saturation and value modulation (svm): a new method … · saturation and value modulation (svm): a...

14
87 Saturation And Value Modulation (SVM): A New Method For Integrating Color And Grayscale Imagery By David W. Viljoen 1 and Jeff R. Harris 2 Geological Survey of Canada 615 Booth St. Ottawa, ON, K1A 0E9 Telephone: (613) 995-1207 Fax: (613) 995-9273 e-mail: [email protected]; [email protected] ABSTRACT Algorithms for integrating color imagery with grayscale imagery have long been an important feature of many remote sensing (RS) image analysis and geographic information systems (GS). Traditional methods for data integration include Red-Green-Blue (RGB) /Hue-Satura- tion-Value (HSV) transformation and RGB modulation. However, these techniques are either inflexible or present a compromise between the quality of the color and the contribution of the shading. Furthermore, these techniques can also result in serious color distortions. Layer transpar- ency is another popular technique for integrating data that is available in most RS and GS software packages. How- ever, optimal integration of color and grayscale imagery is difficult to achieve using this method. We briefly review the shortcomings of these tradition- al image integration methods and introduce a new method (Saturation-Value-Modulation [SVM]) for raster image integration developed by David Viljoen at the Geological Survey of Canada. SVM is flexible and does not compro- mise the color or grayscale components of the resulting integrated image. The general concepts behind this algo- rithm as well as the five parameters used to control the in- tegration process are discussed. Various examples of how SVM can be used to integrate various geoscience data are also presented. Finally, we provide a brief overview of the ESR ArcGS implementation of SVM, though we do not include a detailed presentation of the actual Visual Basic code or the algorithm. The ArcGS map document (MXD) that contains the VBA (Visual Basic for Applications) code is available for download for those who wish to use SVM. INTRODUCTION There are two primary reasons for integrating a color image with a grayscale image. The first is to provide vi- sual enhancement of a single dataset by combining differ- ent characteristics. For example, a color image of a digital elevation model (DEM) can be integrated with a grayscale image of the shaded relief DEM (Figure 1). The second is to visualize the relationship between two very differ- ent types of data. For example, gamma ray spectrometer data can be combined with Landsat Thematic Mapper band 7 (Figure 2). Many methods have been developed to integrate imagery in remote sensing image analysis and geographic information systems. t is instructive to review a few of these methods to appreciate some of the advan- tages of the SVM method. Modern remote sensing software and GS often have a layer transparency feature that facilitates the integration of data and allows the user to increase or decrease the transparency of one layer to reveal the layer that would otherwise be hidden. The advantage of this method is that it is instantaneous, as it does not involve pixel-by-pixel computations and color transformations. This method can be used with two or more color images or a color image and a grayscale image. The resulting integrated image is a weighted interpolation of the colors of the contributing images. The disadvantage of this method in integrating color and grayscale imagery is that the resulting inte- grated image compromises either the color or the shading (Figure 3). Remote sensing and GS software often have tools for performing transformations between Red-Green-Blue (RGB) and Hue-Saturation-Value (HSV) color models. Figure 4 graphically shows the components of the HSV model where hue is the dominant wavelength of the color, saturation is the presence or absence of color, and value is the brightness and darkness. Color transformations involve pixel-by-pixel conversion of RGB color compo- nents into equivalent HSV components. ntegration of color and grayscale imagery is achieved by replacing the value component (V) with the values from the grayscale image (Figure 5). One of the problems with this technique is that the value component is often important in defining colors in the color image (Harris et al. 1990, 1994). That

Upload: phamtuong

Post on 22-Apr-2018

230 views

Category:

Documents


3 download

TRANSCRIPT

87

87

Saturation And Value Modulation (SVM): A New Method For Integrating Color And Grayscale Imagery

ByDavidW.Viljoen1andJeffR.Harris2

GeologicalSurveyofCanada615BoothSt.

Ottawa,ON,K1A0E9Telephone:(613)995-1207

Fax:(613)995-9273e-mail:[email protected];[email protected]

ABSTRACT

Algorithmsforintegratingcolorimagerywithgrayscaleimageryhavelongbeenanimportantfeatureofmanyremotesensing(RS)imageanalysisandgeographicinformationsystems(G�S).TraditionalmethodsfordataintegrationincludeRed-Green-Blue(RGB)/Hue-Satura-tion-Value(HSV)transformationandRGBmodulation.However, these techniques are either inflexible or present acompromisebetweenthequalityofthecolorandthecontributionoftheshading.Furthermore,thesetechniquescanalsoresultinseriouscolordistortions.Layertranspar-encyisanotherpopulartechniqueforintegratingdatathatisavailableinmostRSandG�Ssoftwarepackages.How-ever,optimalintegrationofcolorandgrayscaleimageryisdifficult to achieve using this method.

We briefly review the shortcomings of these tradition-alimageintegrationmethodsandintroduceanewmethod(Saturation-Value-Modulation[SVM])forrasterimageintegrationdevelopedbyDavidViljoenattheGeologicalSurvey of Canada. SVM is flexible and does not compro-misethecolororgrayscalecomponentsoftheresultingintegratedimage.Thegeneralconceptsbehindthisalgo-rithm as well as the five parameters used to control the in-tegrationprocessarediscussed.VariousexamplesofhowSVMcanbeusedtointegratevariousgeosciencedataarealsopresented.Finally,weprovideabriefoverviewoftheESR�ArcG�SimplementationofSVM,thoughwedonotincludeadetailedpresentationoftheactualVisualBasiccodeorthealgorithm.

TheArcG�Smapdocument(MXD)thatcontainstheVBA(VisualBasicforApplications)codeisavailablefordownloadforthosewhowishtouseSVM.

INTRODUCTION

Therearetwoprimaryreasonsforintegratingacolorimage with a grayscale image. The first is to provide vi-sualenhancementofasingledatasetbycombiningdiffer-

entcharacteristics.Forexample,acolorimageofadigitalelevationmodel(DEM)canbeintegratedwithagrayscaleimageoftheshadedreliefDEM(Figure1).Thesecondistovisualizetherelationshipbetweentwoverydiffer-enttypesofdata.Forexample,gammarayspectrometerdatacanbecombinedwithLandsatThematicMapperband7(Figure2).Manymethodshavebeendevelopedtointegrateimageryinremotesensingimageanalysisandgeographicinformationsystems.�tisinstructivetoreviewafewofthesemethodstoappreciatesomeoftheadvan-tagesoftheSVMmethod.

ModernremotesensingsoftwareandG�Softenhavealayertransparencyfeaturethatfacilitatestheintegrationofdataandallowstheusertoincreaseordecreasethetransparencyofonelayertorevealthelayerthatwouldotherwisebehidden.Theadvantageofthismethodisthatitisinstantaneous,asitdoesnotinvolvepixel-by-pixelcomputationsandcolortransformations.Thismethodcanbeusedwithtwoormorecolorimagesoracolorimageandagrayscaleimage.Theresultingintegratedimageisaweightedinterpolationofthecolorsofthecontributingimages.Thedisadvantageofthismethodinintegratingcolorandgrayscaleimageryisthattheresultinginte-gratedimagecompromiseseitherthecolorortheshading(Figure3).

RemotesensingandG�SsoftwareoftenhavetoolsforperformingtransformationsbetweenRed-Green-Blue(RGB)andHue-Saturation-Value(HSV)colormodels.Figure4graphicallyshowsthecomponentsoftheHSVmodelwherehueisthedominantwavelengthofthecolor,saturationisthepresenceorabsenceofcolor,andvalueisthebrightnessanddarkness.Colortransformationsinvolvepixel-by-pixelconversionofRGBcolorcompo-nentsintoequivalentHSVcomponents.�ntegrationofcolorandgrayscaleimageryisachievedbyreplacingthevaluecomponent(V)withthevaluesfromthegrayscaleimage(Figure5).Oneoftheproblemswiththistechniqueis that the value component is often important in defining colorsinthecolorimage(Harrisetal.1990,1994).That

88 D�G�TALMAPP�NGTECHN�QUES‘06

Figure 1.a.Colorimageofadigitalelevationmodel(DEM)ofMt.Logan.b.ShadedreliefofMt.LoganDEM.c.�ntegratedimageusingSaturation-Value-Modulation(SVM)method.

Figure 2.a.TernarygammarayspectrometercolorcompositeimageK-Th-U(RGB)–imagerysuppliedbyE.Schetselaar–�TC)b.LandsatTM7c.�ntegratedimageusingSaturation-Value-Modulation(SVM)method.

89SATURAT�ONANDVALUEMODULAT�ON(SVM)

Figure 3.LayertransparencyfeatureofArcG�S.

Figure 4.Hue-Saturation-Valuecolormodel.

90 D�G�TALMAPP�NGTECHN�QUES‘06

Figure 5.TraditionalValueReplacementMethodofimageintegration.

is,oftenthedifferencebetweenlighteranddarkercolorsinanimageishigherandlowernumbersrepresentingthevaluecomponentofthecolors.�fthevaluecomponentsaremodulatedorreplaced,thenthedifferencebetweenthecolorswillbechangedoreliminated.Figure6showshowreplacingthevaluecomponentofadarkandlightergreenresultsinanimagewherethedarkandlightergreenscannotbedifferentiated.�nthisexample,theonlydifferencebetweenthetwogreensintheoriginalcolorimageisinthevaluecomponent.Asecondproblemwiththistechniqueisthattheoriginalcolorscanbecorruptedwhenthevaluecomponentisreplaced(Harrisetal.,1990,1994).Forexample,yellowcanappearasdirtygreenintheintegratedimage,andredcanappearbrown.Anotherproblemwiththismethodisthat,ifthesaturationofthecolorsislow,thenreplacingthevaluecomponentresultsinanimagewherethesaturationofthecolorisfurtherreduced(Figure7).

Anothertraditionalmethodofimageintegrationinvolvespixel-by-pixelmultiplicationoftheRGBcom-ponentsbythegrayscalevaluesscaledbetween0and1(Figure8).Themainproblemwiththismethodisthatthescaledvaluesofnearlyallpixelsinagrayscaleimagearelessthanone,sothecolorsintheresultingintegratedim-agearedarkerthantheoriginalimage.Thisscaledvaluesproblemcanalsocorrupttheapparenthueofthecolor.Forexample,ayellowmightappeartobesomekindofgreen(Figure9).

BothvaluereplacementandRGBmodulationmeth-ods offer very little flexibility on how the integration is performed,andtherearefewornoparametersthatcanbeusedtocontroltheresultofthecalculations.

Unlikelayertransparency,theSVMmethodisnotin-teractiveandinvolvespixel-by-pixelcomputationssimilartothoseassociatedwiththevaluereplacementandRGBmodulationmethods.However,theSVMmethodprovidesmore flexibility on the integration process which results in

integratedimagesthataresuperiortothoseproducedbytraditionalmethods.

OVERVIEW OF THE SATURATION- VALUE-MODULATION (SVM) METHOD

Thesaturationandvaluecolorcomponentsofanil-luminatedobjectchangewiththeangleofincidence.Forexample,Figure10showsacylinderilluminatedfromtherightside.Thecolorsofthepartsfacingthesourceofilluminationhavealowersaturationandahighervaluecomponent,whereasthepartsfacingawayfromthesourceofilluminationhaveahighersaturationandlowervalue.�ntheareaaroundthe“cutoff”line(Figure10),thesaturationandvaluecomponentswillbethatofthenaturalcoloroftheobject.

�nFigure11,the“shadevalue”(x-axis)iszeroonthosesurfacesthatfaceawayfromthesourceofillumina-tion;thehighestvalues(e.g.,255or100)willbeassignedtosurfacesthatfacetowardthesourceofillumination.Multipliercurvesthatrangebetween0and1canbeusedtomodulatethesaturationandvaluecolorcomponentsdependingontheshadevalue.Thevalueofapixelinthegrey-scale image (Shade value) defines a vertical line that intersectsthesaturationandvaluemultipliercurves.Thepointsofintersectionofthisverticallineandmultipliercurvesarethesaturationandvaluemultipliersrangingfrom0to1(Figure11).Thesaturationandvaluecom-ponentsofthecolorimageatthesamepixellocationaremultipliedbytheirrespectivemultipliers.TheresultingmodulatedsaturationandvaluecomponentsareintegratedwiththeoriginalhuecomponenttocreatetheSVMimagein HSV coordinate space. The final step is a transforma-tionofthehueandmodulatedsaturationandvaluecom-ponentstoRGBcoordinatesfordisplaypurposes.

Figure12presentsaschematicoftheSVMmethod.Notshownisthetransformationofthecolorimagefrom

91SATURAT�ONANDVALUEMODULAT�ON(SVM)

Figure 6.Lossandcorruptionofcolorwithvaluereplacementmethod.Thethreecircledareashavethreeshadesofgreendifferentiatedonlybythevaluecomponentasshowninthetable.Replacingthevaluecomponentofthesegreenareaswithvaluesintheshadedreliefimageresultsinalossoftheshadesofgreen.Replacingthevaluecomponentinyellowandredareasresultsincolorsthatappear“dirty”.

Figure 7.Lowsaturationcolorsbecomelowerwithvaluereplacementmethod.

Figure 8.RGBmodulationmethodofimageintegration.

92 D�G�TALMAPP�NGTECHN�QUES‘06

Figure 9.a.ColorDEMimageofnorthernManitoba.b.ShadedreliefofnorthernManitobaDEM.c.�ntegratedimageusingRGBmodulationmethod.Theboxhighlightsanareawherelightgreen,yellow,andlightredpixelshavebeentransformedtodarkercolorssinceallpixelshavebeenmultipliedbyavaluefromtheshadedreliefimageoflessthan1.�nfact,virtuallyallpixelswillbemultipliedbymultiplierslessthan1whichcreatesadarkeroverallintegratedimageproduct.

Figure 10.ArainbowcoloredcylinderillustratestheSaturation-Value-Modulation(SVM)Concept.Forsur-facesfacingtheilluminationsource,thecolorshavefullvaluebutlowersaturation.Forsurfacesfacingaway,thecolorshavefullsaturationbutlowervalue.Forsurfacesatthe“cutoff”,thecolorhasfullsaturationandvalue.

RGBtoHSVcomponents.Theschematicshowshowthesaturation(S)andvalue(V)componentsaremodulatedbymultipliersthataredeterminedbythepixelvalueinthegrayscaleimage.Themodulatedsaturation(Sm)andvalue(Vm)areusedwiththeoriginalhuecomponentandtransformed to an RGB composite image file that can be displayedinremotesensingsoftwareoraG�S.Themulti-plier curves and the parameters that define their shape are keyelementsoftheSVMmethod.

SVM Parameters

There are five SVM parameters necessary to define theshapeofthesaturationandvaluemultipliercurves.Together,theyprovidetheabilitytocontrolvariouschar-acteristicsoftheresultingintegratedimage.

Grayscale Value Cutoff (CutOff)

�ncaseswherethepixelvaluesinagrayscaleimagearelowerthanthe“grayscalevaluecutoff”(seeFigure11),thevaluecomponent(V)ofthecolorimagewillbemodulated,andthesaturationcomponentwillbeequaltothesaturationintheoriginalcolorimage(i.e.saturationmultiplierequalsone).Forgrayscalepixelvaluesgreater

93SATURAT�ONANDVALUEMODULAT�ON(SVM)

Figure 11.SVMsaturationandvaluemultipliercurvesareusedtomodelthelowersaturationsforsurfacesthatfacetowardsanilluminationsourceandlowercolorvaluesforsurfacesthatfaceawayfromanilluminationsource.Surfacesthatneitherfacetowardsnorawayfromtheillumina-tionsource(e.g.horizontalsurfacesinadigitalelevationmodel)willhaveminimalornochangetotheiroriginalcolorvalues.

Figure 12.SchematicoftheSVMmethod.

94 D�G�TALMAPP�NGTECHN�QUES‘06

thanthecutoff,thesaturationcomponent(S)willbemodulated,andthevaluecomponentwillequalthevalueintheoriginalcolorimage(i.e.,multiplierequalsone).Atthecutoffvalue,thevalueandsaturationmultipliersareequaltoone,sothecolorintheintegratedimagewillbethesameastheoriginalcolorimageatthecutoffvalue.

AgeneralSVMruleofthumbistomaximizethenumberofpixelsintheintegratedimagethathavethesamecolorastheoriginalcolorimage.Thismeansthatacutoffvaluethatmaximizesthenumberofpixelswithsaturationandvaluemultipliersof1shouldbeselected.�nmostcases,thiscutoffisrepresentedbythepeakinthegrayscaleimagehistogram.

Foratypicalshadedreliefdigitalelevationmodel,thepeakinthehistogramcoincideswithpixelsthatrepresenthorizontalsurfaces.Forshadedreliefimages,thecutoffcanthereforebecomputedfromthefollowingequation:

Cutoff=255*sin(A)

Thisassumesarangeofvaluesinthegrayscaleimageis255andAistheilluminationsourcealtitudeindegrees(0-90).Forexample,thepeakofhistogramofashadedreliefDEMwithanilluminationangleof45degreeswillbeapproximately180(Figure13).

Figure14showstheimpactofchangingthecutoffontheintegratedimage.Loweringthecutoffbelowtheoptimalvalueof180––thepeakinthegrayscalehisto-gram––resultsinanimagewithloweroverallsaturation(i.e.,washedoutcolors)thantheoriginalcolorimage.�ncreasingthecutoffvalueabovethecutoffresultsinanimagewithloweroverallvalue(i.e.,darker).

Minimum Value Multiplier (Vmin)

Theminimumvaluemultiplier,whichcanvarybetween0and1,determineshowdarkthepixelswillbeinareaswherethegrayscalepixelvaluesarelow.Forexample,ifVminis0,thenforgrayscalepixelvaluesof0thevaluecomponentofthecolorimagewillbemultipliedby0.Anycolorwithavaluecomponentof0isblack.Thismeansthatcolorpixelsthathavethesamelocationasgrayscalepixelvaluesof0willbeblackintheinte-gratedimage.AsVminincreases,thesesamepixelswillbecomebrighter.AVminvalueof1willresultinnovaluemodulation.�nthiscase,thepixelsintheintegratedimagethathavethesamelocationasgrayscalepixelswithval-ueslowerthanthecutoffwillbethesameastheoriginalcolorimage.

Figure15showstheimpactofchangingthevalueofVmin.NotehowtheshadowsbecomebrighterasVminincreases.Valuesgreaterthan0andlessthan0.4aregen-erallyrecommended.

Value Multiplier Exponent (Vexp)

ThevaluemultiplierexponentwillincreaseordecreasethenumberofpixelsthatwillhavetheirvaluecomponentmultipliedbyavalueclosetoVmin.HigherVexpvaluesmeanthatthemultiplierwillriseslowlyfromVmin.Figure16showshowincreasesinVexpincreasetheproportionof“darkpixels”intheintegratedimage.Valuesof1orlessgenerallyprovidegoodresults.

Minimum Saturation Multiplier (Smin)

Theminimumsaturationmultiplier,whichvariesbetween0and1,determineshowmuchcolortherewillbeforpixelswherethegrayscalevaluesarehigh.Forexample,ifSminis0,thenforgrayscalepixelvaluesof255(themaximumintheimage),thesaturationmultiplierwillbe0andthesaturationofthecolorintheintegratedimagewillbe0.�nthiscasethecolorintheintegratedimagewillhave“no”colorandwilltypicallybewhiteorlightgray.AsSminincreases,thesesamepixelswillhavehighersaturationandmorecolor.�fSminis1,thentherewillbenosaturationmodulationandthepixelsabovethecutoff will appear to be “flat”. Figure 17 shows the impact ofincreasingSminfrom0to0.6.Sminvaluesbetween0and.4arerecommended.

Saturation Multiplier Exponent (Sexp)

Thesaturationmultiplierexponentwillincreaseordecreasethenumberofpixelsthatwillhavetheirsatu-rationcomponentmultipliedbyavalueclosetoSmin.HigherSexpvaluesmeanthatmorepixelswillbemulti-pliedbyamultiplierclosetoSmin.Figure18showshowhighervaluesofSexpdecreasetheproportionof“washedoutpixels”intheintegratedimage.Generallyvaluesbetween1and3providegoodresults.

ARCGIS IMPLEMENTATION OF SVM

TheSVMmethodwasimplementedasaVisualBasicforApplications(VBA)applicationinESR�’sArcMapapplication.�tworkswithArcG�S(ArcView,ArcEditor,orArc�nfo)anddoesnotrequireanyspecialESR�exten-sions(e.g.,SpatialAnalyst).

TheVBAimplementationallowstheusertoseteachof the five SVM parameters described above. The input imagescanbeoneofthefollowing:

• 8- or 16-bit image with an associated CLR file• 8- bit TIF image (colors embedded in file)• 32-bit TIF image (color defined by RGB channels)• 3separate8-bitRGBimages

95SATURAT�ONANDVALUEMODULAT�ON(SVM)

Figure 13.HistogramofpixelsvaluesforshadedreliefofMt.Logan(Figure1).Peakisapproxi-mately255*sin(45)=180=recommendedSVMcutoffvalue.

Figure 14.SVMParameters–Grayscalevaluecutoff(CutOff).

96 D�G�TALMAPP�NGTECHN�QUES‘06

Figure 15.SVMParameters–Minimumvaluemultiplier(Vmin).

Figure 16.SVMParameters–Valuemultiplierexponent(Vexp).

97SATURAT�ONANDVALUEMODULAT�ON(SVM)

Figure 17.SVMParameters–Minimumsaturationmultiplier(Smin).

Figure 18.SVMParameters–Saturationmultiplierexponent(Sexp).

98 D�G�TALMAPP�NGTECHN�QUES‘06

The CLR file contains space delimited values for pixelvalueandRGBcomponents.Anexamplerecordfrom a CLR file might be:

1824464120

Thismeansthatpixelvaluesof18inthecolorimagehaveRGBcoordinatesof244,64,and120respectively.

TheoutputfromSVMisa3-bandRGBBand�nter-leavedbyLine(B�L)imagewhichiseasilyimportedoruseddirectlybyremotesensingsoftware.�tcanalsobeeasilyexportedtoT�ForESR�GridformatinArcG�S.

TheArcMapdocument(MXD)thatcontainstheVBAcodecanbedownloadedfromtheSVMFTPsitealongwithsampledata(Viljoen,2006).

APPLICATION OF SVM IN GEOSCIENCE

TheSVMmethodhasbroadapplicationtogeo-sciencestudiesthatrequireintegrationofacolorandgrayscaleimage.Manygeologicalmappingapplications,forexample,requireinterpretationofvarioustypesofremotelysensedandgeophysicaldata.TheintegrationofthesedatatypesoftenprovidesimagesthatofferauniqueperspectiveoftheEarth’ssurface,whichen-ablestheinterpretationofmanygeologicalfeaturesthat,withoutintegration,wouldhavebeenimpossibletomake.Furthermore,therelationshipsoftenevidentintheresultingintegratedimageryofferauniqueinterpretation

tool.ThefollowingthreeexampleshighlightthevalueofintegratingdifferentgeosciencedataanddemonstratetheadvantagesoftheSVMmethodovertraditionalintegra-tionmethods.

Integrating Geological Map Units with Shaded Relief Aeromagnetics

Themagneticcharacteristicsofrocksat,andbelow,the Earth’s surface often reflect mappable variations in lithologies.Themagneticcharacteristicsofrocksaremea-suredwithaeromagneticsensors,andthesemeasurementsareoftenprocessedintocolorfulimagesthatrepresenttotal field, vertical gradient, and other derivative products. �ntegrationofcoloredgeologicalunitswithshadedreliefversions of total field aeromagnetics can provide an image thatisextremelyusefulforgeologicalmapping.

GeologicalunitsareusuallyrepresentedbyvectorpolygonsinaG�Sand,giventhatSVMisentirelyaras-ter-basedmethod,thesevectorpolygonsmustberaster-izedandhavethesameprojection,pixelresolution,andmap extent as the total field shaded relief image. Detailed step-by-stepinstructionsonhowtousetheArcG�Sver-sionofSVMforthiskindofintegrationareavailablefordownload(Grantandothers,2006).

Figure19showstheresultofusingSVMtointe-graterasterizedgeologicalunitswithshadedrelieftotalfield aeromagnetics. As can be seen, rock units, after SVMintegration,arecharacterizedbydifferentmag-neticsignaturesontheintegratedimage.Thisimage

Figure 19.Comparingimageintegrationmethods–a.Rasterizedgeologicalmapunits.b.Shadedreliefaeromagneticimageforthesameareaasthegeologymap.c.�ntegratedimageusingthevaluereplacementimageintegrationmethod.d.�ntegratedimageusingtheSVMmethod.e.�nte-gratedimageusingRGBmodulationmethod.

99SATURAT�ONANDVALUEMODULAT�ON(SVM)

cangreatlyassistmappingendeavours,astherockunitscan be modified based on variations in their magnetic signature.Withrespecttotheintegrationmethods,notehowtheintegratedimageproducedbytheSVMmethodretainstheoriginalcolorsofthegeologymapcomparedtotheothertwotraditionalmethods.Thesmallsquareshighlightareaswherecolorcorruptionandlossareevidentintheintegratedimageproducedbytheothermethods.

Integrating a Ternary U-Th-K RGB Gamma Ray Spectrometer Image with a Shaded Relief Digital Elevation Model

�ntegrationofgammarayspectrometerdata,whichmeasurestheemissionoftheelementsU,ThandKfromtheEarth’ssurfacewithashadedDEM,canalsoprovideaveryusefulimageforgeologicalmapping.Variationsin the above radioelements often reflect different rock unitsaswellasareasofpotentialmineralization.How-ever,sincethegammaraydatacomprisethreechannels(U,K,Th)thatareoftencorrelated,thecolorvaria-tionsinternaryimagesareoftenlow.Theintegrationofternaryimagerypresentsachallengetoallmethodsofimageintegration.TheValuereplacementmethod,forexample,oftenresultsinalmostcompletecolorlossasshowninFigure20.Aswiththepreviousexample,the

SVMmethodresultsinanintegratedimagethatretainstheoriginalcolortoamuchgreaterdegreethantheothermethods.

Pan Sharpening Landsat Multi-spectral With A Panchromatic Image

Pansharpeningisthetermgiventoanimageproc-essingtechniquethatuseshigherresolution(smallerpixels)grayscaleimagerytoimprovethevisualizationoflowerresolution(largepixels)colororcolorcompos-iteimages.Manysatelliteandairbornesensorsystemshavemulti-spectralchannelsandpanchromaticchannels.Landsat7,forexample,provides6channelsof30meterpixelresolutionforportionsofthevisible,nearinfraredandshort-waveinfraredoftheelectromagneticspectrum.�talsocontainsapanchromaticchannelthatcoverstheentirevisiblepartoftheelectromagneticspectrumwith15meterpixelresolution.�ntegratingthehigherresolutionpanchromaticchannelwithaRGBcolorcompositeofthelowerresolutionvisiblechannelsresultsinasharpercolorcompositeimageasshowninFigure21.Theboxesintheimagesareareasthathighlightthedifferencesbetweentheseimageintegrationmethods.�ftheaccuracyoftheoriginalcolorsisimportant,thanSVMisthepreferredmethod.�ftheoriginalcolorsarenotimportant,thenvaluereplacementisanotherpan-sharpeningoption.

Figure 20.Comparingimageintegrationmethods–a.TernarygammarayspectrometercolorcompositeimageK-Th-U(RGB)compositeimage.b.AshadedreliefdigitalelevationmodelofthesameareaastheK-Th-Uimage.c.�ntegratedimageusingthevaluereplacementimageintegrationmethod.d.�ntegratedimageusingtheSVMmethod.e.�ntegratedimageusingRGBmodulationmethod.

100 D�G�TALMAPP�NGTECHN�QUES‘06

CONCLUSIONS

TheSaturation-Value-Modulation(SatValModorSVM)methodisbasedonthereal-worldconceptofdark-ercolorsforsurfacesinshadow(lowervaluecomponent)andcolorloss(lowersaturationcomponent)onillumi-natedsurfaces.Thisreal-worldconceptisimplementedinSVMasapairofmultipliercurvesthatmodulatethesatu-rationandvaluecomponentsofcolorsinthecolorimage.Thesemodulatedsaturationandvaluecomponentsarecombinedwiththeoriginalhuesinthecolorimageandtransformedtored-green-bluecomponentsfordisplay.

TheSVMmethodofintegratingcolorandgrayscaleimageryprovidessuperiorresultsovermanyotherinte-grationmethodsbecausethereisnocompromisebetweencolorandshading,asisthecaseforlayertransparency.�naddition,thereisnodistortionofcolors,ascanresultfromvaluereplacement,RGBmodulation,andothermethods.Unliketheotherintegrationmethods,whichprovidelittleornocontrolovertheintegrationprocess,SVM uses five different parameters that provide a great dealofcontroloverthecharacteristicsoftheresultingintegratedimage.

Theuseofcolorisimportantinconveyinggeosci-enceinformationsuchasgeologicalunits,geophysical

properties,radiometriccharacteristics,andmanyothers.Visualizingtherelationshipsbetweenthesedataismadepossiblethroughimageintegrationtechniques.TheSVMmethodisasuperioralgorithmforintegratingcolorandgrayscaleimagery,whichresultsinintegratedimagesthatpreservetheoriginalcolorandgrayscalecharacteristicsoftheinputimagery.SVMisfreelyavailablefromtheSVMFTPsitelistedinViljoen(2006).

REFERENCES

Harris,J.R.,Murray,R.,andHirose,T.,1990,�HSTransformforthe�ntegrationofRadar�magerywithOtherRemotelySensedData:JournalofPhotogrammetricEngineeringandRemoteSensing,Vol.56,No.12,p.1631-1641.

Grant,G.,FraserP.,andViljoen,D.,2006,HowtoSVM:accessedatftp://nrd:[email protected]/viljoen/downloads/satvalmod/HowToSVM.pdf.

Harris,J.R.,Bowie,C.,Rencz,A.N.,andGraham,D.,1994,ComputerEnhancementTechniquesforthe�ntegrationofRemotelySensed,GeophysicalandThematicDatafortheGeosciences:CanadianJournalofRemoteSensing,Vol.20,No.3,p.210-221.

Viljoen,D.,2006,Saturation-Value-ModulationFTPsite:accessedatftp://nrd:[email protected]/viljoen/downloads/satvalmod/.

Figure 21.Comparingimageintegrationmethods.a.Landsat7RGBcolorcompositeimageofThematicMapper(TM)bands3,2,and1respectively(30meterpixels).b.LandsatTMBand8(15meterpixels)c.Pansharpenedimageusingthevaluereplacementimageintegrationmethod.d.PansharpenedimageusingtheSVMmethod.e.PansharpenedimageusingRGBmodulationmethod.