3,000 mg/L) MBR (6,000 mg/L) MBR (9,000 mg/L) MBR (12,000 mg/L)

Pro

cess

Fo

otp

rin

t(s

f)

2/23/20 15

4

AMTA Workshop

America’s Authority in Membrane Technology 13

Effects of High MLSS Concentrations

Effec tofM L S S on O verallC os t

$0

$5

$10

$15

$20

$25

MBR (3,000 mg/L) MBR (6,000 mg/L) MBR (9,000 mg/L) MBR (12,000 mg/L)

Co

st

($/g

al)

MBR Cost as a Function of MLSS Concentration

C apital O peration and M aintenanc e

AMTA Workshop

America’s Authority in Membrane Technology 14

Effects of High MLSS Concentrations

Effec tofM L S S on Energy C ons u mption

3, 40 0 , 0 0 0

3, 50 0 , 0 0 0

3, 60 0 , 0 0 0

3, 7 0 0 , 0 0 0

3, 8 0 0 , 0 0 0

3, 90 0 , 0 0 0

4, 0 0 0 , 0 0 0

4, 1 0 0 , 0 0 0

4, 2 0 0 , 0 0 0

4, 30 0 , 0 0 0

4, 40 0 , 0 0 0

MBR (3,000 mg/L) MBR (6,000 mg/L) MBR (9,000 mg/L) MBR (12,000 mg/L)To

tal

En

erg

yC

on

su

mp

tio

n(k

Wh

/year)

MBR Energy Consumption as a Function of MLSSConcentration

TotalEnergy C ons u mption, kW h/year

O ptimu m arou nd 6, 0 0 0 mg/l

AMTA Workshop

America’s Authority in Membrane Technology 15

Long Solids Retention Times (SRTs)

C an provid e nearc omplete nitrific ation (N H 3 <0 . 5 mg/l)

C an provid e betterremovalofD O N

N u merou s s tu d ies ind ic ate, longerS RTs provid e bettertreatment/removalofmajorC EC s

O ffers betterfilterability ofs olid s

AMTA Workshop

America’s Authority in Membrane Technology 16

Return Sludge Saturated with Dissolved Oxygen

RA S retu rned to anaerobic zone c an interfere with B ioPremoval

RA S retu rned to anoxic zone c an interfere withd enitrific ation

RA S retu rned to aeration tankc an offs etoxygen d emand

C an be c ompens ated by an ad d itionalinternalrec yc les ys tem orby RA S d e-aeration

2/23/20 15

5

AMTA Workshop

America’s Authority in Membrane Technology 1 7

MBR Design Elements

AMTA Workshop

America’s Authority in Membrane Technology 1 8

Design Elements with Significant Effect on MBREconomics

P reliminary and primary treatment

Fac ility peakflow fac tors

M embrane s elec tion

B N R proc es s c onfigu ration

A eration s ys tem d es ign

P roc es s airc ontrols trategy

M embrane s c ou rair

AMTA Workshop

America’s Authority in Membrane Technology

Impact of Preliminary and Primary Treatment

Fine s c reens (~ 2 mm orles s )

A d d itionaleq u ipment(inc reas es c apitaland O & M c os t)

Removes fine partic u lates inc lu d ing hairand fibrou s material

P rimary C larifiers

Red u c es TS S and B O D load on d owns tream proc es s

Red u c es d owns tream proc es s tanks izes and aeration d emand

O ffers more protec tion by ad d itionalremovalofgritand rags

19

AMTA Workshop

America’s Authority in Membrane Technology 20

Effect of Preliminary and Primary Treatment

aB as ed on typic alperformanc e ofprimaryc larifiers : 30 % B O D 5 and 7 . 5% TKN removal.b P lantflow =4. 5 mgd ; M ax. M onth load ings -B O D (11 , 8 0 0 lb/d M M ); TS S (19, 40 0 lb/d M M ); TKN (1 , 67 0 lb/d )c M L S S c onc entration =8 , 0 0 0 mg/L , A erobic S RT =12 d ays .d A lpha =0 . 50 ; s patiald is s olved oxygen (D O )c onc entration =2 . 0 mg/L ; A O R/S O R =0 . 38 .eB lowereffic ienc y =7 0 % , blowers u c tion/d is c harge pres s u re =14. 4 ps ia/22 . 8 ps ia.

ParameterWithoutPrimaryClarifiers

WithPrimaryClarifiersa

Savings with PrimaryClarifiers

Total AOR (lb/d)b 15,789 12,27822% less process oxygen

demand

Bioreactor volume(ft3)c 166,043 126,337

24% less process reactorvolume

Airflow raterequired (scfm)d 6,151 4,784

22% less process airflowrate

Aeration blowerpower (HP)e 289 224

Annual powerconsumption (kWh)

1,886,000 1,466,00022% less process energy

consumption

2/23/20 15

6

AMTA Workshop

America’s Authority in Membrane Technology 21

Effect of Peak Flow Factors

Invers ely affec ts c os tofmembranes

P eakins tantaneou s flu x –2 7 gallons /d ay/ft2 (fortypic alhollow-fibers u bmerged M B R)

37 , 0 37 ft2 ofad d itionalmembrane area req u ired permgd (or2ad d itionalc as s ettes )with c hange in peakins tantaneou s flow fac torof2 . 0 to 3. 0

C ond u c td etailfac ility flow s tu d y to d etermine peakfac torsinc lu d ing I/Is tu d y ifreq u ired

AMTA Workshop

America’s Authority in Membrane Technology 22

Effect of Process Configuration

P u mped to M B R s ys temsPermeate

Pump “1Q”Screened and DegrittedRaw Sewage

Air Scour

WAS

Process Air

MLSS Recycle (By Gravity)“4Q”

“5Q”

Pumped to

PermeatePump “1Q”Screened and Degritted

Raw Sewage

Air Scour

WAS

Process Air

MLSS Recycle“4Q”

“5Q”

Gravity

P u mped from M B R s ys tems

No directControl of RAS

Rate

Reducespumping by 1Q

AMTA Workshop

America’s Authority in Membrane Technology 23

Process Air Control Strategy

A eration energy req u irements forthe fac ility werec ompared forins tantaneou s D O c ontrolvers u s manu allyad ju s ting airflow onc e every 8 -hou rs hift

Energy Spent with Aeration Control Scheme

0

2 0

40

60

8 0

10 0

12 0

140

160

1 8 0

0 1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 23

Hour

Diu

rna

lA

era

tio

np

ow

er

(bH

P)

B rakehors powerforins tantaneou s D . O . c ontrol

B rakehors epowerwith m anu alD . O . c ontrol(onc e pers hift)

AMTA Workshop

America’s Authority in Membrane Technology 24

Membrane Scour Air Control Strategy

M os tc ommerc ials ys tems u s e eitherc ontinu ou s orintermittentairs c ou r

Intermittentairs c ou rwillres u ltin energy s avings

Res earc h has s hown thatd evelopmentof“thin”c akelayeron the s u rfac e ofthe membranes protec ts themembranes from s olu ble mic robialprod u c ts and helpsmaintain membrane permeability

The formation ofthis c ake layeris a d irec tfu nc tion oftheintens ity ofthe airs c ou rapplied and als o d epend s on theM L S S c onc entration

W ithlowerairs c ou rintens ity, the c hanc es offorminga“thic k”c ake layerwith highertrans -membrane pres s u re(TM P )are greater

2/23/20 15

7

AMTA Workshop

America’s Authority in Membrane Technology 25

Example Project –

Comparison of Technologies

AMTA Workshop

America’s Authority in Membrane Technology

Example Project - Process Alternatives Evaluation

Review variou s c onventionaland M B R proc es salternatives

C omparis on ofthe alternatives

P roc es s parameters

P lanning levelc ons tru c tion c os tes timates

P lanning leveloperating c os tes timates

P lanning levelnetpres entworth c os tes timates

26

AMTA Workshop

America’s Authority in Membrane Technology

Example Project - Process Alternatives Evaluation

N on-ec onomic fac tors

W aterq u ality

Footprint

Energy c ons u mption

C hemic alc ons u mption

B ios olid s prod u c tion

2 7

AMTA Workshop

America’s Authority in Membrane Technology

Example Project - Process Alternatives EvaluationCriteria for Selecting Process Alternatives

The following c riteria were u s ed to evalu ate the five proc es salternatives

Fac ility s ize –5 mgd annu alaverage d ay flow (aad f)

Fac ility d es igned to prod u c e an efflu entthatmeets the waterqu alityreq u irements forP u blic A c c es s Reu s e (P A R)and Florid a A W T

Florid a A W T d efined as efflu entmeetingthe “5: 5: 3: 1”s tand ard

5 mg/L ofc arbonac eou s bioc hemic aloxygen d emand (c B O D 5),

5 mg/L totals u s pend ed s olid s (TS S ),

3 mg/L totalnitrogen (TN ), and

1 mg/L totalphos phoru s (TP ), res pec tively), highleveld is infec tion and filtration

P rojec td id notinc lu d e primary c larifiers

2 8

2/23/20 15

8

AMTA Workshop

America’s Authority in Membrane Technology

Example Project - Process Alternatives Evaluation

P roc es s A lternatives

A lt. 1 -Five-s tage B N R (B 5)proc es s , d is kfilters (D F)

A lt. 2 –B 5 proc es s , low-pres s u re tertiary membranes (TM F)

A lt. 3 -S tep-feed B N R proc es s , pos tanoxic zones , D F

A lt. 4 -Three-s tage proc es s , d enitrific ation filters (D N F)

A lt. 5 –B 5 proc es s , hollow-fibers u bmerged M B R

29

AMTA Workshop

America’s Authority in Membrane Technology 30

Example Project - Process Alternatives EvaluationAlt. 1 - Five-Stage BNR (B5) Process, Disk Filters (DF)

InfluentWastewater

(Q)

CoarseScreens Grit Removal

IR (1-4Q)

FirstAnoxic

Anaerobic Aerobic SecondAnoxic

Blowers

ToDisposal

Plant Recycle

Plant Recycle StreamPump Station

RAS (0.15 – 1.25Q)

Reaeration

Methanol(Optional)

Alum(Optional) Secondary

ClarifierDisk

Filters

Alum(Optional)

SodiumHypochlorite

ChlorineContact

FilterBackwash

WAS

WASHolding

Blowers

Haul Biosolids Off-sitefor Disposal or Further

Processing

Filtrate

Screw Press

Reject WaterStorage Tank

Reclaimed WaterStorage

Reclaimed WaterPump Station

Q

To RapidInfiltration

Basins,Site 6

To PublicAccess

Reuse/RapidInfiltration

Basins

LEGEND

Liquid StreamSolid Stream

Blower

Air

Chemical

Pump

AMTA Workshop

America’s Authority in Membrane Technology 31

Example Project - Process Alternatives EvaluationAlt. 2 – B5 Process, Low-Pressure Tertiary Membranes (TMF)

InfluentWastewater

(Q)

CoarseScreens Grit Removal

IR (1-4Q)

FirstAnoxic

Anaerobic Aerobic SecondAnoxic

Blowers

ToDisposal

Plant Recycle

Plant Recycle StreamPump Station

RAS (0.15 – 1.25Q)

Reaeration

Methanol(Optional)

Alum(Optional) Secondary

Clarifier

Alum(Optional) Sodium

Hypochlorite

ChlorineContact

WASHolding

Blowers

Haul Biosolids Off-sitefor Disposal or Further

Processing

Filtrate

Screw Press

Reject WaterStorage Tank

Reclaimed WaterStorage

Reclaimed WaterPump Station

Q

To RapidInfiltration

Basins,Site 6

To PublicAccess

Reuse/RapidInfiltration

Basins

LEGEND

Liquid StreamSolid Stream

Blower

Air

Chemical

Pump

Clean-in-PlaceSystem

ScourBlowers

Backwash

WAS

Permeate/Backpulse

Pump

Sodium HypochloriteCitric Acid

(For Chemical Cleaning)

AMTA Workshop

America’s Authority in Membrane Technology 32

Example Project - Process Alternatives EvaluationAlt. 3 - Step-Feed BNR Process, Post Anoxic Zones, DF

InfluentWastewater

(Q)

CoarseScreens Grit Removal

SecondAnoxic

ToDisposal

Plant Recycle

Plant Recycle StreamPump Station

RAS (0.15 – 1.25Q)

Reaeration

Methanol(Optional) Alum

(Optional)Secondary

Clarifier DiskFilters

Alum(Optional) Sodium

Hypochlorite

ChlorineContact

FilterBackwash

WASHolding

Blowers

Haul Biosolids Off-sitefor Disposal or Further

Processing

Filtrate

Screw Press

Reject WaterStorage Tank

Reclaimed WaterStorage

Reclaimed WaterPump Station

To RapidInfiltration

Basins,Site 6

To PublicAccess

Reuse/RapidInfiltration

Basins

LEGEND

Liquid StreamSolid Stream

Blower

Air

Chemical

Pump

Aerobic

WAS

AerobicAerobic

Anoxic Anoxic Anoxic

RASReaeration

Zone

Q

2/23/20 15

9

AMTA Workshop

America’s Authority in Membrane Technology

InfluentWastewater

(Q)

CoarseScreens Grit Removal

IR (1-4Q)

FirstAnoxic

Aerobic

Blowers

ToDisposal

Plant Recycle

Plant Recycle StreamPump Station

RAS (0.15 – 1.25Q)

Alum(Optional)

SecondaryClarifier

SodiumHypochlorite

ChlorineContact

WAS

WASHolding

Blowers

Haul Biosolids Off-sitefor Disposal or Further

Processing

Filtrate

Screw Press

Reject WaterStorage Tank

Reclaimed WaterStorage

Reclaimed WaterPump Station

Q

To RapidInfiltration

Basins,Site 6

To PublicAccess

Reuse/RapidInfiltration

Basins

LEGEND

Liquid StreamSolid Stream

Blower

Air

Chemical

Pump

Alum(Optional) Methanol

Blowers

BackwashPump

FilterBackwash

Deep-BedFilters

RASConditioning

(Anoxic)

Anaerobic

33

Example Project - Process Alternatives EvaluationAlt. 4 - Three-Stage Process, Denitrification Filters (DNF)

AMTA Workshop

America’s Authority in Membrane Technology 34

Example Project - Process Alternatives EvaluationAlt. 5 – B5 Process, Hollow-Fiber Submerged MBR

InfluentWastewater

(Q)

CoarseScreens

GritRemoval

IR (1-4Q)

FirstAnoxic

Anaerobic Aerobic SecondAnoxic

Blowers

ToDisposal

Plant Recycle

Plant Recycle StreamPump Station

Methanol(Optional)

Alum(Optional)

WAS

WASHolding

Blowers

Haul Biosolids Off-sitefor Disposal or Further

Processing

Filtrate

Screw Press

Reject WaterStorage Tank

ReclaimedWater Storage

Reclaimed WaterPump Station

To RapidInfiltration

Basins,Site 6

To Public AccessReuse/Rapid

Infiltration Basins

LEGEND

Liquid StreamSolid Stream

Blower

Air

Chemical

Pump

FineScreens

IR (1Q)

RAS (1-4Q)

MembraneTank

ScourBlowers

ChlorineContact

SodiumHypochlorite

SodiumHypochloriteCitric Acid

(For ChemicalCleaning)

Q

AMTA Workshop

America’s Authority in Membrane Technology 35

Example Project - Process Alternatives EvaluationProcess Parameters – Reactor Tank Volume

Parameter

Alternative

No. 1

Alternative

No. 2

Alternative

No. 3

Alternative

No. 4

Alternative

No. 5

B 5 proc es s with

D F

B 5 proc es s with

TM F

S tep-feed B N R

proc es s withD F

Three-s tage

B N R proc es s

W /D N F

B 5/P revGen

M B R P roc es s

Tank Volumes (All volumes in million gallons)

RA S

c ond itioning- - 0 . 14 0 . 19 -

A naerobic tank 0 . 2 7 0 . 2 7 - 0 . 2 7 0 . 2 7

P re-anoxic tank 1 . 36 1 . 36 0 . 98 0 . 58 0 . 66

A erobic tank 2 . 92 2 . 92 2 . 41 3. 1 8 1 . 25

P os t-anoxic

tank0 . 8 6 0 . 8 6 1 . 0 - 0 . 21

Re-aeration

tank0 . 14 0 . 14 0 . 14 - -

M B R tank - - - - 0 . 21

Total process

tank volume5.55 5.55 4.67 4.22 2.60

AMTA Workshop

America’s Authority in Membrane Technology 36

Economic Comparison

2/23/20 15

10

AMTA Workshop

America’s Authority in Membrane Technology 37

Example Project - Process Alternatives EvaluationNet Present Worth (NPW) costs

Parameter

Alternative

No. 1

Alternative

No. 2

Alternative

No. 3

Alternative

No. 4

Alternative

No. 5

B 5 proc es s with

D F

B 5 proc es s with

TM F

S tep-feed B N R

proc es s with

D F

Three-s tage B N R

proc es s W /D N F

B 5/P revGen

M B R P roc es s

Totalc apitalc os ts $7 1 , 40 0 , 0 0 0 $8 1 , 40 0 , 0 0 0 $66, 0 0 0 , 0 0 0 $7 1 , 0 0 0 , 0 0 0 $7 2 , 60 0 , 0 0 0

A nnu alO & M c os ts $1 , 510 , 0 0 0 $1 , 690 , 0 0 0 $1 , 460 , 0 0 0 $1 , 620 , 0 0 0 $1 , 8 40 , 0 0 0

Eq u ipment

replac ementc os ts$9, 7 0 0 , 0 0 0 $12 , 60 0 , 0 0 0 $8 , 50 0 , 0 0 0 $9, 7 0 0 , 0 0 0 $13, 60 0 , 0 0 0

Filtermed ia/

membrane

replac ementc os ts

$20 0 , 0 0 0 $1 , 2 0 0 , 0 0 0 $20 0 , 0 0 0 - $1 , 60 0 , 0 0 0

Total NPW costs $102,000,000 $118,400,000 $94,800,000 $103,000,000 $113,000,000

Delta Δ $7,200,000 $23,600,000 - $8,200,000 $18,200,000

Delta % 7.5% 25% - 8.6% 19%

AMTA Workshop

America’s Authority in Membrane Technology 38

Non – Economic Comparison

AMTA Workshop

America’s Authority in Membrane Technology 39

Example Project - Process Alternatives EvaluationEffluent Water Quality

Parameter

Alternative

No. 1

Alternative

No. 2

Alternative

No. 3

Alternative

No. 4

Alternative

No. 5

B 5 proc es s with

D F

B 5 proc es s

withTM F

S tep-feed B N R

proc es s withD F

Three-s tage B N R

proc es s W /D N F

B 5/P revGen

M B R P roc es s

Efflu entTS S , mg/l <5 <2 <5 <5 <2

Efflu enttu rbid ity,

N TU<2 <0 . 2 <2 <2 <0 . 2

M inimu m s ize

partic les removed

(µm)

1 -10 <0 . 1 1 –10 1 –10 <0 . 1

L og removalfec al

c oliform3. 0 3 –9 3. 0 2 . 5 3 -9

L og removal

protozoan c ys ts0 . 4 –0 . 5 6 -9 0 . 4 –0 . 5 0 . 4 –1 . 5 6 -9

L og removalviru s 0 –0 . 6 0 . 5 –4. 0 0 –0 . 6 0 –1 . 3 0 . 5 –4. 0

Efflu entTS S , mg/l <5 <2 <5 <5 <2

TN , mg/l ≤ 3 ≤ 3 ≤ 3 ≤ 3 ≤ 3

TP , mg/l ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1

AMTA Workshop

America’s Authority in Membrane Technology 40

Example Project - Process Alternatives EvaluationFacility Footprint

Parameter

Alternative

No. 1

Alternative

No. 2

Alternative

No. 3

Alternative

No. 4

Alternative

No. 5

B 5 proc es s

withD F

B 5 proc es s

withTM F

S tep-feed B N R

proc es s with

D F

Three-s tage

B N R proc es s

W /D N F

B 5/P revGen

M B R P roc es s

A c tivated S lu d ge

Treatmentproc es s , s f7 5, 0 0 0 7 5, 0 0 0 69, 7 0 0 65, 7 0 0 19, 8 0 0

Filtration proc es s , s f 1 , 90 0 2 , 7 0 0 1 , 90 0 6, 40 0 -

TotalFootprint, s f 7 6, 90 0 7 7 , 7 0 0 7 1 , 60 0 7 2 , 1 0 0 19, 8 0 0

2/23/20 15

11

AMTA Workshop

America’s Authority in Membrane Technology 41

Example Project - Process Alternatives EvaluationEnergy Consumption

Parameter

Alternative

No. 1

Alternative

No. 2

Alternative

No. 3

Alternative

No. 4

Alternative

No. 5

B 5 proc es s

withD F

B 5 proc es s

withTM F

S tep-feed B N R

proc es s withD F

Three-s tage

B N R proc es s

W /D N F

B 5/P revGen

M B R P roc es s

A nnu alEnergy

C ons u mption, kW h6, 450 , 0 0 0 6, 620 , 0 0 0 6, 50 0 , 0 0 0 6, 490 , 0 0 0 7 , 590 , 0 0 0

S pec ific Energy

C ons u mption,

kW h/kgal

2 . 9 3. 0 3. 0 3. 0 3. 5

AMTA Workshop

America’s Authority in Membrane Technology 42

Example Project - Process Alternatives EvaluationChemical Consumption

Parameter

Alternative

No. 1

Alternative

No. 2

Alternative

No. 3

Alternative

No. 4

Alternative

No. 5

B 5 proc es s

withD F

B 5 proc es s

withTM F

S tep-feed B N R

proc es s withD F

Three-s tage

B N R proc es s

W /D N F

B 5/M B R

P roc es s

A lu m (gallons ) N one N one N one N one N one

S od iu m

H ypoc hlorite

(gallons )

153, 0 0 0 154, 0 0 0 153, 0 0 0 153, 0 0 0 157 , 0 0 0

M ethanol(gallons ) N one N one N one 62 , 0 0 0 N one

P olymer(lb) 43, 0 0 0 43, 0 0 0 43, 0 0 0 43, 0 0 0 43, 0 0 0

C itric A c id (gallons ) N one 1 , 50 0 N one N one 3, 30 0

AMTA Workshop

America’s Authority in Membrane Technology 43

Example Project - Process Alternatives EvaluationBiosolids Production

Parameter

Alternative

No. 1

Alternative

No. 2

Alternative

No. 3

Alternative

No. 4

Alternative

No. 5

B 5 proc es s

withD F

B 5 proc es s

withTM F

S tep-feed B N R

proc es s withD F

Three-s tage

B N R proc es s

W /D F

B 5/M B R

P roc es s

M onthly B ios olid s ,

tons1 7 7 1 7 7 1 8 3 1 8 9 1 8 0

AMTA Workshop

America’s Authority in Membrane Technology 44

New Generation MBR Design

- Has the Tipping Point being

Reached for MBR Economics?

2/23/20 15

12

AMTA Workshop

America’s Authority in Membrane Technology

New Generation Hollow-Fiber Submerged MBR

S alientfeatu res –c omparis on with previou s generationM B R d es ign

15% inc reas ed prod u c tivity

Inc reas e in peakflu x from 2 7 gfd to 31 gfd

Inc reas ed membrane s u rfac e area perc as s ette

10 % s mallerfootprint

15% more energy effic ient

L es s c hemic alc leaning req u ired

45

AMTA Workshop

America’s Authority in Membrane Technology 46

Example Project - MBR NPW CostsNew Generation Membranes

Parameter

Alternative

No. 3

Alternative

No. 5

Alternative

No. 6

S tep-feed B N R

proc es s withD F

B 5/P revGen

M B R P roc es s

B 5/N ewGen M B R

P roc es s

Totalc apitalc os ts $66, 0 0 0 , 0 0 0 $7 2 , 60 0 , 0 0 0 $7 0 , 1 26, 0 0 0

A nnu alO & M c os ts $1 , 460 , 0 0 0 $1 , 8 40 , 0 0 0 $1 , 7 8 0 , 0 0 0

Eq u ipment

replac ementc os ts$8 , 50 0 , 0 0 0 $13, 60 0 , 0 0 0 $12 , 8 0 0 , 0 0 0

Filtermed ia/membrane

replac ementc os ts$20 0 , 0 0 0 $1 , 60 0 , 0 0 0 $1 , 50 0 , 0 0 0

Total NPW costs $94,800,000 $113,000,000 $108,800,000

Delta Δ - $18,200,000 $14,000,000

Delta % - 19% 15%

AMTA Workshop

America’s Authority in Membrane Technology 47

Example Project - Impact of Peaking Factors

D es ign flu x –S ingle mos timportantfac torthatimpac tsM B R ec onomic s

Hollow-FiberMBR

DesignFlux

(Peak)

Peak HourFlow

Factor

Cost ofMembranes

AverageEnergy

Consumption

Example P rojec t-P reviou sGeneration

2 7 3. 0 $5, 40 0 , 0 0 0 3, 7 1 0 kW h/d ay

N ew Generation 31 3. 0 $4, 8 0 0 , 0 0 0 3, 1 7 0 kW h/d ay

N ew Generation 31 2 . 0 $3, 950 , 0 0 0 2 , 8 2 0 kW h/d ay

AMTA Workshop

America’s Authority in Membrane Technology

Conclusions - MBR Optimization

M B R proc es s es c an be optimized :

M L S S (~6, 0 0 0 mg/L s eems bes t)

RA S d e-aeration

M aximize peakins tantaneou s flu x

O ptimize s c ou rs trategy

48

2/23/20 15

13

AMTA Workshop

America’s Authority in Membrane Technology

Conclusions – Comparison to CAS and Filters

M B R wins hand s d own on:

Reac tortankvolu me

Efflu entqu ality

P roc es s footprint

M ore wid es pread applic ation ofM B R s tillc hallenged by:

H igherenergy c ons u mption

Relatively higherlife c yc le c os t

The newerinnovations d on’ tyetc ompletely overc ome thes e

49July 2007

AMTA Technology Transfer Workshop“MBR/MF/UF Membrane Treatment in the Pacific Northwest”

in cooperation with WEF

Seattle, WA – May 21-23, 2012

AMTA Workshop

America’s Authority in Membrane Technology

Thank you!

Questions?

50