sathish prasad

Upload: satthi-bandaru

Post on 09-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 SATHISH PRASAD

    1/46

    Presented by:

    SATHISH

    Chemistry Department.

  • 8/7/2019 SATHISH PRASAD

    2/46

    INTRODUCTION

    IONIC LIQUIDS

    COMPOSITION OF IONIC LIQUIDS

    Figure 1: structure of ionic liquids[ BMIM]

    .

  • 8/7/2019 SATHISH PRASAD

    3/46

  • 8/7/2019 SATHISH PRASAD

    4/46

    APPLICATIONS OF IONIC LIQUIDS

    y Ionic liquids as stationary phases in gas chromatography

    y Ionic liquids in capillary electrophoresis

    y Ionic liquids as background electrolyte additives in non-

    aqueous media

    y Ionic liquids as electrolyte additives in aqueous media

  • 8/7/2019 SATHISH PRASAD

    5/46

    Figure 2: Mechanism of polyphenols separation using 1-alkyl-3-methylimidazolium based ionic

    liquid

    NN

    CH4R

    NN

    R

    CH3

    NN

    RCH3

    NN

    RCH3

    NN

    RCH3

    O

    OH

    OH

    OH

    OH

    OH O

    NN

    CH3 R

    EOF

    NN

    CH3R

    NN

    R CH4

    NN

    R CH3

    NN

    R CH3

    NN

    R CH3

  • 8/7/2019 SATHISH PRASAD

    6/46

    APPLICATIONS OF IONIC LIQUIDS CONT.

    y Analytical applications of ionic liquids as a micelle-formingsurfactant

    y Application of ionic liquids to the electrodeposition ofmetals

    y Ionic liquids in spectrometry

    y Ionic liquids as extractions

    y Extraction of bioactive compounds in natural plant

  • 8/7/2019 SATHISH PRASAD

    7/46

    IONIC LIQUIDS IN LIQUID CHROMATOGRAPHY

    Figure 3: Scheme illustrating potential interactions between methylimidazolium cation and phenyl-basedreversed-phase stationary phase.

    Reversed-phaseliquidchromatographicanalysisofionicliquids

  • 8/7/2019 SATHISH PRASAD

    8/46

    APPLICATIONS OF IONIC LIQUIDS IN NORMAL-

    PHASE LIQUID CHROMATOGRAPHY Ionic liquids as mobile-phase additives in liquid

    chromatography

    Ionic liquids as stationary phases in liquid chromatography

    A Surface confined ionic liquids as reversed phase stationaryphases in liquid

    Figure 4: Scheme illustrating potential reorientation of bonded imidazolium ligands in response to deprotonationofresidual silanols

  • 8/7/2019 SATHISH PRASAD

    9/46

    DRAWBACKS FOR INDUSTIAL APPLICATION

    Lack of physical parameters such as conductivity, viscosity is

    serious drawbacks for industrial application of ionic liquids.

    ydrophobic ionic liquids although they are stable and allow

    easiest recovery from biphasic processes bur never designed to

    dissolve carbohydrate-based macromolecules because their

    solubilisation depends on the competitive replacement of

    intermolecularhydrogen bonding.

    ne of the potential problems with ionic liquids is the possible

    pathway into environment through waste water but this problem is

    common with

    all solvents

  • 8/7/2019 SATHISH PRASAD

    10/46

    THEORY

    ADSORPTION

    Adsorption is the process in which matter is

    extracted from one phase and concentrated at the

    surface of a second phase. (Interface accumulation).

    This is a surface phenomenon as opposed toabsorption where matter changes solution phase,

    e.g. gas transfer. This is demonstrated in the

    following schematic.

  • 8/7/2019 SATHISH PRASAD

    11/46

    .

  • 8/7/2019 SATHISH PRASAD

    12/46

    If we have to remove soluble material from the solution phase,

    but the material is neither volatile nor biodegradable, we often

    employ adsorption processes. Also adsorption has application

    elsewhere, as we will discuss later.

    Adsorbate: material being adsorbed

    Adsorbent: material doing the adsorbing. (examples are

    activated carbon or ion exchange resin).

  • 8/7/2019 SATHISH PRASAD

    13/46

    TYPES OF ADSORPTION

    Exchange adsorption (ion exchange)

    Electrostatic due to charged sites on the surface. Adsorptiongoes up as ionic charge goes up and as hydrated radius goesdown.

    Physical adsorption

    Van der Waals attraction between adsorbate and adsorbent. Theattraction is not fixed to a specific site and the adsorbate isrelatively free to move on the surface. This is relatively weak,reversible, adsorption capable of multilayer adsorption

  • 8/7/2019 SATHISH PRASAD

    14/46

    CHEMICALADSORPTION

    Some degree of chemical bonding between adsorbate and

    adsorbent ch

    aracterized by strong attractiveness. Adsorbedmolecules are not free to move on the surface. There is a high

    degree of specificity and typically a monolayer is formed. The

    process is seldom reversible.

    Generally some combination of physical and chemical

    adsorption is responsible for activated carbon adsorption in

    water and wastewater

  • 8/7/2019 SATHISH PRASAD

    15/46

    ADSORPTION EQUILIBRIA

    If the adsorbent and adsorbate are contacted long enough an

    equilibrium will be established between the amount of

    adsorbate adsorbed and the amount of adsorbate in solution.

    The equilibrium relationship is described by isotherms.

    qe = mass of material adsorbed (at equilibrium) per mass of

    adsorbent.

    e = equilibrium concentration in solution when amountadsorbed equals qe.

    qe/ e relationships depend on the type of adsorption that

    occurs, multi-layer, chemical, physical adsorption, etc.

  • 8/7/2019 SATHISH PRASAD

    16/46

    ISOTHERM MODELS

    y The figures below show that there are four common models for

    isotherms.

  • 8/7/2019 SATHISH PRASAD

    17/46

    LANGMUIR ISOTHERM

    This model assumes monolayer coverage and constant bindingenergy between surface and adsorbate.

    The model is:

    represents the maximum adsorption capacity (monolayercoverage) (g solute/g adsorbent).

    Ce has units of mg/L.

    K has units of L/mg

    0a e

    ee

    K Q Cq

    1 K C

    !

    0

    aQ

  • 8/7/2019 SATHISH PRASAD

    18/46

    BET (BRUNAUER,EMMETT AND TELLER)

    ISOTHERM

    y This is a more general, multi-layer model. It assumes that a

    Langmuir isotherm applies to each layer and that no transmigration

    occurs between layers. It also assumes that there is equal energy of

    adsorption for each layer except for the first layer.

    S

    =saturation (solubility limit) concentration of the solute. (mg/liter)

    KB = a parameter related to the binding intensity for all layers.

    Note: when e > 1 and K = KB/ s BET isotherm

    approaches Langmuir isotherm.

    )}/)(1K(1){(

    QKq

    SeBeS

    0

    aeB

    e

    !

  • 8/7/2019 SATHISH PRASAD

    19/46

    FREUNDLICH ISOTHERM

    y For the special case of heterogeneous surface energies

    (particularly good for mixed wastes) in which the energy term,

    KF

    , varies as a function of surface coverage we use the

    Freundlich model.

    yy nn andand KKFF areare systemsystem specificspecific constantsconstants..

    n

    eFeK!

  • 8/7/2019 SATHISH PRASAD

    20/46

    RESEARCH OBJECTIVE

    y The objective is to use ionic liquids as mobile phasesalong with acetic acid and methanol to study their effect asmobile phase additives in reversed phase liquid

    chromatography.

    ere tryptophan was used as solute and an aqueoussolution of methanol along with ionic liquid was used asmobile phase.

    Study involved comparision of calibration curves, profile,calibbration data, adsorption behaviour and peak shapeswith two different columns (prevail, Xterra)

  • 8/7/2019 SATHISH PRASAD

    21/46

    Experimentaly Commercially available tryptophan was purchased from

    Spectrum (Gardena, CA 9 2 8 and Newburnswick, NJ,

    89 1).

    Thio urea was purchased from Sigma Aldrich.

    Methanol, water and acetic acid used are all PLC grade and

    were purchased from Fischer Scientific FairLaw, NJ.

  • 8/7/2019 SATHISH PRASAD

    22/46

    APPARATUS

    Apparatus used is Shimadzu liquid chromatography, PLC-model 2 A, which is equipped with auto sampler (SIL-

    2 A/2 AC) and online degasser (DGU-2 A3/ DGU-2 A5)was used.

    UV-VIS (SPD-2 A/SPD-2 AV) was used as a detector.

    XTERRA-C18 (15 mm .6mm, Particle size-5) was used as a

    stationary phase that was supplied from (Waters, 2 Libertyway, Franklin, MA 2 38).

    PREVAIL-C18(25 mm .6mm, Particle size-5) was used as astationary phase.

  • 8/7/2019 SATHISH PRASAD

    23/46

    y ORIGIN

    SR6 Origin 7.5, Origin Lab Corporation, One round house

    plaza, North

    ampton, MA 1 6 USA, 1991-2 6 was used

    y Preparation of mobile phase

    yAqueous solutions 1 % methanol, 1%acetic acid Without ILs

    SOFTWARE PROGRAMS

  • 8/7/2019 SATHISH PRASAD

    24/46

    Aqueoussolutionsof1%aceticacid, NomethanolWith ILs

    5Mm Ionic liquid with No methanol and 1% acetic acid

    Preparation of .1 g/L, 1g/L, 1 g/L of tryptophan

    1 Mm Ionic liquid 1% acetic acid, No methanolPreparation of .1 g/L, 1g/L, 1 g/L of tryptophan

    Aqueoussolutionsof1%aceticacid, 10% methanolWith Ils

    5Mm Ionic liquid with 1 % methanol and 1% acetic acid

    Preparation of .1 g/L, 1g/L, 1 g/L of tryptophan

    Mm Ionic liquid with 1 % methanol and 1% acetic acid

    Preparation of .1 g/L, 1g/L, 1 g/L of tryptophan

  • 8/7/2019 SATHISH PRASAD

    25/46

    MECHANISM

    Interactionof[BMIM]BF4 onmodifiedsilicasurface.

  • 8/7/2019 SATHISH PRASAD

    26/46

    RESULTS AND DISCUSSION

    2 6 8

    2

    2

    6

    8

    (A

    A (mau)

    t (min)

    N O

    E O

    N O I L

    A C T R

    T O

    A N

    g/L

    5 5

    2

    6

    8

    (B)t (min)

    A

    (mau)

    NO

    EO

    N O I L

    A C TR! "

    TO"

    A N #

    $

    /L

    10 12 14

    %

    &

    % %

    2% %

    3% %

    ' % %

    5% %

    6% %

    B(

    I(

    5( (

    N O(

    E O)

    0 1

    )

    A C T R2 3

    T O3 )

    A N0 4

    /L

    t (min)

    A

    (mau)

    (c)0 2 4 6 8 10 12 14 16

    0

    200

    400

    600

    800

    1000

    B(

    I(

    5( (

    NO(

    EO)

    0 1

    )

    A C TR2

    TO3 )

    A N0 5 4

    /L

    A6

    7

    (mau)

    t (min) (D)

    10 12 140

    100

    200

    300

    400

    500

    600

    Abs (mau)

    t (min)

    BMIM 10MM NO MEOH 1% HAC TRYTOPHAN 1G/L

    (E)

    0 4 8 12 160

    150

    300

    450

    600

    750

    900

    1050

    Abs (mau)

    t (time) (F)

    BMIM 10MM NO MEOH 1% HAC TRYTOPHAN 10G/L

    Figure 5: Effect of the concentration of BMIM in mobile phase on breakthrough curves of tryptophan A-B: No MeOHNO IL;C-D: No

    MeOH, 5 mM BMIM;E-F: No MeOH, 1 mM BMIM; left 1 g/LTryptophan and right 1 g/LTryptophan. Column: C18 X-terra, Flowrate:

    1. ml/min, Wavelength: 3 5 and 31 for tryptophan 1 g and1 g/L respectively.

  • 8/7/2019 SATHISH PRASAD

    27/46

    0 2 4 6 8 10

    0

    200

    400

    600

    Abs (mau)

    t (min)(A)

    NO MEOH NO IL 1% HAC TRYPTOPHAN 1G/L

    0 2 4 6 8 10 12 1 4 160

    100

    200

    300

    400

    500

    Abs (mau)

    t (min) (C)

    BMIM 5MM NO MEOH 1% HAC TRYPTOPHAN 1G/L

    0 2 4 6 8 10 12 14 160

    100

    200

    300

    400

    500

    600

    Abs (mau)

    t (min) (D)

    BMIM 5MM NO MEOH 1% HAC TRYTOPHAN 10G/L

    0 2 4 6 8 10 120

    100

    200

    300

    400

    500

    Abs (mau)

    t (time) (E)

    BMIM 10MM NO MEOH 1% HAC TRYPTOPHAN 1G/L

    0 3 6 9 12

    0

    200

    400

    Abs (mau)

    t (time)(F)

    BMIM 10MM NO MEOH 1% HAC TRYPTOPHAN 10G/L

    Figure 6: The effect of concentration of BMIM in mobile phase on the overloaded band profiles of tryptophan A-B: No MeOHNo IL;C-

    D: No MeOH, 5 mM BMIM;E-F: No MeOH, 1 mM BMIM; left 1g/LTryptophan and right 1 g/LTryptophan.Column: C18 X-terra,

    Flow rate: 1. ml/min, Wavelength: 3 5 and 31 for tryptophan 1g and 1 g/L respectively

  • 8/7/2019 SATHISH PRASAD

    28/46

    CALIBRATION GRAPHS

    Mobile phase C(g/L) Parameters of polynomifit : y=a+bx+cx2+dx3

    a b cd

    No IL No MeOH1%HAC

    1 TRYP0.02225 0.00103 8.28317

    10 TRYP 0.06058 0.00347 4.94741

    5 mM BMIM 1%HACNo MeOH

    1 TRYP 0.00616 0.001 8.98003

    10 TRYP 0.06884 0.00357 4.68651*

    10 mM BMIM 1%HACNo MeOH

    1 TRYP 0.01923 9.3561310-4 9.1786

    10 TRYP -0.09964 0.00652 5.019

    Table 4: Parameters of the polynomial fit for the different

    concentrations of BMIM in the mobile phase.

  • 8/7/2019 SATHISH PRASAD

    29/46

    0 100 200 300 400 500 600 700

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    C (g/L)

    Abs (mau)

    NO MEOH NO IL 1% HAC TRYPTOPHAN 1G/L

    0 200 400 600 800 1000 1200

    0

    2

    4

    6

    8

    10

    C (g/L)

    Abs (mau) (B)

    NO MEOH NO IL 1% HAC TRYPTOPHAN 10G/L

    0 100 200 300 400 500 600 700

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    C (g/L)

    Abs (mau) (C)

    BMIM 5MM NO MEOH 1% HAC TRYPTOPHAN 1G/L

    0 200 400 600 800 1000 1200

    0

    2

    4

    6

    8

    10

    C (g/L)

    Abs (mau) (D)

    BMIM 5MM NO MEOH 1% HAC TRYPTOPHAN 10G/L

    0 100 200 300 400 500 600 700

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Abs (mau)

    C (g/L)

    BMIM 10MM NO MEOH 1% HAC TRYPTOPHAN 1G/L

    (E)

    0 200 400 600 800 1000 1200

    0

    2

    4

    6

    8

    10

    C (g/L)

    Abs (mau) (F)

    BMIM 10MM NO MEOH 1% HAC TRYPTOPHAN 10G/L

    Figure 7: Calibration curves of tryptophan determined by FA with different concentrations of BMIM on C18 X-terra column. tryptophanA-

    B: No MeOHNo IL;C-D: No MeOH, 5mM BMIM;E-F: No MeOH, 1 mM BMIM; left 1g/LTryptophan and right 1 g/LTryptophan. Flow

    rate 1. mL/ min; Wavelength 3 5 nm and room temperature. Mobile phases: aqueous mixture containing 1% HAC and NOmethanol and

    BMIM

  • 8/7/2019 SATHISH PRASAD

    30/46

    0 2 4 6 8 10

    0

    20

    40

    60

    80

    q(g/L)

    C(g/L)

    NO MEOH NO IL 1% HAC TRYPTOPHAN

    (A)

    0 2 4 6 8 10

    0

    40

    80

    q(g/L)

    c(g/L)(B)

    BMIM 5MM NO MEOH 1% HAC TRYPTOPHAN

    0 2 4 6 8 10

    0

    20

    40

    60

    80

    100

    q (g/L)

    C (g/L)

    BMIM 10MM NO MEOH 1% HAC TRYPTOPHAN

    (C)

    0 2 4 6 8 10

    0

    40

    80

    Tryptophan, No MeOH 1%HAC

    black sqaures:10 mM BMIMBF4

    red triangles: 5 mM BMIMBF4

    q(g/L)

    c(g/L)

    Figure 8: Experimental isotherm data with different concentrations of BMIM on X-TerraColumn. Flow rate 1. mL/ min; Wavelength 3 5

    nm and Room temperature. Mobile phases: -1 % (v/v) mixtures of No methanol, acetic acid andHPLC water

  • 8/7/2019 SATHISH PRASAD

    31/46

    [BMIM] Model5 mM Langmuir

    TRYPTOPHAN

    IM

    10g/L

    1 g/L

    AVG

    FA

    195.7

    220

    207.8

    220.95

    0.09252

    0.0817

    0.17422

    0.0817

    10 mM Langmuir

    TRYPTOPHAN

    IM

    10g/L

    1g/L

    AVG

    162.3

    158.5

    160.4

    0.1111

    0.1074

    0.10975

    FA 218.02096 0.08614

    Theparametersofisothermalcurvefortryptophan withdifferent

    concentrations ILsinmobilephaseon C1 Xterracolumn.

  • 8/7/2019 SATHISH PRASAD

    32/46

    PREVAIL COLUMN

    89

    @

    8

    @

    9A 8

    8

    @

    8 8

    A 8 8

    B 8 8

    C 8 8

    A D E F G H I P

    Q R Q S T eU

    V

    AW

    PREVAIL NO ILX Y

    ACa

    Rb

    Pa

    OP

    ANc

    d

    X e f

    L

    gh

    i

    g

    i

    hp g p

    h

    g

    p g g

    q g g

    r g g

    As

    t

    u

    v w x

    y

    e

    PREVAIL NO IL

    AC

    R

    P

    OP

    AN

    L

    A

    R T

    U

    j

    Cj

    PREVAIL NO IL k l m

    AC n Ro

    Pn OPm

    AN k

    L

    Figure 9: Effect of concentration of BMIM in mobile phase on breakthrough curves ofTryptophan A-C: No OMIM;D-F: 1 % MeOH, 5 mM

    BMIM;Column: C18Prevail, Flow rate: 1. ml/min, Wavelength: 3 5 and 31 for tryptophan 1 g and 1 g/L respectively.

  • 8/7/2019 SATHISH PRASAD

    33/46

  • 8/7/2019 SATHISH PRASAD

    34/46

    0 5 10 15 20 25 300

    20

    40

    60

    80

    100

    120

    140

    160

    180 NO MEOH NO IL 1% HAC TRYPTOPHAN 0.1G/L

    Abs (mau)

    t (time) (A)

    0 2 0 0 4 00 60 0 8 00 1 0 0 0 1 2 00 1 40 0 1 60 0

    0

    1

    2

    3

    4

    5

    6 NO MEOH NO IL 1% HAC TRYTOPHAN 1G/L

    Abs (mau)

    t (time) (B)

    0 5 10 15 20 25 300

    1 00

    2 00

    30 0

    4 00

    50 0

    6 00

    A b s ( m a u )

    t ( t im e) (C )

    N O I L N O M E O H 1 % H A C T R Y P T O P H A N 1 0 G /L

    Figure 11: The effect of concentration of BMIM in mobile phase on the overloaded band profilesof tryptophanA-C: No BMIM;Column:

    C18 Prevail, Flow rate: 1. ml/min, Wavelength: 3 5 and 31 for tryptophan 1 gand 1 g/L respectively

  • 8/7/2019 SATHISH PRASAD

    35/46

    0 5 10 15 20 25 300

    50100

    150

    200

    250

    300

    Abs (mau)

    t (time)

    BMIM 5MM 10% MEOH 1% HAC TRYPTOPHAN 0.1G/L

    (A)

    0 5 1 0 1 5 2 0 2 5 3 0 3 5 400

    100

    200

    300

    400

    Abs (mau)

    t ( t ime)

    B M I M 5 M M 1 0 % M E O H 1 % H A C T R Y P T O P H A N 1 G / L

    (B )

    0 10 20 30 40 500

    10

    20

    30

    40

    50

    60

    70BMIM 5MM NO MEOH 1% HAC TRYPTOPHAN 0.1G/L

    Abs (mau)

    t (time) (C)

    0 10 20 30 400

    50

    100

    150

    200

    250

    300BMIM 5MM NO MEOH 1% HAC TRYPTOPHAN 1G/L

    Abs (mau)

    t (time) (D)

    0 1 2 3 4 50

    50 0

    1 0 0 0

    1 5 0 0

    2 0 0 0

    2 5 0 0

    3 0 0 0

    3 5 0 0

    A b s ( m a u )

    t ( t ime)

    B M I M 5 M M N O M E O H 1 % H A C T R Y P T O P H A N 1 0 G / L

    (E )

    0 10 20 30 40 5 00

    20

    40

    60

    80

    100B M I M 1 0 M M 1 O % M E O H 1 % H A C T R Y P T O P H A N 0 .1 G / L

    A b s ( m a u )

    t ( t ime) (F)

    0 5 1 0 1 5 2 0 2 5 3 00

    1 0 0

    2 0 0

    3 0 0

    40 0

    5 0 0

    A b s ( m a u )

    t ( t i m e )

    B M I M 1 0 M M 1 0 % M E O H 1 % H A C T R Y P T O P H A N 1 G /L

    (G )

    0 5 1 0 1 5 2 0 2 50

    1 0 0

    2 0 0

    3 0 0

    40 0

    5 0 0

    6 0 0 B M I M 1 0 M M 1 0 % M E O H 1 % H A C T R Y P T O P H A N 1 0 G / L

    A b s ( m a u )

    t ( t im e ) (H )

    0 10 20 30 40 500

    10

    20

    30

    40

    50

    60BMIM 10MM NO MEOH 1% HAC TRY PTOPHAN 0.1G/L

    Abs (mau)

    t (time) (I)

    0 10 20 30 40 50

    0

    50

    100

    150

    200

    250BMIM 10MM NO MEOH 1% HAC TRYPTOPHAN 1G/L

    Abs (mau)

    t (time) (J)

    0 10 20 30 40

    0

    50

    100

    150

    200

    250

    300

    Abs (mau)

    t (time)

    BMIM 5MM NO MEOH 1% HAC TRYPTOPHAN 10G/L

    (K)

    Figure 12: The effect of concentration of BMIM in mobile phase on the overloaded band profiles of tryptophan A-B: BMIM 5mM 1 %

    MEOH, C-E:BMIM 5mM No MEOH;F-H:BMIM 1 mM 1 % MEOH;I-K:BMIM 1 mM No MEOH;Column: C18 Prevail, Flow

    rate: 1. ml/min, Wavelength: 3 5 and 31 for tryptophan 1 gand 1 g/L respectively

  • 8/7/2019 SATHISH PRASAD

    36/46

    Parameters of the polynomial fit for the different

    concentrations of BMIM in the mobile phase

    Mobile phase C(g/L) Parameters of polynomifit : y=a+bx+cx2+dx3a b c d

    No IL No MeOH

    1%HAC

    0.1g/L

    10 g/L

    1 g/L

    -5.046* 2.0351* 2.386* -1.618*

    -0.0452 0.00661 -6.865* 1.143

    -1.521* 1.52101* 1.521 1.22701

    BMIM 5 mM 10%MeOH 1%HAC

    0.1 g/L

    1 g/L

    10 g/L

    -1.656 4.497 -1.418 2.438

  • 8/7/2019 SATHISH PRASAD

    37/46

  • 8/7/2019 SATHISH PRASAD

    38/46

    0 100 200 300 400

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    C (g/L)

    Abs (mau)

    BMIM 5MM 10% MEOH 1% HAC TRYPTOPHAN 0.1G/L

    (A)0.0 0.1 0.2 0.3 0.4 0.5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    C (g/L)

    t (time)

    BMIM 5MM 10% MEOH 1% HAC TRYPTOPHAN 1G/L

    (B) 0 200 400 600 800 1000

    0.0

    0.2

    0.4

    0.6

    0.8

    C (g/L)

    Abs (mau)

    BMIM 5MM 10% MEOH 1% HAC TRYPTOPHAN 10G/L

    (C)

    40 60 80 100 120 140

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    C (g/L)

    Abs (mau)

    BMIM 5MM NO MEOH 1% HAC TRYPTOPHAN 0.1G/L

    (D)

    200 300 400 500 600 700 8000.2

    0.3

    0.40.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    C (g/L)

    Abs (mau)

    BMIM 5MM NO MEOH 1% HAC TRYPTOPHAN 1g/L

    (E) 400 500 600 700 800 900 1000110012002

    3

    4

    5

    6

    7

    8

    9

    10

    11

    C (g/L)

    Abs( mau)

    BMIM 5MM NO MEOH 1% HAC TRYPTOPHAN 10G/L

    (F)0 20 40 6 0 8 0 100 120 140

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    C (g/L)

    Abs (mau)

    BMIM 10MM 10% MEOH 1% HAC TRYPTOPHAN 0.1G/L

    (G)

    0 100 200 300 400 500 600 700

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    C (g/L)

    Abs (mau)

    BMIM 10MM 10% MEOH 1% HAC TRYPTOPHAN 1G/L

    (H)

    0 200 400 600 800 1000 1200

    0

    2

    4

    6

    8

    10

    C (g/L)

    Abs (mau)

    BMIM 10MM NO MEOH 1% HAC TRYPTOPHAN 10G/L

    (L) - 10 0 0 1 00 2 0 0 30 0 40 0 5 00 6 0 0 70 0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    C (g/L)

    Abs (mau)

    BMIM 10MM NO MEOH 1% HAC TRYPTOPHAN 1G/L

    (K)

    0 20 40 60 80 100 1200.00

    0.02

    0.04

    0.06

    0.08

    0.10

    C (g/L)

    Abs (mau)

    BMIM 10MM NO MEOH 1% HAC TRYPTOPHAN 0.1G/L

    (J)

    Figure 1 : Calibration curves of tryptophan determined by FA with different concentrations of

    BMIM on C18 Prevail column. TryptophanA-C: BMIM 5 mM 1 % MeOH: D-F: BMIM 5 mM No MeOH; G-I: BMIM 1 mM 1 %

    MeOH; J-L: BMIM 1 mM No MeOH; Flow rate 1. mL/ min; Wavelength 3 5 nm and room temperature. Mobile phases: 1 -1 % (v/v)

    mixtures of methanol, acetic acid and HPLC water.

  • 8/7/2019 SATHISH PRASAD

    39/46

  • 8/7/2019 SATHISH PRASAD

    40/46

  • 8/7/2019 SATHISH PRASAD

    41/46

    0 200 400 600 800 1000-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    C (g/L)

    t (time)

    BMIM 5MM TRYP 0.4 MIN 1g/L

    (A)

    -200 0 200 400 600 800

    0

    1

    2

    3

    4

    C (g/L)

    t (time)

    BMIM 5MM TRYP 0.4 MIN 10g/L

    (B)0 200 400 600 80010001200140016001800

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    C (g/L)

    t (time)

    BMIM 5MM 10% MEOH 0.5 min 0.1g/L

    (C)

    -500 0 500 1000 1500 2000 2500 3000

    -0.01

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    BMIM 10MM NO MEOH 0.1g/L 0.5 min

    C (g/L)

    t (time) (D)

    600 800 1000

    0.00

    0.02

    0.04

    0.06

    0.08

    C (g/L)

    t (time)

    BMIM 10MM 10% MEO H 0.1g/L 0.5 min

    (F) -500 0 500 1000 1500 2000 2500

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    C (g/L)

    t (time)

    BMIM 5MM NO MEO H 0.5 min 0.1g/L

    (G)

    -500 0 500 10001500200025003000

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    C (g/L)

    t (time)

    BMIM 10MM NO MEOH 1g/L 0.5 min

    (H)

    Figure 17 :Experimental (dotted) and the calculated of profiles (solid lines) with different concentrations of Tryptophan and

    Phenylalanine on C18 X-terra column. Flow rate 1. mL/ min; Wavelength 3 5 nm and Room temperature. Mobile phases: 1 -1 %

    (v/v) mixtures of methanol, acetic acid without methanol.

  • 8/7/2019 SATHISH PRASAD

    42/46

    CONCLUSION

    The adsorption isotherm behavior of tryptophan depends on the composition of

    mobile phase and concentration of Ionic liquid used.

    Inverse method was used to calculate adsorption parameters. Here it is important

    to choose a good isotherm model.

    The model can be guessed from the shape of the overloaded band profiles.

    This method is useful for purification process and in the industrial field because

    the parameters for adsorption isotherm is known in a very short time when

    compared to that of Frontal analysis.

    Our results indicate that the shape of the profiles, the isotherms, and the retention

    of tryptoph

    an are affected by the amount of IL added to t

    he mobile p

    hase.

    The amount of analyte adsorbed on the column and the retention factor can be

    manipulated by changing the amount of BMIM in the mobile phase.

    Mobile phase containing no methanol as modifier and containing only BMIM can

    be used as mobile ph

    ase to elute tryptoph

    an

  • 8/7/2019 SATHISH PRASAD

    43/46

    REFERENCES:

    . D.Rogers, R.Kenneth, A Chem.Soc, 856 (2003) 3-21

    J.Matyn, R.Kenneth, Pure Appl.Chem, 72, (2000) 1391-1398A.Berthod, M.J.Ruin-Angel, J.chromatogr. A.1184 (2008) 6-1

    Y. Wang, T.Minglei, Int.J.Mol.sci.10, (2009) 2591-2610

    L.Anderson, Daniel W.Armstrong,A Chem.Soc (2006) 2893-2902

    F.V Rantwijk, Roger, Chem rev, 107 (2007) 2757-2785

    M.J Ruiz-Angel, A.Berthod, J.chromatogr, 1189 (2008) 476-482

    http://www.directindustry.com/prod/shimadzu-europe/high-performance-liquid-chromatograph- hplc-system-

    25210-56987.html

    T.L.Greanes, Calamun, Chem, Rev, 108 (2008) 206C.Baudequin, D.Brigon, Tetrahedron: Asymmetry, 16 (2005)3921

    C. F.Poole, J . Chromatogr, 1037 (2004) 49-82

    R.Gabriele, Jurgen, J.Chemical physics, 128 (2008) 154509-1 154509-7

    C. Chiappe and Daniela, J.Physical Chemistry, 18 (2005) 275-297

    M.H Abraham,; W.E Acree, Green Chem., 8 (2006) 906

    HL. Ngo, K. Le Compte, Therochim.Acta357 (2000) 97-102

    .Okoturo, TJ. Vandernoot, J.Electroanal.Chem 105 (2001) 4603-4610

    G. Law, Watson PR.Langmuir, J.Chromatogra 17(2001)6138-6141M.Deetlefs, M.shara, ACS, Washington DC, 901(2005)219-223

    R.P Swatloski, J.D.Holbrey, Green chem., 5(2003)361

    Simon M.Mwongela, Abdulqawi Numan, Anal chem. 75(2003)6089-6096

    Merike Vaher, Maria Borissova, Proc.EstonianAcad.Chem, 56(2007)187-198

    Yuanhong Xu, Erkang Wang, J.of chromatography A, 1216(2009)4817-4823

  • 8/7/2019 SATHISH PRASAD

    44/46

    Yanes, E. G., Gratz, S.R., Baldwin, M.J., Robinsos, S.E., Anal.chem. 73(2001)3838

    Schnee, V.P, Baker, Electrophoresis, 27(2006)4141-4234

    Andrew P.Abbott and Katy, Phys chem8 (2006)4265-4279

    Siddhartha pandey, Analytica chimica Acta (2005)1-8

    Dandan Han and kyung, Molecules 15(2010) 1420-3045Stepnowski,P.,Nichthauser,J.,Mrozik,w.,Buszewski,B.,Anal.Bioanal.Chem.,385(2006)148

    P.Stepnowski, Int.J.Mol.sci.7 (2006)497-509

    Yulia Polyakova, Yoon Mo, biotechnology and bioprocess engineering, 11(2006)1-6

    Wang, Q., Baker, G.A., Baker, S.N., and Colon, L.A., Analyst, 131(2006)1000-1005

    Shu Juan LIU, Feng ZHOU, Chinese chemical letters vol.15 (2004)1060-1062

    Hisham Hashem, Thomas Jira J.of chromatography A, 1133(2006)69-75

    Hagiwara, R.; Ito, Y. J. Fluorine Chem.105 (2000)221-227

    Mosel, Principles of adsorption and reaction on solid surfaces, Wiley, New York, 1996.F. Gritti, W. Piatkowski and G. Guiochon, J Chromatogr A. 978 (2002) 81.

    A. Cavazzini, G. Bardin, K. Kaczmarski, P. Szabelski, M. Al-Bokari and G.Guiochon, J Chromatogr A. 957 (2002)

    111.

    W. Piatkowski, D. Antos, F. Gritti and G. Guiochon, J Chromatogr A. 1003 (2003)

    A. Felinger, A. Cavazzini and G. Guiochon J Chromatogr A. 986 (2003) 207.

    G. Zhong, P. Sajonz and G. Guiochon, Ind Eng Chem (Res.) 36 (1997) 506.

    B.J. Stanley, P. Szabelski, Y.B. Chen, B. Sellergren and G. Guiochon, Langmuir 19(2003)772.

    G. Schay and G. Szekely, Acta Chim Hung, 5 (1954) 167.A. Cavazzini, A. Felinger and G. Guiochon, J Chromatogr A. 1012 (2003) 139

  • 8/7/2019 SATHISH PRASAD

    45/46

    J.D. Andrade, Surface and Interfacial Aspects of Biomedical Polymers, Plenum Press, New York, NY, 1985.F. Gritti, G. Guiochon, J. Chromatogr. A. 1028 (2004) 105.

    C.H. Jin, Y.M. Koo, D. Choi and K.H. Row, Biotechnol. Bioprocess Eng. 12 (2007)525

    S.S. Adams, J Clin Pharmacol. 32 (4) (1992) 31723.

    F. Gritti and G. Guiochon, J. Chromatogr. A. 1099 (2005) 142.

    F. Gritti and G. Guiochon, J. Chromatogr. A. 1041 (2004) 6375.

    F. Gritti and G. Guiochon, J. Chromatogr. A. 1028 (2004) 197210.

    F. Gritti and G. Guiochon, J. Chromatogr. A. 1033 (2004) 5769.

    T. Ahmad and G. Guiochon, J. Chromatogr. A. 1114 (2006) 111122

    T. Minglei, L. Junyu and Kyung Ho Row, Molecules, 14, (2009) 2127-2134

    V. Antonio, J. Hernandez, A. Miguel, Anal Bioanal Chem, 392 (2008) 1439-1446

  • 8/7/2019 SATHISH PRASAD

    46/46

    THANK YOU