scannin g tunnelin g spect roscopy stu dy of surfac e...

13
Vol. 104 (2003) ACTA PHYSICA POLONICA A No . 3{ 4 Proceedingsof the 3rd International Symposium on Scanning Pr obe Spectroscopy, SPS'03 Scannin g Tunnelin g Spectroscopy Stu dy of Surfac e State s of 3d Me tals : C h em ic al Id enti Ùcation , Magn etic C ontras t an d Or b ital K ondo R eson ance State s M .M. J. Bischof f a , C.M. Fang a , R.A. de Gr oot a , G.M.M. H eij ne n a , M. I. Ka t snel son a , O. Y u. Ko l esny ch en k o a , R. de Ko r t a , A.I. Li c ht enste in a , A .J. Qu in n a , A.L. Vasquez de Par ma a;b , T.K. Yamada a;c and H. van Ke mpen a; Ê a NSRIM, University of Ni jmegen, Toernooiveld 1 6525 E D Ni j megen, T he Netherl ands b Dpto . de FÇ ± sica de l a Ma teri a Co ndensada , Uni versi da d A utÇ onoma de Ma dri d 28094 Ma dri d, Spai n c Facul ty of Science, Gakushui n Uni versi ty, 171-8588 Mej iro, T okyo, Japan Th e sur face states of 3d tra nsition meta ls are stu died by scannin g tun - neling microsco py and scannin g tunnelin g spectroscopy . T he results show that surf ace states can be used for chemical identi Ùcation w ith high spatial resolution . T he spin p olari zed nature of the surf ace states allow s us to ob- tain magnetic contrast in scanning tunnelin g miroscopy imaging w ith near atomic resolution . F or C r( 100 ) w e found that the surf ace state close to the F ermi level can b e explained by an orbital K ondo resonance surf ace state. PACS numb ers: 73.20.{r , 68.37.{d, 75. 70.{i 1. I n t r o d u ct io n Surf ace sta tes of 3d m etals pl ay an importa nt role in cata lysis and crysta l gro wth. In addi ti on it has been shown tha t surface states can be used for local chemical identi Ùcati on of elements in scanni ng tunnel ing m icroscopy (STM) stud- ies [1]. Al so these states can be spin polarized and so can contri bute strongly to spi n polari zed tunnel ing currents whi ch is im porta nt for spin electro nic devi ces corr esp on din g au t h o r; e-m ail : hv k@sci. kun .nl (231)

Upload: vandang

Post on 21-Jun-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Scannin g Tunnelin g Spect roscopy Stu dy of Surfac e ...przyrbwn.icm.edu.pl/APP/PDF/104/A104Z311.pdf · b Dpto . de FDZsica de la Materi a Condensada, Uni versidad A utÇonoma

Vol . 104 (2003) A CT A PHY SIC A POLON IC A A No . 3{ 4

P r oceedi ng s o f t h e 3rd I n t ern at io n al Sy m p osiu m on Scan ni n g Pr o b e Sp ect rosc opy, SPS '0 3

Scann in g Tunnelin g Spect r oscopy Stu dy

of Surfac e State s of 3d Me tals : C hem ic al

Id enti Ùcation , Magn etic C ontras t

and Or b ital K ondo R eson ance State s

M .M. J. B i sch of f a , C.M. Fang a , R.A . de Gr oo t a ,

G.M.M. H eij ne na , M. I. Ka t sne l son a ,

O.Y u. Ko l esny ch en k oa , R . de Ko r t a , A .I. Li c ht ens te in a ,

A .J. Qu in na , A .L. Vasq ue z de Par maa; b, T.K. Y amada a; c

an d H . van Ke mpen a ; Ê

a NSRI M , U niversit y of Ni jmegen, T oernooiveld 1

6525 ED Ni j megen, T he Netherl andsb Dpto . de FDZsica de la Ma teri a Co ndensada, Uni versidad A utÇonoma de Ma dri d

28094 Ma dri d, Spainc Facul ty of Science, Gakushui n Uni versi ty , 171-8588 Mej i ro , T okyo, Japan

Th e sur face states of 3d tra nsition meta ls are stu died by scannin g tun -neling microsco py and scannin g tunnelin g spectroscopy . The results showthat surf ace states can be used for chemical identi Ùcation w ith high spatialresolution . T he spin p olari zed nature of the surf ace states allow s us to ob-

tain magnetic contrast in scanning tunnelin g miroscopy imaging w ith nearatomic resolution . For C r( 100 ) w e found that the surf ace state close to theFermi level can b e explained by an orbital K ondo resonance surf ace state.

PAC S numb ers: 73.20. {r , 68. 37.{d, 75. 70.{i

1. I n t rod uct io n

Surf ace states of 3 d m etals pl ay an importa nt ro le in cata lysis and crysta lgrowth. In addi ti on i t has been shown tha t surface states can be used for localchemical identi Ùcati on of elements in scanni ng tunnel ing m icroscopy (STM) stud-ies [1]. Al so these states can be spin polarized and so can contri bute strongly tospi n polari zed tunnel ing currents whi ch is im porta nt for spin electro nic devi ces

corr esp on din g au t h o r; e-m ail : hv k@sci. kun .nl

(231)

Page 2: Scannin g Tunnelin g Spect roscopy Stu dy of Surfac e ...przyrbwn.icm.edu.pl/APP/PDF/104/A104Z311.pdf · b Dpto . de FDZsica de la Materi a Condensada, Uni versidad A utÇonoma

232 M .M. J . Bischo˜ et al .

and magneti c imaging. In thi s paper we wi l l discuss: (i ) How local is the localchemical identi Ùcati on; (i i ) The use of the surf ace state for magneti c im aging;(i i i ) The nature of the surf ace state, especially for Cr.

2 . C h em ical i denti Ùcat io n

D avi es et al . [1] showed by STM and scanning tunnel ing spectro scopy (STS)m easurements tha t the surf ace states of Fe(100) and Cr(1 00) occur at di ˜erentenergies and so can be used for local chemical identi Ùcati on of the element to whi chthe tunnel ing current Ûows. The questions we address in thi s paper are: Ho w localis the local chemical identi Ùcati on? Is one monolayer of a guest element su£ cientto suppress the surface state of the host meta l? Ho w sharp is the bounda ry betweentwo regions wi th di ˜erent surf ace state properti es? T o thi s end we studi ed C andO im puri ti es on V(1 00) [2] and Fe(100), respectivel y, pure overl ayers of Au onFe(100) [3], and mul ti layers of Mn on Fe(100) [4{ 6]. In addi ti on also the inÛuenceof ato mic steps on Fe, Cr, and V have been studi ed. In thi s paper som e exampl esof the results wi l l be given.

The exp eriments were perform ed in a UHV system wi th a base pressure inthe low 1 0 À 1 1 m bar range [3]. Duri ng depositi on of Mn and Au on the substra te(i ron whi skers) the pressure was kept in the low 1 0 À 1 0 m bar. We used an Om icro nSTM, typ e UHV STM- 1. For the STS observati ons usual ly at every pi xel of theim age a current ( I ) versus bias vol ta ge (V ) curve was measured. The deri vati ved I =dV wa s obta ined by num erical di ˜erenti ati on. In many casesthe signal qual i tywa s su£ cient to Ùt the observed surface state peaks in the dI =dV versus V curvesto a Gaussian f uncti on at every pixel of the im age. In thi s way peak energy, peakwi dth, and peak height im ages could be obta ined around im puri ti es and otherdefects.

Fig. 1. d I = dV versus bias voltage ( V ) of clean and C -contaminated vanadium (100)

surf ace.

Page 3: Scannin g Tunnelin g Spect roscopy Stu dy of Surfac e ...przyrbwn.icm.edu.pl/APP/PDF/104/A104Z311.pdf · b Dpto . de FDZsica de la Materi a Condensada, Uni versidad A utÇonoma

Scanni ng T unnel ing Spect roscopy Study . . . 233

Fig. 2. U pper lef t panel show s the top ography of a carb on contaminated V (100) sur-

face. T he right panel show s a p eak energy image ; the gray scale ranges from {0. 03 eV

(black) to 0.1 eV (w hite). T he low er panel gives the line proÙles indicated in the upp er

panels.

Fi gure 1 shows an STS m easurement of V, slightl y conta minated by 0.05m onolayer (M L) of carb on. A clear shift of the surface state peak of vanadiumis seen. Cl ean vanadium shows a stro ng surf ace state peak at 0.03 eV below theFerm i level. At the carbon conta minated surf ace the peak energy, peak height, andpeak wi dth are al l changed. T o study the local character of the inÛuence of thecarbon im puri t y a com pari son is m ade between the height map of the sam pl e andthe peak energy m ap (Fi g. 2). From other experi ments it is known al ready tha tthe carb on shows up in the height m ap as a suppressi on. From the cross sectionsthro ugh the conta m inati on, consisti ng of one or perhaps two carbon ato m s, onecan see tha t the spati al resoluti on in the height m ap and the peak energy map isabout the sam e, wi th a FW HM of 0.8 nm .

Simi lar experim ents have been perform ed for oxyg en on Fe(100). An exampl eis given in Fi g. 3. A sing le oxyg en im puri ty shif ts the surface state peak energy toa hi gher energy by 0.04 eV. The peak energy m ap shows again a spati al resoluti onequal to spati al resoluti on in the height m ap ( ¿ 1 :0 nm ). Thi s resoluti on is aboutwha t has to be expected at the setpoint used in the STS measurements. Thi ssetpoint corresp onds to a qui te large ti p-sam ple distance needed to be able toextend the I ¿ V m easurements to qui te high vol ta ges. Al so for atom ic steps,

Page 4: Scannin g Tunnelin g Spect roscopy Stu dy of Surfac e ...przyrbwn.icm.edu.pl/APP/PDF/104/A104Z311.pdf · b Dpto . de FDZsica de la Materi a Condensada, Uni versidad A utÇonoma

234 M. M. J . Bi scho˜ et al .

Fig. 3. T he upp er panels show the height image and p eak energy image of oxygen

impuriti es on Fe(100). T he low er lef t panel show s the small shif t of 0.04 eV of the p eak

energy at an oxygen impurity . T he arrow s in the upp er panels show the positi ons of the

measurements draw n in the low er left panel. T he low er right panel gives the line proÙles

indica ted in the upp er panels.

whi ch suppress the surface state compl etely in Fe(100) and Cr(1 00) (but not inV(1 00)), a simi lar spati al resoluti on of 0.7 to 1.0 nm was obta ined in the STM andSTS m easurements.

Ano ther interesti ng questi on is how m any conta minatio n ato ms are needed tosuppress the surface state. Fi gure 4 shows tha t a m onolayer of pure Au on Fe(100)suppresses the surface state compl etely. By com paring the sharpness of the edges ofthe gold islands, observed in the height observati on and in the electroni c structureobservati on, we can concl ude tha t the change in the electronic structure is veryabrupt. The edges of the islands show up in the STM map and STS m ap wi thsim i lar resoluti on as seen before for the sing le im puri ti es. Al so for Mn m onolayerislands on Fe(100) the sam e abruptness in the change of electro nic structure hasbeen observed. In thi s case the peak energy shi fts from the i ron value of 0.17 eVto 0.35 eV for the Mn m onolayer [3].

Page 5: Scannin g Tunnelin g Spect roscopy Stu dy of Surfac e ...przyrbwn.icm.edu.pl/APP/PDF/104/A104Z311.pdf · b Dpto . de FDZsica de la Materi a Condensada, Uni versidad A utÇonoma

Scanni ng T unnel ing Spect roscopy Study . . . 235

Fig. 4. T he upp er lef t panel gives the height image of gold islands on Fe(100) taken at

a setpoint of {0. 5 V and 0.6 nA . T he upp er right panel gives the d I = dV map at 0.17 V .

T he left low er panel show s the suppression of the iron surf ace state by a gold monolayer.

T he p ositions of these measurements are indicated in the upp er left panel by dots. T he

low er right panel gives the line proÙles indica ted in the upp er panels.

Al l of the described experim ents show tha t the spati al resoluti on of theobservati on of the surface state is comparable to the resoluti on in the height im -ages. The resoluti on obta ined is 0.7 nm in the best cases. Thi s resoluti on can beim pro ved when the ti p-sampl e distance can be decreased. Ho wever f or the STSm easurements thi s distance is usual ly qui te large because otherwi se the currentshould increase to o m uch at the hi gher vo ltag e end of the I ¿ V measurements.But f or surface states close to the Ferm i level the vol ta ge can be kept smal l andsom e im pro vement in resoluti on can sti l l be expected.

3. Ma gn et i c i m ag in g

The surf ace state of the 3 d m etals can be spi n polari zed to a high degree andso can contri bute strongly to spin polari zed tunnel ing currents. Ma gneti c contra stin STS can be exp ected when the sampl ehas domains wi th di ˜erent m agneti zati ondi recti ons and the STM ti p is m agneti zed.

Page 6: Scannin g Tunnelin g Spect roscopy Stu dy of Surfac e ...przyrbwn.icm.edu.pl/APP/PDF/104/A104Z311.pdf · b Dpto . de FDZsica de la Materi a Condensada, Uni versidad A utÇonoma

236 M. M. J . Bi scho˜ et al .

An interesti ng sam ple is Mn / Fe(100) (Fi g. 5). Previ ous SEMP A exp erimentsin the NIST laborato ry [7] have shown tha t the Mn sam ple consists of ferrom ag-neti c layers, whi ch are anti ferrom agneti cal ly stacked. As a result a sharp bounda rybetween dom ains wi th opposite magneti zati on di recti on m ight be present at everysing le ato m ic step at the surf ace. W e studi ed in deta i l the growth condi ti ons to getsam ples wi th nearl y layer by layer growth and a l imited am ount of interf ace di f-fusi on [4, 6]. By choosing the ri ght growth condi ti ons we obta ined sampl es wherea numb er of Mn layers are exp osed, see Fi g. 6. Fi gure 6 has been recorded wi th aW ti p. Al l Mn layers f rom the fourth layer up, show the same electroni c structureand so no speciÙc f eatures are observed in the d I =dV m ap.

Fig. 5. Schematic draw ing of a Mn sample grow n on a Fe w hisker (right panel). T he

lef t panels give chemically resolved images of the indicate d layers show ing the iron

contamination in the Ùrst Mn layer as black spots.

Fig. 6. H eight image for 7.2 M L of Mn on Fe (lef t). Layer 6 to 10 are exposed (setp oint

0. 5 V , 0.5 nA ). Spectroscopy (middle) and d I =dV map at 0.2 V (right). Measurements

are taken w ith a W tip.

T o get a ferrom agneti c ti p we use a W ti p, covered by a thi n layer of i ron of7{ 10 nm fol lowing the metho d described in R ef. [8]. Before the i ron is evaporatedon the ti p, the ti p is bl unted by heati ng by electron bom bardm ent to ¿ 2 0 0 0 £ C.Fi eld emission spectro scopy shows tha t the ti p radi us is larger tha n 300 nm . As

Page 7: Scannin g Tunnelin g Spect roscopy Stu dy of Surfac e ...przyrbwn.icm.edu.pl/APP/PDF/104/A104Z311.pdf · b Dpto . de FDZsica de la Materi a Condensada, Uni versidad A utÇonoma

Scanni ng T unnel ing Spect roscopy Study . . . 237

the magneti zati on of the thi n iron layer is expected to fol low the di recti on of thelayer the magneti zati on of the ti p wi l l be para l lel to the sam ple surface.

Fi gure 7 shows tha t wi th the i ron coated ti p the even and odd layers showdi ˜erent electroni c structures, corresp ondi ng to the di ˜erent density of sta tes forthe spin up and spin down di recti ons relati ve to the ti p magneti zati on di recti on.A cl ear magneti c contra st at the ato m ic steps is observed. As in our prepa rati onpro cedure the ti p m agneti zati on di recti on is arbi tra ry, there is som e chance tha tthe m agneti zati on di recti on of ti p and sampl eare perpendicul ar and no contra st isobserved. In tha t case we can change the ti p m agneti zati on di recti on by appl yi nga bias vol ta ge pul se of appro pri ate streng th and dura ti on [9].

Fig. 7. H eight image for 9.5 ML of Mn on Fe (lef t). Layer 8 to 12 are exposed. Sp ec-

troscopy (middle) and d I =dV map at 0.2 V (right). C learly the di˜erence betw een even

and odd layers can be seen. N ote that also in the narrow trench (3 nm) the magnetic

contrast is w ell resolved.

T o Ùnd the ul ti m ate m agneti c spati al resoluti on the ato mic steps are notsui tabl e because the adm ixture of height inf orm ati on and magneti c inf orm ati onm ight ham per a proper analysis. However at steps in the i ron whi sker one canhave an even and odd numb er of Mn layers m eeting each other nearl y wi tho ut astep in the sampl e surface height (see Fi g. 8). Using such a hi dden i ron step wefound a spati al resoluti on in the magneti c contra st of 0.4 nm in the best cases.

T o get quanti ta ti ve inf orm atio n about the degree of spin polari zati on of thesam ple is not stra ight forwa rd. One quanti ta ti ve measure is the asymm etry ind I =dV deÙned as

A ( d I = d V ) = [ ( dI =dV ) " " À ( dI =dV ) " # ] = [ (d I =dV ) " " +( d I =dV ) " # ] :

However, as can be seen in Fi g. 9, the results v ary strongly for di ˜erent setpointsand also for di ˜erent ti ps (not indi cated in the Ùgure). The reason behind thi sphenom enon is tha t dI =dV i s not di rectl y proporti onal to the density of statesbut to the density of sta tes ti m es an energy dependent tunnel ing probabi l i ty T . Am ore appro pri a te asym metry factor could be

Page 8: Scannin g Tunnelin g Spect roscopy Stu dy of Surfac e ...przyrbwn.icm.edu.pl/APP/PDF/104/A104Z311.pdf · b Dpto . de FDZsica de la Materi a Condensada, Uni versidad A utÇonoma

238 M. M. J . Bi scho˜ et al .

Fig. 8. Spatial resolution in magnetic contrast above a hidden iron step (setp oint

{0. 6 V , 0.5 nA ).

Fig. 9. Di˜erent d I = dV results obtained for di˜erent setp oints (upp er panels). Low er

panel: T he asymmetry factor obtained for di˜erent setp oints: Dashed line for negative

voltage setp oint; draw n line for p ositiv e voltage setp oint.

A ( d I = d V ) = T =f [ ( dI =dV ) =T ] " " À [ ( dI =dV ) =T ] " # g

f [ ( dI =dV ) =T ] +[ ( dI =dV ) =T ]:

The cruci al problem wi th thi s approach is how to Ùnd T . W eused an appro xi mati onpro posed by Ukra intsev [10]. By Ùtti ng the m easured dI =dV as a functi on of biasvo l tage T can be obta ined. As can been seen in Fi g. 10, at positi ve bias vol ta ge,where the sampl e density of sta tes dom inates, the asym m etry facto r becom es ti pand setpoint independent. At negati ve bi as vo l ta ge, where the ti p density of statesdom inates, the scatteri ng in the data is sti l l large for di ˜erent ti ps as can beexp ected. Appl yi ng the correcti on for the energy dependence of T also resul ts in

Page 9: Scannin g Tunnelin g Spect roscopy Stu dy of Surfac e ...przyrbwn.icm.edu.pl/APP/PDF/104/A104Z311.pdf · b Dpto . de FDZsica de la Materi a Condensada, Uni versidad A utÇonoma

Scanni ng T unnel ing Spect roscopy Study . . . 239

Fig. 10. The asymmetry factor corrected for the tunneli ng probabili ty T . T he draw n

line indicates the result of band structure calculatio n.

a clear repro duci bl e observati on of a bro ad density of sta te peak at 0.8 eV. Thi speak can be expl ained by a com bina ti on of spin polari zed d z 2 states found in bandstructure calcul ati ons perf orm ed at our insti tute [5].

4. Sur f ace st at e of Cr ( 100)

The experim ents on Cr(1 00) were perform ed at 4.2 K wi th a low tem peratureSTM bui l t in our insti tute [11]. The sam ple surface was prepared by in sit u cleavi ng

Fig. 11. 4.2 K cleave stage. T he matchstick shap ed C r sample is visibl e in the middle.

A w ire pulls the \sledge ", visible at the left, to the right till the sample breaks.

Page 10: Scannin g Tunnelin g Spect roscopy Stu dy of Surfac e ...przyrbwn.icm.edu.pl/APP/PDF/104/A104Z311.pdf · b Dpto . de FDZsica de la Materi a Condensada, Uni versidad A utÇonoma

240 M. M. J . Bi scho˜ et al .

Fig. 12. Di˜erent terrace structures observed on clea ved C r samples.

Fig. 13. T he right panel show s the d I =dV p eak observed on an atomically Ûat terrace

show n on the lef t ( 3 È 3 nm). T he atomic corrugation of 0.0015 nm is clearly visibl e in

the lef t panel.

at 4.2 K of a 99.999% puri ty single crysta l of Cr. The cleavage of a Cr sing lecrysta l can pro duce (wi th som e luck) an atom icall y Ûat and cl ean (100) surface.Fi gure 11 shows the sam ple cleavage stage. Fi gure 12 shows some typi cal exampl esof di ˜erent surf ace structures , whi ch can be obta ined ranging from very narro wterra ces to large Ûat terra ces. Ho wever the cl eavi ng can also result in qui te roughterra ces as shown in the lower ri ght panel of Fi g. 12 or in very rough surf aces (notshown). Spectroscopic m easurements on large monoato mi c terra ces (shown on theleft panel of Fi g. 13) show a very sharp peak close to the Ferm i level.

Page 11: Scannin g Tunnelin g Spect roscopy Stu dy of Surfac e ...przyrbwn.icm.edu.pl/APP/PDF/104/A104Z311.pdf · b Dpto . de FDZsica de la Materi a Condensada, Uni versidad A utÇonoma

Scanni ng T unnel ing Spect roscopy Study . . . 241

Occasional ly the Cr crysta l conta ins im puri ti es.Fi gure 14 shows the image ofsuch im puri ti es obta ined at di ˜erent bi as vo l tages. Away from the peak energy theim puri ty shows up as a localized f eature. However at the peak energy the im puri t yshows up as an extended feature wi th a cross l ike sym metry .

Fig. 14. T he right panels show the observations of some impuriti es. T he images are

taken at the voltages indica ted in the left panel. T he inset in the lef t panel gives a d I =d V

map taken at 25 meV . T he curves 1 and 2 are measured at the points indicated in the

inset of the left panel.

Fig. 15. InÛuence of the terrace w idth on the peak height and energy . T he p eaks 1 to 5

are measured at terraces of 20, 5, 2, 1. 5, 0.8 nm, resp ectively and have a p ositio n at 24,

34, 54, 70, and 130 mV .

It is di £ cul t to expl ain the sharpness of the peak, the nonlocal inÛuence ofthe im puri ti es and the cro ss-l ike sym metry f or a surface state wi th d z 2 sym m etry .An al terna ti ve expl anati on has been proposed based on the Ko ndo e˜ect [12].

Page 12: Scannin g Tunnelin g Spect roscopy Stu dy of Surfac e ...przyrbwn.icm.edu.pl/APP/PDF/104/A104Z311.pdf · b Dpto . de FDZsica de la Materi a Condensada, Uni versidad A utÇonoma

242 M. M. J . Bi scho˜ et al .

Ti ght bindi ng mean Ùeld calcul ati ons [13] showed the existence of two degeneratespi n-spl i t d x z ; d y z surface states local ized about 1 eV above and below the Fermilevel. The spati al sym m etry of these states at the (100) surf ace to gether wi th theintera cti on wi th the conducti on electrons can lead to the form ati on of a many-bodyKo ndo resonance near the Ferm i level. In thi s wa y an orbi ta l singlet can be form edwi th the d x z ; d y z states m ixed sym metri cal ly simi lar to the spin-Ûip mechanismin the conven ti onal Kondo e˜ect [14].

The conventi onal Ko ndo e˜ect is very sensiti ve to sym m etry breaki ng of thespi ns by m agneti c Ùelds. Thi s e˜ect canno t play a role in the anti ferrom agneti c Cr.Ho wever, the (100) sym m etry can be broken by ato mic steps at the edges of theterra ces at the surface. Fi gure 15 shows the inÛuence of the wi dth of the terra ceson the surface state peak height and wi dth. Indeed at narro w terra ces the peakcol lapses.

Co ncludi ng, thi s works shows tha t the orbi ta l degeneracy of the d x z ; d y z

surf ace states can lead to the form ati on of an orbi ta l Ko ndo resonance on Cr(1 00).

Ac kn owl ed gm ent

Thi s wo rk was supp orted by the Sti chti ng vo or Funda menteel Onderzo ek derMa teri e (FOM), whi ch is funded by the Nederl andse Organi sati e vo or Wetenschap-peli jk Onderzo ek (NW O), and by the Euro pean pro ject MAG NETUD E. A. L. V.P .tha nks the Nederl andse Org anisati e voor W etenschappel ij k Onderzo ek and theMi ni sterio de Ci encia y TechnologDZa for Ùnanci al support. The autho rs are grate-ful to D r. D .T. Pi erce of the NIST laborato ry for suppl yi ng the Fe whi skers. Thewo rk on V wa s done in cooperati on wi th the group of Pro f. P. Varga, TU W ien;we tha nk Prof. P. Varga for hi s ki nd hospita l i ty to M. M. J.B.

R ef er en ces

[1] A . Da vies, J . Stroscio, D. T . Pierce, R.J . C elotta, Phys. R ev . Let t . 76, 4175 (1996).

[2] M. M. J . Bischo˜, C . K onvick a, A .J. Quinn, M. Schmid, J . Redinger, R. Po dloucky ,P. V arga, H . van K emp en, Su rf . Sci . 513, 9 (2002); M. M. J . Bischo˜, C . K onvick a,

A .J . Quinn, M. Schmid, J . Redinger, R. Po dloucky , P. V arga, H . van K emp en,Ph ys. R ev. Lett . 86, 2396 (2001).

[3] M. M. J . Bischo˜, Ph. D. T hesis, U niversity of N i j megen, N ij megen 2002.

[4] T .K . Y amada, M. M. J. Bischo˜, T . Mizoguchi, H . van K emp en, Surf . Sci . 516,179 (2002).

[5] T .K . Y amada, M. M. J . Bischo˜, G. M. M. H eijnen, T . Mizoguchi, H . van K emp en,Ph ys. R ev. Lett . 056803 (2003).

[6] M. M. J . Bischo˜, T . Yamada, A .J. Quinn, H . van K emp en, 155

(2002).

[7] D.A . T ulchinsky , J . U nguris, R. J. C elotta, 91 (2000).

Page 13: Scannin g Tunnelin g Spect roscopy Stu dy of Surfac e ...przyrbwn.icm.edu.pl/APP/PDF/104/A104Z311.pdf · b Dpto . de FDZsica de la Materi a Condensada, Uni versidad A utÇonoma

Scanni ng T unnel ing Spect roscopy Study . . . 243

[8] O. Pietzsch, A . K ubetzk a, M. Bo de, R. Wiesendange r, Sci en ce 2 92, 2053 (2001);R. Wiesendan ger, M. Bo de, Sol id State Commu n. 119, 341 (2001).

[9] T .K . Y amada, M. M. J . Bischo˜, T . Mizoguchi, H . van K emp en, A ppl. Ph ys. L ett .82, 1437 (2003).

[10] V .A . U kraintsev, Ph ys. R ev. B 48, 11176 (1996).

[11] J.W. G. Wild �oer, A .J.A . van Roy , H . van K emp en, C .J .P.M. H armans, Rev . Sci .In stru m. 65, 2849 (1994).

[12] O.Y u. K olesnychenko, R. de K ort, M. I . K atsnelson, A .I . Lichtenstein, H . van K em-pen, N ature 415, 507 (2002).

[13] L. E. K lebano v, R.H . V ictoria, L. M. Falico v, D.A . Shirly , 1997(1985).

[14] D.L. Cox, A . Zaw adowski, 599 (1998).