satellite attitude control system design using reaction...

32
Aerospace Power & Electronics Simulation Workshop 2004 • Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon

Upload: buiphuc

Post on 07-Mar-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Aerospace Power & Electronics Simulation Workshop 2004

• Satellite Attitude Control System Design Using Reaction Wheels

Bhanu Gouda Brian FastDan Simon

2Aerospace Power & Electronics Simulation Workshop 2004

Outline

1. Overview of Attitude Determination and Control system

2. Problem formulation

3. Control schemes

3.1 Modified PI Controller

3.2 Active Disturbance Rejection Control

4. Conclusion

3Aerospace Power & Electronics Simulation Workshop 2004

ADCS

•ADCS: Attitude Determination and Control subsystem

•Attitude Determination -Using sensors

•Attitude Control - Using actuators

4Aerospace Power & Electronics Simulation Workshop 2004

Disturbance torques

• Aerodynamic• Gravity gradient• Magnetic• Solar radiation• Micrometeorites

5Aerospace Power & Electronics Simulation Workshop 2004

Attitude control modes•Orbit insertion

•Acquisition

•Slew

•Contingency or Safe

6Aerospace Power & Electronics Simulation Workshop 2004

Spacecraft control type

• Passive control - Gravity gradient control- Spin control

7Aerospace Power & Electronics Simulation Workshop 2004

Spacecraft control type

• Active control (Actuators)- Reaction wheels- Momentum wheels- Control - moment gyros- Magnetic torquers

- Gas Jets or Thrusters

8Aerospace Power & Electronics Simulation Workshop 2004

Tetrahedron configuration of Reaction wheels

9Aerospace Power & Electronics Simulation Workshop 2004

Outline

1. Overview of Attitude Determination and Control system

2. Problem formulation

3. Control schemes

3.1 Modified PI Controller

3.2 Active Disturbance Rejection Control

4. Conclusion

10Aerospace Power & Electronics Simulation Workshop 2004

Problem formulation

11Aerospace Power & Electronics Simulation Workshop 2004

Mathematical model

[ ]122111 2

1 wmdmrwIH −

+==

[ ]222222 2

1 wmdmrwIH

+==

Angular momentum of each disk

Moment with respect to the space craft

( ) ••••+= θθ 22 2MdMrI

M = Mass of the space craft

mi = mass of the reaction wheel

wi= angular velocity of the wheel

θ = Angular position of space craft

r = radius of the wheel

I= moment of inertia

12Aerospace Power & Electronics Simulation Workshop 2004

Conservation of angular momentum

Mathematical model

( ) ( ) ( ) ••+=

++−

+ θ22

222

122 2

21

21 MdMrwmdmrwmdmr

dtd

( )••

=+− θ..221 mMww

dtd

[ ]••

=+ θIHHdtd

21

( ) cmMww +=+− •

θ2

21

13Aerospace Power & Electronics Simulation Workshop 2004

Outline

1. Overview of Attitude Determination and Control system

2. Problem formulation

3. Control schemes

3.1 Modified PI Controller

3.2 Active Disturbance Rejection Control

4. Conclusion

14Aerospace Power & Electronics Simulation Workshop 2004

Control Scheme

Two types of controllers are investigated- Modified PI Controller- Active Disturbance Rejection Controller

15Aerospace Power & Electronics Simulation Workshop 2004

Simplorer

• Simplorer• Circuit element

models• Electric machine

models• Data analysis tools• Interfaces with

Matlab / Simulink

16Aerospace Power & Electronics Simulation Workshop 2004

Outline

1. Overview of Attitude Determination and Control system

2. Problem formulation

3. Control schemes

3.1 Modified PI Controller

3.2 Active Disturbance Rejection Control

4. Conclusion

17Aerospace Power & Electronics Simulation Workshop 2004

• This controller is used as the baseline controller• Only one tuning parameter • Generalized 2 DOF control structure is proposed

Modified PI Controller

Reference: A Robust Two-Degree-of-Freedom Control Design Technique and its Practical Application-Robert Miklosovic, Zhiqiang Gao

18Aerospace Power & Electronics Simulation Workshop 2004

kis-1 Plant transfer function

kp

actcc

actdesactpi

actdes Sk

Sk θωωθθθθθ ..2).(.).(

2

−−=−−

actθdesθ

19Aerospace Power & Electronics Simulation Workshop 2004

Motion profiling

•The desired trajectories as the command input in the closed loop control

•In this case, a profile generator is used to produce desired angle to the system

•Motion profile is used instead of step.

20Aerospace Power & Electronics Simulation Workshop 2004

w2

GAIN GAIN

SUM5

GAIN

w1

w2

theta

theta_dot

Disturbanc

error in theta

Theta Actual

control signal

w1

t_des_de deg_rad

theta_dot_de

RANDOM

Random_Nois

GAIN

theta_de

CONST

Yt

Motion_profi

Motion profile Modified PI Controller

actθPlant Model

Simulation Results

Random Noise

21Aerospace Power & Electronics Simulation Workshop 2004

I

INTG

GAIN

GAIN

GA

IN

GAIN2

10

error_in_the

10

theta_actu

10

GAIN

GAIN

SUM4

I

10

disturbance

10

w2

10

theta_do

10

theta

10

w1

GAIN3

GAIN4

Modified PI Controller

Plant Model

actcc

actdesactpi

actdes Sk

Sk θωωθθθθθ ..2).(.).(

2

−−=−−

( ) cww +=+− •θ

221

22Aerospace Power & Electronics Simulation Workshop 2004

Simulation ResultsTheta Actual & desired

Noise amplitude: 0.07 - 0.1

Noise interval: 2 sec

t_des_theta_d

t [s]

0.1k

-10

20

40

60

80

0 102 4 6 8

t_des_theta_d

t [s]

0.1k

-10

20

40

60

80

0 102 4 6 8

23Aerospace Power & Electronics Simulation Workshop 2004

Simulation Results

control inputs w1 and w2w1.VALw2.VAL

t [s]

7

0

2

3

4

5

0 102 4 6 8

w1.VAL w2.VAL

t [s]

8

1

2

3

4

5

6

7

0 102 4 6 8 Noise amplitude: 0.07 - 0.1

Noise interval: 2 sec

24Aerospace Power & Electronics Simulation Workshop 2004

Outline

1. Overview of Attitude Determination and Control system

2. Problem formulation

3. Control schemes

3.1 Modified PI Controller

3.2 Active Disturbance Rejection Control

4. Conclusion

25Aerospace Power & Electronics Simulation Workshop 2004

Active Disturbance Rejection Controller

•New digital controller to motion control problems

• Disturbances are estimated using extended state observer (ESO) and compensated in each sampling period.

•Dynamic compensation reduces motion system to a double integrator which can be controlled using a nonlinear PID controller

26Aerospace Power & Electronics Simulation Workshop 2004

Extended State Observer• It is a unique nonlinear observer • Proper Selection of the gains and functions are

critical to the success of the observer• Once ESO is properly setup, the performance of the

observer is quite insensitive to plant variations and disturbances

+

−−

=

yub

zz

z

zo

oo

o

o2

2

12

2

1

02

012

ωω

ωω

27Aerospace Power & Electronics Simulation Workshop 2004

Plant Model

Simulation Results

28Aerospace Power & Electronics Simulation Workshop 2004

Define Simplorer inputs and outputs in the property dialog of the SiM2SiM component

Simplorer and Matlab

29Aerospace Power & Electronics Simulation Workshop 2004

Matlab/Simulink Model

Outputs from the SimplorerInputs to the

simplorer

30Aerospace Power & Electronics Simulation Workshop 2004

Simulation Results

t_des_dGAIN1.theta_d

t [s]

0.1k

-10

20

40

60

80

0 1.10.2 0.4 0.6 0.8

Theta Actual and Theta desired

Noise amplitude: 0.05 Noise Interval: 0.5 sec

t_des_theta_

t [s]

0.1k

-10

20

40

60

80

0 1.70.2 0.6 1 1.2

31Aerospace Power & Electronics Simulation Workshop 2004

w1.VAw2.VA

t [s]

12

-2

2468

0 1.10.2 0.4 0.6 0.8

w1 and w2

Simulation Results

w1.VAw2.VA

t [s]

15

-20

0

-10

-5

5

0 1.70.4 0.8 1 1.2

Noise amplitude: 0.05 Noise Interval: 0.5 sec

32Aerospace Power & Electronics Simulation Workshop 2004

• The simulation of Modified PI and ADRC showed that ADRC worked well for the system

• 1 DOF problem will be extended to 3 degrees of freedom problem

• Implementation of the controller design in microcontroller/FPGA microchip.

• Comparisons with other controllers

Conclusion and Future work