sagawa 2011

16
Review Biomechanics and physiological parameters during gait in lower-limb amputees: A systematic review Yoshimasa Sagawa Jr. a,b,c, *, Katia Turcot f , Ste ´ phane Armand f , Andre Thevenon b,d,e , Nicolas Vuillerme g,h , Eric Watelain a,b,c,i a UVHC, LAMIH, F-59313 Valenciennes, France b Univ Lille Nord de France, F-59000 Lille, France c CNRS, FRE 3304, F-59313 Valenciennes, France d Physical Medicine and Rehabilitation Department, Lille University Hospital, Lille, France e Laboratory of Human Movement Studies, Faculty of Sports Sciences and Physical Education, Lille, France f Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals and Geneva University, Geneva, Switzerland g Laboratoire TIMC-IMAG UMR UJF CNRS 5525. Equipes ARFIRM/AGIM 3 , Faculte ´ de Me ´decine, La Tronche, France h CIC-IT 805, INSERM/AP-HP, Hoˆpital Raymond Poincare ´, EA 4497, Garches, France i HandiBio, EA 4322, Univ du Sud Toulon Var, La Garde, France 1. Introduction In 2007, approximately 1.7 million people experienced limb loss in the United States [1]. In this country, more than 185,000 new amputations are performed each year [1,2]. The prevalence rate in 1996 was 4.9 per 1000 persons. The prevalence rate was higher for people aged 65 years and older: 19.4 per 1000 [1]. The incidence rate was 46.2 per 100,000 for people with vascular disease, 5.86 per 100,000 for people with secondary trauma and .35 per 100,000 for people with bone or joint malignancy. Annual acute and post-acute medical care costs associated with caring for vascular amputees exceed $4.3 billion in the United States [3]. After lower-limb amputation, a person is routinely prescribed a prosthesis that may include a prosthetic foot, pylon, knee and socket, depending on the level of amputation and the cause. There are a number of cost-effective components presently available [4,5], but until now, there has been no consensus among the different professionals (e.g., doctors, physiotherapists, prosthe- tists) in terms of the main criteria used to select an appropriate Gait & Posture 33 (2011) 511–526 ARTICLE INFO Article history: Received 13 July 2010 Received in revised form 3 February 2011 Accepted 6 February 2011 Keywords: Amputee Biomechanics Physiological Gait Lower limb Prosthesis ABSTRACT Objective: : The purpose of this systematic review was to identify which biomechanical and physiological parameters are the most relevant, commonly used, able to discriminate and/or have specific clinical relevance for the gait analysis of lower-limb amputees (LLA). Methods: : We performed an electronic search via the PubMed, EMBASE and ISI Web of Knowledge databases from 1979 to May 2009. Two independent reviewers assessed the title and abstract of each identified study. The quality assessment of the full text was undertaken using a 13-item checklist divided into three levels: A, B, and C. Results: : The literature search identified 584 abstracts to be considered. After applying the inclusion criteria, we reviewed the full text of a total of 89 articles. The mean article quality was 8 2. No A-level article was found; the primary reason was a negative score in blinded outcome assessment. Sixty-six articles (74%) corresponded to a B-level, and two articles (2%) corresponded to a C-level. Twenty-one articles (24%) did not acquire enough points to be assigned to any level. In this study, we present and discuss the most commonly used and most relevant 32 parameters. Many of the parameters found were not reported in enough studies or in enough detail to allow a useful evaluation. Conclusion: : This systematic review can help researchers compare, choose and develop the most appropriate gait evaluation protocol for their field of study, based on the articles with best scores on the criteria list and the relevance of specific biomechanical and physiological parameters. ß 2011 Elsevier B.V. All rights reserved. Abbreviations: AB, able-bodied; EMG, electromyography; FS, fast speed; GRF, ground reaction force; LLA, lower-limb amputees; NS, normal speed; ROM, range of motion; SACH, solid ankle cushion heel; TF, transfemoral amputation; TT, transtibial amputation. * Corresponding author at: Laboratoire d’Automatique et de Me ´ canique d’Informatique Industrielles et Humaines (FRE CNRS 3304) Universite ´ le Mont Houy, Ba ˆtiment Malvache, 59313 Valenciennes cedex 9, France. Tel.: +33 (0) 6 65177936/327511349; fax: +33 (0) 3 27511317. E-mail address: [email protected] (Y. Sagawa Jr.). Contents lists available at ScienceDirect Gait & Posture journal homepage: www.elsevier.com/locate/gaitpost 0966-6362/$ – see front matter ß 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.gaitpost.2011.02.003

Upload: rufaida-hussain

Post on 16-Aug-2015

226 views

Category:

Documents


6 download

DESCRIPTION

Static and dynamic pressure prediction for prosthetic socket fitting assessmentutilising an inverse problem approach

TRANSCRIPT

ReviewBiomechanics and physiological parameters during gait in lower-limb amputees:AsystematicreviewYoshimasaSagawaJr.a,b,c,*, KatiaTurcotf,Ste phaneArmandf,AndreThevenonb,d,e,NicolasVuillermeg,h,EricWatelaina,b,c,iaUVHC,LAMIH,F-59313Valenciennes,FrancebUnivLilleNorddeFrance,F-59000Lille,FrancecCNRS,FRE3304,F-59313Valenciennes,FrancedPhysicalMedicineandRehabilitationDepartment,LilleUniversityHospital,Lille,FranceeLaboratoryofHumanMovementStudies,FacultyofSportsSciencesandPhysicalEducation,Lille,FrancefWillyTaillardLaboratoryofKinesiology, GenevaUniversityHospitalsandGenevaUniversity,Geneva,SwitzerlandgLaboratoireTIMC-IMAGUMRUJFCNRS5525.EquipesARFIRM/AGIM3,Faculte deMedecine,LaTronche, FrancehCIC-IT805,INSERM/AP-HP,HopitalRaymondPoincare,EA4497,Garches,FranceiHandiBio,EA4322,UnivduSudToulonVar,LaGarde,France1. IntroductionIn2007, approximately1.7millionpeopleexperiencedlimblossintheUnitedStates[1]. Inthiscountry, morethan185,000newamputationsareperformedeachyear[1,2]. Theprevalenceratein1996was4.9per1000persons. Theprevalenceratewashigher for people aged 65 years and older: 19.4 per 1000 [1]. Theincidence rate was 46.2per 100,000for people withvasculardisease, 5.86 per 100,000 for people with secondary trauma and .35per 100,000for peoplewithboneor joint malignancy. Annualacute and post-acute medical care costs associated with caring forvascularamputees exceed $4.3billioninthe UnitedStates[3].After lower-limb amputation, a person is routinely prescribed aprosthesisthat mayincludeaprostheticfoot, pylon, kneeandsocket, depending on the level of amputation and the cause. Thereareanumber of cost-effectivecomponents presentlyavailable[4,5], but until now, there has beennoconsensus amongthedifferent professionals (e.g., doctors, physiotherapists, prosthe-tists)intermsofthemaincriteriausedtoselectanappropriateGait& Posture33 (2011)511526ARTI CLE I NFOArticlehistory:Received13 July2010Receivedinrevisedform3February2011Accepted6February2011Keywords:AmputeeBiomechanicsPhysiologicalGaitLower limbProsthesisABSTRACTObjective: : The purpose of this systematic reviewwas to identify which biomechanical and physiologicalparametersarethemostrelevant, commonlyused, abletodiscriminateand/orhavespecicclinicalrelevance forthegaitanalysisoflower-limbamputees(LLA).Methods: :WeperformedanelectronicsearchviathePubMed, EMBASEandISI Webof Knowledgedatabases from1979toMay2009. Twoindependent reviewers assessedthetitle andabstractof eachidentied study. The quality assessment of the full text was undertaken using a 13-itemchecklist dividedintothreelevels:A,B, andC.Results: :Theliteraturesearchidentied584abstractstobeconsidered. Afterapplyingtheinclusioncriteria, we reviewed the full text of a total of 89 articles. The mean article quality was 8 2. No A-levelarticle was found; the primary reason was a negative score in blinded outcome assessment. Sixty-six articles(74%) corresponded to a B-level, and two articles (2%) corresponded to a C-level. Twenty-one articles (24%) didnot acquireenoughpointstobeassignedtoanylevel. Inthisstudy, wepresent anddiscussthemostcommonlyusedandmostrelevant 32parameters. Manyof theparametersfoundwerenotreportedinenoughstudiesorin enoughdetailtoallowausefulevaluation.Conclusion: : This systematic reviewcanhelpresearchers compare, chooseanddevelopthemostappropriate gait evaluation protocol for their eld of study, based on the articles with best scores on thecriterialistandtherelevance ofspecicbiomechanicalandphysiologicalparameters.2011Elsevier B.V. Allrightsreserved.Abbreviations: AB, able-bodied; EMG, electromyography; FS, fast speed; GRF,ground reaction force; LLA, lower-limb amputees; NS, normal speed; ROM, range ofmotion; SACH, solid ankle cushion heel; TF, transfemoral amputation; TT,transtibialamputation.* Corresponding author at: Laboratoire dAutomatique et de Me caniquedInformatiqueIndustrielles et Humaines (FRECNRS3304) Universite leMontHouy, BatimentMalvache,59313Valenciennescedex9,France.Tel.: +33(0)665177936/327511349;fax:+33 (0)327511317.E-mailaddress:[email protected](Y.Sagawa Jr.).ContentslistsavailableatScienceDirectGait& Posturej our nal homepage: www. el sevi er . com/ l ocat e/ gai t post0966-6362/$seefrontmatter 2011 ElsevierB.V. Allrights reserved.doi:10.1016/j.gaitpost.2011.02.003lower-limb prosthesis that corresponds to the patient abilities andneeds. Therefore, lower-limbprostheses areusuallyprescribedbased on empirical knowledge. On the other hand, the healthcarepolicies require objective and reliable criteria for prostheticprescriptions. Depending on the prosthesis (e.g., mechanical kneesversusmicroprocessorknees), costsmayvarywidely[6]. Somecountries havealready begunto clarifythese healthcarepolicies,for example, the Health Care Financing Administrations CommonProcedure Coding Systemin the USA [7] and the Dutch Health CareInsuranceBoard inNetherlands[8].In the current evidence-based medicine context, many studieshavebeenconductedtoassesstherelationshipbetweenpatientcharacteristics, the prosthesis and the environment (see referencesbelow). Most of these studies used gait analysis to assessbiomechanicalandphysiologicalaspectsofgait. Infact, walkingis considered to be one of the most important aspects ofindependence [9]. Moreover, biomechanical and physiologicalanalysesallowaprecisequanticationofbothbodymovementsandenergy expenditure.This systematic review aimed at identifying which biomechan-ical and physiological parameters are the most relevant, commonlyused, abletodiscriminateand/orhavespecicclinicalrelevanceforthegaitanalysis oflower-limb amputees (LLA).2. Methods2.1. MethodusedtoidentifythestudiestoincludeWeperformedanelectronicsearchviathePubMed, EMBASEand ISI Web of Knowledge databases from 1979 to May 2009. Thesearchstrategywasbasedonacombinationofthefollowingsixkeywords: amputee*, lower limb*, lower extremity*, gait*,locomotion* and walking*. We further narrowed the eld toinclude only published articles (i.e., conventional articles, compar-ativestudies, evaluations) writteninEnglishorFrenchwithanentirely adultstudy population (i.e.,+18years).2.2. ApreliminaryselectionbasedontheabstractTwoindependentreviewersassessedthetitleandabstractofeach study identied. Based on the abstract, studies were includedin the full text reviewwhen they satised the following three set ofcriteria: (1) patient characteristics, (2) descriptive or interventionstudiesand(3) outcomemeasures. Thesecriteriaaredescribedbelow.Participant characteristics: The studies had to include apopulation with lower-limb amputation(s) (1) with a traumat-ic, vascular or other cause; (2) with hip or knee disarticulation,transfemoral (TF) or transtibial (TT) amputation level; (3) withunilateral or bilateral involvement; (4) with different types offoot, kneeor socket prosthesis; and/or (5) walkingwithorwithoutassistivedevices.Descriptive or intervention studies: The studies had to involve aparticular subpopulation (e.g., above-knee amputations, vascu-lar causes, athletes), aneffect of theprosthesiscomponents(e.g., sockets, knees, feet), or an effect of tness, rehabilitationorother methodological aspects (e.g., inuence of walking speed).Outcome measures: The studies had to report gait-relatedbiomechanical parameters (e.g., spatio-temporal, kinematicand/or kinetic; transducers basedmeasurements andaccel-erometry)orphysiologicalparameters(e.g.,energyconsump-tion,energy cost, heart rate,electromyography(EMG)).The exclusioncriteria of this abstract-basedselectionweretheoretical studies, studies validating a model/protocol, andstudiesaboutosseointegratedprostheses, gaitunderconditionsother than on level surface (e.g., uphill, downhill, stair ambulation,obstacle crossing), and the effect of prosthesis mass or prosthesissettings.In addition, the references of the full texts selected wereexaminedtoextend our search.2.3. MethodusedtoassessthequalityoftheselectedarticlesThe quality of the articles selected was assessed using the 13-item checklist developed by van der Linde et al. [8]. This checklistwasadaptedtoevaluatenon-randomizedcontrolledtrialsusingtwoother randomizedcontrolledtrial checklists [10,11]. Eachcriterion wasscored 0if it wasinvalid or theanswer was noand 1 if it was valid or the answer was yes. If a criterion was notapplicable, it was scored 0. The focus of the article reviewprocesswasnottheinterventionapproachesperse, butratherthemainparametersusedduring these interventions.Four independent reviewers piloted the adapted qualitychecklist onthreerandomlychosenarticles inorder toassessthe content and to certify reliable data extraction. The reviewersresults were compared and the differences were resolved throughdiscussion. After completing this pilot session, we standardized theitemdescriptions toguaranteegoodinter-rater reliability. Thenal quality checklist involved 13 items with a theoreticalmaximum score of 13 points. The checklist covered three differentdomains: (a) adequacy of the description of inclusion andexclusion criteria (four items, maximum four points), (b)interventionandassessment (veitems, maximumvepoints)and (c) statistical validity (four items, maximum four points). Thechecklistwasconvertedintoanelectronicdataextractionsheet,andthentwoindependentreviewersperformedthedataextrac-tion.2.4. AnalysisInordertoensureagreementofthequalityassessments, weperformed Kappa statistics and bootstrap condence intervals. Allstudies included in this systematic reviewwere required toappropriately control for selection and measurement bias,similarly to in the review by van der Linde et al. [8]. Studies wereclassiedas:A-levelstudiesStudieswithatotalscoreofatleast11of13points, including 6 points in criteria sets a and b described above;apositivescoreforblindedoutcomeassessment(criterionb7)andformeasurementtiming(criterionb8). Thislastcriterionmeasured the time that the subjects were given to adapt to thechangeinprosthesis. Infact, anadequateadaptationperiodisrequired. According to Englishet al. [12], transfemoral (TF)amputeesneedatleast3weeksof walkingwithanewkneemechanism to ensure that their gait parameters are stable, LLAneed a period of at least 1 week to adapt to a new prosthetic footor to achange inprosthetic mass[12].B-level studies Studies with a score between 6 and 12 points,including a positive score for measurement timing (criterion b8).C-level studies Studies with a score of at least six points out forthe criteria sets a and b, with an invalid score on criteria b7 andb8.3. Results3.1. ApreliminaryselectionbasedontheabstractThe preliminary literature search identied 584 abstracts. Noneof the articles was excluded on the basis of language. After applyingY.Sagawa Jr.etal. / Gait&Posture33(2011)511526 512the inclusion criteria, we included a total of 89 articles (i.e., 15%) inthefulltext review (Fig.1).3.2. DataqualityThe agreement on data quality between the two reviewers washigh [13]. The estimated mean Kappa value was .92(SD .17) andthe95%condenceintervals rangedfrom.82to1. Themeanquality score of studies was 8 (SD2) and these scores ranged from2to 12. However, no articles corresponded to the A-level, due mainlyto a negative score inblinded outcome assessment. Sixty-sixarticles(74%)correspondedtotheB-level, andtwoarticles(2%)correspondedtotheC-level. Twenty-onearticles(24%) didnothaveenoughpoints to beassignedalevel.3.3. ParticipantcharacteristicsThenumber of participants rangedfrom2(intra-individualanalyses) [14] to94[15] (Table1). Theparticipants fromthestudiesreviewedwereheterogeneous, andablendof differentamputationlevels andcauses of amputationwas oftenfound(Table 1).3.4. ParametersusedforgaitanalysisThe frequency distribution of biomechanical and physiologicalparameters usedingait analysis is illustratedinFig. 2. Afewstudies also associated the psychological and cost parameters withthebiomechanical andphysiological parameters(Fig. 2, others).The main biomechanical parameters used were walking speed (43times), knee angles (31 times), vertical ground reaction force (30times), knee moments (27 times), hip power (26 times) and ankleangles(22times). ThemainphysiologicalparametersusedwereVO2(ml/min/kg) (30 times), EMGof lower-limb muscle activity (17times)and VO2 cost(ml/m/kg) (13times).InTable2, thereferenceparametersaredistributedinfourareas: foot (26studies: 29%), knee(13studies: 15%), socket (6studies: 7%) and other (i.e., descriptive, rehabilitation, tnessstudies) (44 studies: 49%) are represented. This list was based ontheoneproposedbyBenedetti et al. [16], whichinvolves 122parameters related to spatio-temporal, kinematic and kineticparameters.Additionally,98specicparameterswerefoundandaddedtocreateanexhaustivelistof220parameters.Ofthe122parameters proposed by Benedetti et al. [16], 78 (64%) have neverbeen usedtoanalyze thegaitof LLA.Eight of the studies examined (9%) [1724] had a combinationof biomechanical, physiological and EMGoutcomes; 12 (13%)[15,2535] had a combination of biomechanical and clinical/functional outcomes; 2 (2%) [36,37] had a combination ofphysiological and clinical/functional outcomes; and 17 (19%)[26,28,31,3335,3747] hadacombinationof biomechanical orphysiologicaloutcomeswithvariousquestionnairesaboutlevelsof activity,prosthesis comfort and/orfunctionality.Table3shows thefrequencydistributionof the89articlesselectedfrom23biomedicaljournals.Themeanimpactfactorofthese journals was 1.67 0.77 and ranged from .34 to 2.78. Thirty-three percent of these studies were published in a specialized journalconcerning LLA (impact factor .37).4. Discussion4.1. ThemainobjectiveofthisstudyanditsrelevanceThe objective of this systematic reviewwas to identify the mostrelevant biomechanical and physiological parameters used toanalyze the gait of LLA. To our knowledge, there are currently nostudies with this objective. This reviewcan help researcherscompare, choose and develop the most appropriate gait evaluationprotocol for their eld of study (Table 1), based on the articles withbest scores on the criteria list (Tables 1 and 3) and the relevance ofspecicbiomechanical andphysiological parameters(Fig. 2andTable 2). The review also offers important information on researchelds and gait analysis parameters used for LLA (Fig. 2 and Tables 1and 2).4.2. ArticlequalityTwoindependent reviewersusedachecklist adaptedtoLLAstudies to score the quality of the articles that satised the criteria[8]. Similarly to the systematic reviewby van der Linde et al. [8] onthecontributionofdifferentprosthesiscomponents, ourinvesti-gationobtainedlimitedunbiasedinformation. Inour study, noarticlereceivedanA-levelscore, andonlyonestudyhadablindassessor[48].In the study with a blind assessor (10 points, B-level), Postemaet al. [48] compared four different prosthetic feet and performed adouble-blind randomized trial. This was possible because theprosthetic feet were covered by a cosmetic overlay that mimickeda normal foot. In addition, the prostheses were aligned by the sameorthopedic technician, who was not involved in the trials. Adouble-blind experimental design is more difcult when compar-ing other prosthetic components, such as the knees or the socket,becausethesecomponentsareoftenapparent. Thislimitationinperformingdouble-blindtrials, whichpreventsmoreevidence-based results in non-pharmacological experiments, has beenalready discussedintheliterature [4951].For the sample size, van der Linde et al. [8] suggested that thenumber of independent variables (K) was adequate if the ratio K:nexceeded 1:10. According to this ratio, 74% of the articles that werevieweddidnothaveanadequatesamplesize(n = 17.2 14.2subjects, range294subjects). Areducedsamplesizereducestheabilitytovalidatethehypothesisandincreasestheriskof type-IIerror. It also makes it difcult to illustrate the discriminating capacityof a parameter. On the whole, due to the methodological limitationsof thestudiesevaluated, it isrecommendedtousecautionwheninterpretingthe parameters and determining their relevance.Fig. 1. Procedurefor thestudyselections withutilizeddatabases andfor theliteraturesearch-and-selectioncriteria.Y.SagawaJr.etal. / Gait&Posture33(2011) 511526 513Table1Methodologicalaspectsofreviewedarticles: authors, participants,mainobjective(s)andlevelof evidence.Ref Articles Participants (N) Sexandage Mainobjective(s) L[75] Aryaet al.(1995) 3Uni,Tt, ? 3M, 45? To assess the performance characteristics of the Jaipur foot bycomparing its shock absorption capacity and inuence on gaitstylewiththatof SACHandSeattlefeet, usingtheGRF5-U[76] Baeet al.(2007) 8Uni,Tf, ?10Ab?M,? F,408?M,? F,242To evaluate the muscle condition by acquiring the root meansquareelectromyogram7-B[29] Bakerand Hewison(1990)20Uni, Tf,Tt,Tr,Va, Ca15M, 5F,61 Todetermine therateat whichgait recoversasmeasuredbytemporaldistancefactors(velocity andsymmetry)6-B[77] Barnettetal.(2009) 8Uni,Tt, Va, ?7Uni,Tt, Va, ?7M, 1F,50165M, 2F,5811To investigate the gait patterns of amputees, using eithertheamputeemobilityaid orpneumaticpost-amputationaid9-B[33] Bergeetal.(2005) 15 Uni,Tt, Tr,Va,In 15M, 519 Todetermine ifa shock-absorbingpylonsaffectsgaitmechanics9-B[30] Boardetal.(2001) 11 Uni,Tt, Tr ?M, ? F,45? Tocompare thevolume changesassociated withnormal andvacuumconditions using a total surface-bearing suction socket8-B[45] Boonstraetal.(1993) 9Uni,Kd, Tr,Va,Ca 6M, 3F,4118 To investigate the gait patterns when wearing prostheses ttedwitheitherthe MultiexorQuantumfoot8-B[18] Boonstraetal.(1994) 29 Uni,Tf, ? 24M, 5F,4113 Todescribe the gaitquantitatively 8-U[78] Buckleyet al.(1997) 3Uni,Tf, Tr 3M, 4810 To quantify the physiological energy cost of using the so-calledIntelligent Prosthesiscompared to the cost of using amoreconventionalpneumaticswing-phasecontrolled device8-U[37] Casillasetal.(1995) 12 Uni,Tt, Va12 Uni,Tt, Tr10M, 2F,73712M,5014To use bioenergetic parameters to assess a new energy-storingfoot prothesis(Proteorfoot)bycomparingitwiththe SACHfoot indifferentwalking situations9-B[36] Chin etal.(2002) 9Uni,Tf, Va8Uni,Tt, Va?M,? F,632?M,?F, 722Toinvestigate whetherornot %VO2maxasan indicatorofphysicaltnessis usefulinpredictingthe outcome foraprostheticrehabilitationafterdysvascularamputation7-B[79] Chin etal.(2006) 49 Uni,Hd,Tf, Va,Tr,Ca, In34M, 15F, 676 To evaluate physical tness and prosthetic ambulatory abilityandtoinvestigate the leveloftnessrequiredforsuccessfulprostheticambulation8-B[80] Chin etal.(2006) 4Uni,Tf, Tr,Ca14 Ab4M, 24810M,4F,254Toexamine the impactofthe characteristicdifferencesbetween the Intelligent Knee Prosthesis and C-Leg on walkingspeedandenergyexpenditureduring walking6-B[81] Chin etal.(2009) 7Uni,Hd, Ca,In 6M, 1F,684 To investigate the differences in energy consumption betweenprostheticwalking andwheelchairlocomotion9-B[82] Cortesetal.(1997) 8Uni,Tt, Tr7Ab8M, 35127M, 3210Topresent anobjective quantitativemethod forstudyingprostheticgait,which allowsgait patternstobecompared10-B[83] Culhamet al.(1986) 10Uni, Tt,Tr,Va 8M, 2F,61? To evaluate the effect of the terminal prosthetic component onthe electromyography activity of the quadriceps and hamstringmusclegroupsduring gait7-B[39] Dattaet al.(2004) 21 Uni,Tt, Tr,Va 19M, 2F,51.715 Toevaluate gaitcharacteristics,costand timeanalysis,andsubjectiveopinionwhensubjects changedfrom aPTBtoanICEX1ttingtechnique8-B[43] Dattaet al.(2005) 10Uni, Tf ?M, ? F,38? Totestthe effect ofswitching toan intelligentprosthesisonoxygenconsumption andgaitforusersof pneumaticswing-phasecontrolkneejoints3-U[24] Detrembleuretal.(2005)6Uni,Tf, Tr6Uni,Tt, Va?M, ? F,3812?M,? F,5011To assess the inuence of self-selected gait speed, efciency ofthe pendulummechanism andsmoothnessofcenter ofbodymass(CMb)displacementonmetabolic energycosts8-B[84] DoaneandHolt(1983) 8Uni,Tt, ? 8M, ?? Tocompare theSACHand uni-axisfoot duringthe gait 7-U[85] Gaileyetal.(1994) 39 Uni,Tt, ?21 Ab39M, 461621M,316Tocompare themetabolic cost,heartrate,and self-selectedspeedofambulation8-B[42] GardandKonz (2003) 10UniTt, Tr,Vc 9M, 1F,5417 Toinvestigate the effectthatshock-absorbingpylonhasonwalking10-B[86] Genin etal.(2008) 10Uni, Tf,Tr9Uni,Tt, Tr13 Ab10M, 3559M, 35710M,3F,285Toinvestigate the effectofspeedon the energyexpenditurerate12-B[73] Gitteretal.(1991) 5Uni,Tt, ?5Ab5M, 2050??M,? F,??To determine the biomechanical adaptations necessary to walkwhilewearing aconventionalprostheticfoot-ankleassemblyand subsequently to evaluate the effects of energy-storing feetinthe restorationof normalgait characteristics8-B[19] Gitteretal.(1995) 8Uni,Tf, Tr,Ca8Ab7M, 1F,3778M, 32?To dene the relationships between mechanical and metabolicfactorsinpathologicalgait8-B[59] Gohetal.(1984) 11 Uni,Tf, Tt,? 11M, 4811 Toevaluate SACHanduniaxial feetbiomechanically 6-U[87] Gohetal.(2004) 4Uni,Tt, Tr,Va 4M, 4010 Tocompare thepressuredistributionofthe pressurecast(PCast)socket tothatofthe patellar-tendon-bearing(PTB)socket8-U[63] Goujon-Pilletetal.(2008)27 Uni,Tf, Tr,Co,Ca33 Ab?M, ? F,5114?M,?F, 44.3?Toidentify specic3-Dmotionpatternsforthepelvicandscapulargirdlesduringgait8-B[41] Goujounet al.(2006) 4Uni,Tf, Tr6Uni,Tt, Tr35 Ab4M, 49135M, 1F,4513?M,? F,33?Toevaluate prostheticfeet withan originalprotocolthatrecords fore-foot and ankle kinematics together with the globalbodykinematicsandGRF duringgait3-U[46] Grahametal.(2007) 6Uni,Tf, Tr 6M, 406 Toexplorethe differencesofusingan energy-storingfootthrough gaitanalysisandatimedwalking testtoproduceobjective measurements and a comfort score for the patientssubjectiveopinion9-BY.Sagawa Jr.etal. / Gait&Posture33(2011)511526 514Table 1(Continued )Ref Articles Participants(N) Sexandage Main objective(s) L[65] Hanetal.(2003) 6Uni,Tt, Tr,Va,Ca 4M,2F, 4110 To evaluatethe gait patternsduring walkingwithandwithout shoesandto identifythe differencesinbarefoot gaitpatternswhenusingdifferent prostheticfeet9-B[71] Hansenet al.(2006) 14Uni, Tt 9M,5F, 4611 To examinethe effect ofroll-overshapearc lengthon gait 5-U[22] Hoffman etal.(1997) 5Bi,Tf,Tr,Co5Ab4M,1F, 2234M,1F,226To examinethe aerobic demandsandcardio-respiratoryresponses during walking for a range of speeds in addition tothe subjects chosenwalking speeds10-B[20] Houdijk etal.(2009) 11Uni, Tt,Tr,Va11Ab? M,? F, 469? M,?F, 4711To investigate whether the increasedenergy cost ofamputeegait couldaccountforan increaseinthe mechanicalworkdissipatedduringthe step-to-step transitioninwalking9-B[88] Hsu etal.(1999) 5Uni,Tt, ? 5M,324 To investigate and compare the differences in energy cost, gaitefciency,andrelativeexerciseintensity ofmultiple-speedwalking andrunningwiththree differenttypesof prostheticfeet:the SACHfoot,the Flexfoot,andthe Re-Flex VerticalShock Pylon11-B[89] Hurley etal.(1990) 7Uni,Tt, Tr,Va,Co4Ab? M,? F, 356? M,?F, 252To investigatethe role ofthe contralaterallimb ingait bydetermininglower limbs jointreactionforces andsymmetry6-B[90] Isacov etal.(1885) 3Uni,Tf,Tr14Uni, Tf,Va3M,351113M,1F607To compare a prosthesis with an open knee mechanism versusalocked kneemechanismintermsof performanceandphysiologicalresponses7-U[56] Isacov etal.(1996) 14Uni, Tt,Tr,Va 11 M,3F, 4013 To investigate gait characteristics at two different speeds andthe inuence of speed on symmetry of selected gait parametersobtained10-B[66] Isakovetal.(2000) 14Uni, Tt,Tr 14 M,457 To outline differencesbetweenbothlegsinterms ofthekinematic parametersandthe activityofthe musclescontrolling the knees11-B[91] Isakovetal.(2001) 11Uni, Tt,Tr 11 M,378 To investigatethe activityofthe vastusmedialisandbicepsfemorismusclesduring ambulation11-B[92] Jaegeret al.(1996) 11Uni, Tf,Tr,Ca3Ab11 M,36?3M,3812To study the electromyographic activity of the supercial hipmusclesof bothlegs duringwalking8-B[25] Joneset al.(1997) 10Uni,Tt, Va 10M, 676 To comparestanding prostheticweight-bearingtolerance tothe forces experiencedduring walking11-B[26] Kahleetal.(2008) 21Uni, Tf,Tr,Va,Ca, Co? M,? F, 5119 To compare subject performance using a non-microprocessorkneemechanism versusaC-Leg9-B[93] Lacroix etal.(1992) 5Uni,Tf,Tr,Ca3Uni,Tf,Tr4M,1F, 3943M,26?To describethe energycostof gaitinyoung traumatictransfemoral amputeesusingacontactsocket fordifferentkneeprosthesis3-U[94] LeeandHong (2009) 5Uni,Tf,Tr 5M,482 To investigatethe effectof articialanklemobility inthesaggitalplane onthe gait of amputeeswearing astance-andswing-controlled kneeprosthesis6-U[34] Leeetal.(2006) 4Uni,Tt, Tr,Co 4M,4116 To evaluate the gait performance and perception of amputeeswhile using a exible elliptican-shank monolimb as comparedto athickercircular-shank monolimbandaconventionalmodular prosthesis9-C[17] Lehmann etal.(1993) 10Uni,Tt, ? ? M,? F To quantifymetabolicrateandefciency,biomechanicalgaitparameters,andprosthesiscomfort ofthe SeattleAnkle/LiteFootcomparedto theSACHfoot8-B[27] LemaireandFisher(1994)12Uni, Tt,Tr12Ab12 M,72412M,703To assess the incidence of OA and relate these ndings to thekinematic walkinggaitcharacteristics11-B[95] Lemaireetal.(1993) 8Uni,Tt, Tr 8M,692 To examinethe kinematicandkinetic gait parameters 8-U[14] Linden etal.(1999) 2Uni,Tf,? 2M,341 To describeamethodology forinvestigatingthe effectsofvarious prostheticfeet onamputeegait7-U[40] McNealy andGard(2008) 4Bi,Tf,Tr,Co9Ab4M,41238M,1F,284To determine if adding prosthetic ankle motion would improvegait7-B[96] Michaud etal.(2000) 9Uni,Tf,Tt, Tr 9M,4516 To assess the qualitative and quantitative differences in pelvicobliquity6-B[32] Mizuno etal.(1992) 10Uni,Tt, ?5Ab10M, 51145M,41?To investigate the functional features of various prostheses tofacilitatethe taskof prescribingthem3-U[97] Murray (1980) 10Uni,Tf,Tr30Ab10M, 41?? M,?F, ? ?To document several previously unreported motion patterns inthe lower limbs and the trunk using prostheses with constant-friction kneecomponents8-B[98] Murray etal.(1983) 10Uni,Tf,Tr? Ab10M, 41?? M,?F, ? ?To measurethe multipledisplacementpatternsin ordertocompare thestridedimensionsandtemporalcomponentsduring slow,free-speed,andfastwalking, usinga constant-friction kneecomponent toahydraulicswing-control kneecomponent8-B[31] Nadollek etal.(2002) 22Uni, Tt,Va ? M,? F, 7210 To establish the relationship between weight distribution, theanteriorposterior andmedio-lateralcenterof exertedpressure,the strengthofthe hipabductormuscle andgaitparameters10-B[68] NolanandLee(2000) 4Uni,Tf,Tr4Uni,Tt, Tr10Ab? M,? F, 288? M,?F, 416? M,?F, 2910To quantify the sagittal plane kinematic characteristics and thejoint momentandpowerdemands placedonthe intactlimbduring walking9-B[99] Nyska etal.(2002) 3Uni,Tt, Tr 3M,50? To comparethreeprosthesesthe SACH,the energy-storingSeattle prosthesisand theIndian Jaipurprosthesis,whichismore prevalentineasterncountries6-UY.SagawaJr.etal. / Gait&Posture33(2011) 511526 515Table1(Continued )Ref Articles Participants (N) Sexandage Mainobjective(s) L[100] Pagliaruloet al.(1979) 15 Uni,Tt, Tr,Co 12M, 3F,2911 Todetermine themetabolic energycostof walkingwithcrutchesandwith prostheses8-U[21] Paysantetal.(2006) 10Uni, Tt,Tr10Ab10M, 391410M,39?Toinvestigate the inuenceofgroundsurfaceonwalkinginreal-worldsituations12-B[101] Pinzur etal.(1991) 7Uni,Tt, Va7Ab?M, ? F,64??M,? F,??To evaluate the pressures applied at several at-risk locationson theplantar surfaceofthe intactfoot6-B[58] Pinzur etal.(1991) 7Uni,Tt, Va5Uni,Tt, Va?M, ? F,???M,? F,??Toevaluate thephasic myoelectric activityof thequadricepsand the hamstring muscles in both the sound and amputatedlimbs of active amputees that do a limited amount of walking5-U[102] Pinzur etal.(1992) 25 Uni,Tf, Tt,Va5Ab, Va?M, ? F,58??M,? F,54?Toevaluate themetabolic demandsduringgait 5-U[48] Postemaetal.(1997) 10Uni, Tt,Tr,Va, Co9M, 1F,4911 Toobtain abetterunderstandingof theuser benetsof theenergystoringand releasebehaviorof someprosthetic feetthatareregularly usedinpatient care10-B[67] Powersetal.(1994) 10Uni, Tt,Tr 10M, 4515 Toexamine the jointmotionandGRF characteristicsofvedifferent prostheticfeet10-B[15] Powersetal.(1996) 22 Uni,Tt, Va72 Ab15M, 7F,6011?M,? F,??To establish a relationship between muscular torque capabilityandstridecharacteristics9-B[54] Powersetal.(1998) 10Uni, Tt,Va10Ab10M, 6275M, 5F,519Touse anintegratedapproach(i.e.EMG,kinematics,kinetics) to evaluate the knee mechanics and to identify factorscontributingtoabnormal knees11-B[60] Princeetal.(1998) 5Uni,Tt, Tr,Va ?M, ? F,4214 Toevaluate thenet energystored ordissipatedandthenrecovered, as well as spring efciency, in order to distinguishamongthreeprosthetic feet8-U[61] Rabuffetti etal.(2005) 11 Uni,Tf7Ab10M, 1F,36257M, 3819Todetermine theeffects ofthebody/socket interfaceonamputeemotor strategies7-B[103] RoyerandWasilewski(2006)10Uni, Tt,Tr,Va, Co9M, 1F,4110 Toexamine frontalplanemoments 10-B[72] Sadeghietal.(2001) 5Uni,Tt, Tr,Va 3M, 2713 Togaininsight intohow hip musclepowers cangenerateorabsorbmusclepower activityon theamputatedsidetocompensateforthelack ofnormal anklemuscle powerfunction,andhow these compensatorymechanismscaninuencemuscle poweractivitiesinthe soundlimb9-B[55] SandersonandMartin(1997)6Uni,Tt, Tr6Ab6M, 4076M, 337Toquantifythe adaptationof thejointkinetics intheankle,kneeandhip ofboth prostheticandintact limbs10-B[28] Sapinetal.(2008) 5Uni,Tf, Tr,Co6Uni,Tf, Tr23 Ab5M, 53146M, 5811?M,? F,51?To describe amputee gait patterns using two different uni-axiskneejointswithahydraulicswing-phasecontrolandinparticulartostudy the effectof amechanicalknee/ankle link8-B[23] Schmalzet al.(2002) 7Uni,Tt, Tr8Uni,Tt, Tr6Uni,Tf, Tr6Uni,Tf, Tr?M, ? F,4917?M,? F,4417?M,? F,336?M,? F,369To dene more clearly the inuence of prosthetic alignment onmetabolicenergy consumptionduringwalking8-U[64] Segaletal.(2006) 8Uni,Tf, Tr9Ab7M, 1F,47136M, 3F,298Tocompare thedifferences ingaitbiomechanics ofsubjectswearing theC-Legversusa non-computerizedprosthesis(MauchSNS) usingaintra-subject design6-B[104] Segaletal.(2009) 10Uni, Tt,Tr,Va, In,Ca10Ab9M, 1F,56126M, 4F,4414Todetermine ifa commerciallyavailabletorsionadapter canreducetranstibialamputeejointtorquescomparedtoarigidadapterduringstraight-linewalkingandturning gait7-B[70] Seroussiet al.(1996) 8Uni,Tf, ?8Ab?M, ? F,37??M,? F,32?To estimate the compensatory strategies of ankle, knee, and hipmusclesinamputatedandintact limbs7-B[74] Silvermanetal.(2008) 14 Uni,Tt, Tr,Va10Ab13M, 1F,4597M, 3F,3312Tobetterunderstandcompensatorymechanismsbyexaminingthe anterior/posteriorGRFimpulses andjointkinetics,acrossa widerangeofsteady-statewalkingspeeds7-B[62] Sjodahletal.(2002) 9Uni,Tf, Tr,Ca18 Ab5M, 4F,33339M, 9F,368Todescribe the effectofatraining programon temporalparametersand onmovements,momentsandpower inthesagittalplaneinthe pelvis,hip,kneeand anklejointssimultaneously8-B[105] Snyderetal.(1995) 7Uni,Tf, Va 7M, 62, 8 To study the loading patterns for ve different prosthetic feet 10-B[57] Suet al.(2007) 19 Bi,Tt14 Ab?M, ? F,5318?M,? F,26?Tocharacterize walkingpatterns 8-B[106] Torburnetal.(1995) 7Uni,Tt, Va7Uni,Tt, Tr7M, 6287M, 5116To compare the effects of ve different commercially-availableprostheticfeet onenergy expenditure9-B[107] Traballesietal.(2008) 16 Uni,Tf, Va8Uni,Tt, Va11M, 5F,61116M, 2F,5617To verify whether or not the energy cost of treadmill walkingtests and during free walking are really equivalent, and if not,seewheretherearemeasurementdifferences9-B[44] Underwoodetal.(2004)11 Uni,Tt, Tr 8M, 3F,4212 To examine the effects of two prosthetic feet (the conventionalsemi-rigid foot versus the dynamic elastic response Flex foot)on the3-D kineticpatternsduringsteady-stategait9-C[108] VanJaarsveldet al.(1990)5Uni,Tt, ? 5M, 3915 Toevaluate thedifferences inabsorptionofhigh-levelaccelerationsamongcommercially-availableprosthetic feetandthe inuenceofthe shoetype onthese differences9-B[35] Wirta etal.(1991) 19 Uni,Tt, ? 15M, 4F,4816 To analyze the effect of ve commonly prescribed devicesongait andtoproposeadditionalguidelinesforselecting andprescribing them6-B[38] Wright etal.(2008) 10Bi, Tt,Tf, Tr,Co10Ab10M, 401210M,? F ?Todetermine thephysiological costofwalking 6-BY.Sagawa Jr.etal. / Gait&Posture33(2011)511526 5164.3. ThemostcommonparametersforLLAgaitanalysisThearticleresultsoftenpresent spatio-temporal parametersrst. We found 17 parameters (Table 2), which were mostlycompared among AB groups or among other LLA studies.Unsurprisingly, self-selectedgait speedwas themost commonparameter(cited43timesin39.5%of thearticles), followedbycadence, step length (19% of the articles) and stride length (16% ofthe articles). These parameters can be obtained withrelativeprecisionusing a variety of instruments (e.g., accelerometers,optoelectronic cameras, time-sensor cells, footswitches) and theyrepresent a global gait predictor [52,53]. The most commonly usedkinematics and kinetic parameters are discussed in Sections 4.4.24.4.4 respectively.Thirty-threeparameterswerebasedongroundreactionforce(GRF) and impulse provided by force plates, mostly on the verticalandanteroposterioraxes. Thearticlesonprostheticfootcompo-nents employedthese parameters most often(42.3%) becausechangesintheabsorptionandpropulsivecharacteristicsof theprostheticfeetcanbedirectlyreectedintheGRFandimpulses(Table 2).There were seven physiological parameters found in thearticles, with oxygen consumption and stump EMG signals beingthe most frequent. Oxygen consumption was expressed inmillilitersperminuteperkilogramof bodyweight(ml/min/kg)or in milliliters per meter per kilogram of body weight (ml/m/kg).Theseparametersweremostoftenemployedtodescribegaitinfunction of speed and to assess prostheses aiming to reduce energyexpenditure or to achieve energy expenditure close to that of able-bodied (AB) subjects (e.g., mechanical versus microprocessorknees, SACH versusdynamic feet)(Table 2).The EMGintensity and duration were employed to describe andquantifystumpmuscleactivity. Thiscannotbequantiedusingbiomechanical parameters since muscle contractions do not occurto produce movement distally but to compensate for the absenceof adjacentlower-limb structures and tomaintain theprosthesisstability [54].4.4. RelevantgaitparametersforLLA4.4.1. Spatio-temporalparametersAdditional spatio-temporal parameters that may be relevant forLLAgaitanalysisincludestancetime, stancetimeratioandsteptimeratio. Duringthegaitcycle, thestancephaseonthesoundlimb is slightly longer than on the prosthetic side. This contributesto a more asymmetrical gait [14,30,40,55,56]. Subjects withTable 1(Continued )Ref Articles Participants(N) Sexandage Main objective(s) L[109] ZhangandLee(2006) 12Uni, Tt 12 M,509 To evaluateandcompare theload-tolerance ofdifferentregions ofthe stump9-B[47] Zmitrewicz etal.(2006) 15Uni, Tt,Tr 14 M,1F, 587 To examine the inuence of energy storage and return (ESAR)feet andmulti-axisankleson the abilityto generateGRFs andthecorrespondingimpulsesduring walkingatthesubjects self-selectedspeeds10-BAbbreviations: Ref, references; L, level of evidence [8]; Ab, abled-body; Uni, unilateral; Bi, bilateral; Hd, Hip disarticulation; Tf, transfemoral; Kd, knee disarticulation; Tt,transtibial; Tr,traumatic;Va,vascular;Ca, cancer; Co,congenital;In, infection;?,not given;U,unassigned.Fig. 2.Thelistandthe frequencyof mainparametersusedinthe gaitanalysisoflower-limbamputees.Abbreviations: t, time; sup, support; CV, coefcient of variation; A, articular; C, center; GRF, ground reaction force; GRI, ground reaction impulse; COP, center of pressure; Acc,acceleration;M,manual;EMG,electromyography; RPE,ratingof perceivedexertion;n, numbers;diag,diagnosis.Y.SagawaJr.etal. / Gait&Posture33(2011) 511526 517Table 2The list of references for all parameters in biomechanics, physiology and other domains used in the gait analysis of lower-limb amputees for different themes. The number with a star means parameters with a signicant difference.Therepeatedreferencenumber indicatesthe number oftimesthataparameterwasused.Parameters NArt. Feet Knee Socket OthersSpatio-temporal17parametersStancetime (s) 14 47*/83 98*/43 63*,63*,57*,72*,66*,73*,76*, 55*,77*/103,56Swingtime(s) 5 45*/45,83 66*/103,56Stridelength(m) 15 14*,54*,105*,67*/106, 83,100 61,39 102*,76*,15*,27*/31,23Cycletime (s) 3 47,83 76*Cadence(step/min) 17 40,47,54,106,106,83,100 61,39 57*,62*,72*,102*,76*,21*,15*, 77*/103,21Velocity(m/s) 35 46*,71*,41*,14*,105*/40,47,106,106,45,83,10064*,19*,37*,98*,26*,90*/4361,39 63*,62*,72*,102*,102*,20*, 81*,107*,76*,21*,15*,27*,29*/23,85Steptime(s) 3 45 66*/56Singlesupporttime (s) 2 83 66*Doublesupporttime (s) 4 41*/83 31,56Foot-attime (s) 3 54*,60*,59*Steplength(m) 17 47*,41*,17*,32*/40, 106,83 61* 63*,57*,62*,72*,66*,21*/57, 103,31,56,21Stepwidth(m) 1 57*Stancetime ratio (%) 4 14* 64*/64 30* 72*Swingtimeratio (%) 1 31Steplengthratio (%) 6 46*,32*/71,71 43 30* 21Timinggait events(%) 1 56CV(%) 3 72*,68*/95Groundreactionforces andimpulses23 parametersVert.max. F.LR (N/kg) 9 46*,14*,105*,105*,67*,67*,17*/4664*/64 34*/57,55Vert.max. F.TS(N/kg) 3 46* 34*,55*Fore-aft.max.F.LR (N/kg) 4 47*,75* 55*/57Fore-aft.max.F.TS (N/kg) 5 47*/46 28* 55*/57Vert.F. IC(ImpactF.peak)(N/kg) 2 75*,75* 42*Vert.F. rateIC(ImpactF.rate)(N/s/kg) 1 75*,75*Vert.F. diff.sound/prosthetic(%) 3 71*,71*,71*,71*/71 39 31*Vert.F. excursion(N/kg) 2 41*,32*Vert.Imp. (Ns/kg) 2 75* 27*,27*Fore-aft.F.excursion(N/kg) 1 32*Fore-aft. +Imp. (Ns/kg) 4 47*,75*/47,48,75 74*,74*/74,74Fore-aft.Imp. (Ns/kg) 5 47*,47*,75*,17*/48 74*,74*Fore-aft.Imp.Ratio (%) 2 47*,47* 74*Fore-aft.F.pattern 1 32*Med-lat.F.pattern 1 82*Groundreactionmoment(Nm/kg) 1 63*COPexcursion (m) 1 31,31Effectivefootlength COP(m) 1 71*,71*,71*,71*Vertmin. F.MS (N/kg),Fore-aft.Min. F.MS(N/kg), Med-lat.min. F.LR (N/kg),Med-lat max.F.MS (N/kg),Med-lat.max. F.TS(N/kg)Groundreactionforceandimpulsetimes(%stride)11 parametersTimeat Fore-aft.max.F.LR 2 47*,67*Timeat Fore-aft.max.F.TS 2 47*,67*,67*Timeat Vert.max. F.LR,Time atVertmin.F. MS,Timeat Vert.max. F.TS, Timeat Fore-aft.min.F. MS,Time atMed-lat.min. F.LR,Time atMed-lat max.F.MS,Time atMed-lat. max.F.TSTrunkangles(Deg)3parametersTotalsagittalplaneexcursion 1 63*Totalcoronalplaneexcursion 1 63*Totaltransversalplaneexcursion 1 63*Pelvisangles(Deg) 9parametersY.SagawaJr.etal./Gait&Posture33(2011)511526518Totalsagittal planeexcursion 4 46 61* 63*,57*Totalcoronal planeexcursion 2 63*,96*Totaltranversalplaneexcursion 1 63*Pelvis/scapulargirdlesr.phase 1 63*Pelvissaggitalpattern 1 62Min.rot.sagittal plane,max.rot.coronalplane,max.rot.coronalplane, max.rot.transverseplanePelvisangletimes(%stride)4parametersTime atMin.rot.sagittal plane,timeat max.rot.coronalplane,time atmax.rot.coronalplane,time atmax. rot.transverseplaneHipangles(Deg)13 parametersMax.ex.atLR 2 62*/62,56Max.ext.instancephase 2 46 77*Totalsagittal planeexcursion 5 48*/40 61* 57*,92*Totalcoronal planeexcursion 1 45*Hipsagittal pattern 1 95FlexionatIC,Flexionattoe off,max. ex.in swingphase,max.add. instancephase,max. abd.inswing phase,totaltransverseplaneexcursion, max.int.rot.instance phase,max.exte.rot.inswingphaseHipangletimes (%stride)7parametersTime at max. ex. at LR, time at max. ext. in stance phase, time at max. ex. in swing phase, time at max. add. in stance phase, time at max. abd. in swing phase, time at max. int. rot. in stance phase, time at max. exte. rot. in swingphaseKneeangles(Deg)13parametersMax.ex.atLR 10 40*,54* 64,64 57*,24*,65*,62*,66*, 56*,56*,33*Max.ext.instancephase 2 70*,62Flexionattoe off 2 64,64 56*Max.ex.inswingphase 4 46*/40 64*,64*/64 56*Totalsagittal planeexcursion 3 17*,17* 39 68*FlexionatIC,total coronalplaneexcursion,max. add.instancephase,max. add.inswing phase,totaltransverseplaneexcursion, max.int.rot.instancephase,max. exte.rot.inswingphaseKneesagittalpattern 3 94 55*/95Kneeangletimes(%stride)7parametersTime at max. ex. at LR, time at max. ext. in stance phase, time at max. ex. in swing phase, time at max. add. in stance phase, time at max. add. in swing phase, time at max. int. rot. in stance phase, time at max. exte. rot. in swingphaseAnkleangles(Deg) 10parametersMax.plant.ex.atLR 5 14*,48*,59*, 84* 77*Max.dorsiex.instance phase 4 46*,105*,67*, 67* 57*Flexionattoe off 1 70*Max.dorsiex.inswing phase 1 28*Totalsagittal planeexcursion 4 48*,17* 68*,82*/68,68Totalcoronal planeexcursion 1 102*Max.eversioninstance phase 1 44Anklesaggitalpattern 2 95*,55*FlexionatIC,max.inversion inswingphaseAnkleangletimes(%stride)5parametersTime atMax.plant.ex.atLR,timeat max.dorsiex.instance phase,time atmax.dorsiex. inswingphase,time atmax.eversion instancephase,time max.inversion inswingphaseLower-limbmoments(Nm/kg) 2parametersMax.lower-limbmoment 1 70*Lower-limbmomentpattern 1 55Hipjoint moments(Nm/kg) 8parametersMax.ex.momentatIC 5 40*,14* 68*,70*/15Max.ext.momentatTS 3 40 68*,70*Firstmax.add. moment 2 103*/15Max.exte.rot.moment 1 104*Max.ex.momentatMS 1 40Hipsagittal pattern 1 55Max.int.rot.moment,secondmax. add.momentHipjoint momenttimes(%stride)6parametersTime atmax.ex.momentatIC,time atmax. ext.momentat TS,time atrst max.add.moment,time atsecondmax. add.moment,time atmax.exte.rot.moment, timeat max.int.rot.momentY.SagawaJr.etal./Gait&Posture33(2011)511526519Table2(Continued )Parameters N Art. Feet Knee Socket OthersKneejointmoments(Nm/kg) 10parametersFirstmax.ext.moment 5 40*,44*, 14* 39,39 55*/55Firstmax.ex.moment 5 54* 64*,64*,64* 62*,70*,55*Secondmax. ext.MomentTS 2 40 55Firstmax.add. moment 3 44*,44* 64 103*Max.int.rot.Moment 1 104*Secondmax. ex.moment 2 44* 68*,68*Kneesagittalmomentpattern 2 54 94Max.abd.Moment, secondmax.add.Moment,Max.exte.rot.momentKneejointmomenttimes (%stride)8parametersTime atrstmax.ex.moment 1 54*Time at rst max. ext. moment, time at second max. ext. moment at TS, time at Max. abd. moment, time at rst max. add. moment, time at second max. add. moment, time at max. exte. rot. moment, time at max. int. rot. momentAnklejointmoments(Nm/kg) 5parametersMax.plant.ex.moment 4 44*,14* 68*/62Max.dorsiex.Momentat TS 8 71*,71*,14*, 17*/40 57*,62*,70*, 70*,55*Max.dosiex.momentdiff.sound/prosthetic(%) 1 71*,71*Max.eversionmoment, max.inversionmomentAnklejointmomenttimes(% stride)4parametersTime atmax.plant.ex.moment 2 40* 55*Time atmax.dorsiex. momentatTS, timeat max.eversionmoment, timeatmax. inversionmomentHipjoint powers(W/kg) 8parametersMax.ext.generateLR (H1S) 9 40*,14*, 73*/44 64 74*,74*,57*,62*,70*Max.ex.absorb(H2S) 6 40,44 64 57*,62*/72Max.ex.generatePS(H3S) 9 40*,46*/44 64 57*,62*/72,68,70Max.abd.absorb (H1F) 1 72*Max.abd.generate (H3F) 1 72*Max.ext.rot.generate(H2T) 1 72*Kneejointpowers(W/kg)6parametersMax.ext.absorbLR(K1S) 7 40*,14*, 73*,73* 64 62*,72*,27*Max.ext.generate(K2S) 7 54*,73* 64 74*,74*,62*,72*,27*Max.ext.absorbTS(K3S) 5 44*/40 64 72*,68*,68*Max.ext.absorb(K4S) 1 64Max.add,abd. generate(K2F) 2 44* 72*Anklejointpowers(W/kg)3parametersMax.dorsiex.absorb(A1S) 3 44*,44* 64 74*Max.plant.ex.generateatPS(A2S) 12 40*,46*, 74*,73*/44,48 64 74*,57*,62*,72*,70*Recoveryenergy(plantarexgenerate/dosiexabsorb(%)) 1 60*Physiological5parametersHeartrate(bpm) 7 100*, 88* 90*, 90* 22*,85*/102,107Bloodpressure(mmHg) 1 100VO2(ml/min/kg) 15 17,106 79*,43*,78*, 37*/43,78,37,37,8086*,23*,23*,23*,23*, 22*,85*,107*,21*,21*,36*/86, 23,23,85,20,107,21VO2cost(ml/m/kg) 12 100*, 88* 19*,37*,80*/37 86*,22*,102*,81*, 107*/24,20Respiratoryquotient(%) 1 86*EMG2parametersStumpmuscleactivityintensity 7 54*,83*,83*/95 66*,92*,76*/66, 66,58Stumpmuscleactivitytime 3 54* 91*,91*,91*,91*,92*, 92*,92*,92*/91,91,91,91,91,92,92Psychological4parametersProsthesiscomfort 1 46Prosthesispreference 2 45* 64*Y.SagawaJr.etal./Gait&Posture33(2011)511526520Satisfactionrate 5 44 43*,37*,26* 39*Rateof perceivedexertion 3 42*,22*/33Others26 parametersHipmuscle force 1 31Weight-bearingdistalendability 1 109Socketpressurepeak 3 99* 109*, 109* 101*Socketpressurecontact time 1 99*Socketpressurecontact area 1 99*Footstore/dissipateenergy 1 60*Shockfactor(accelerometer) 1 17*Trunkcenterofmassverticalexcursion 1 19COMverticalexcursion 1 24*COMext.mechanicalenergy 2 24*,20*COMenergyrecovery 1 24COMnegativeexternalmechanicalwork ofthe leadinglimb 1 20*COMpositiveexternal mechanicalwork ofthe trailinglimb 1 20*COMnegativeexternalmechanicalwork tostep-to-step transition 1 20*Costof components(total) 1 39*Costnumber ofvisits 1 39Costprosthesisprocesstime 1 39*Timedwalkingtest 1 46Steps/week 1 33Falls 2 26*,26* 36*PEQscore 1 26Comorbiditynumber 1 36*Socketvolume 1 30*, 30*Socketdisplacement 1 30*, 30*Osteoarthritisclinicaldiagnosis 1 27*,27*Number:reference.Number*:referenceandsignicant differenceusingsuchparameter.Others: descriptive,rehabilitation,tnessandpylonstudies.Abbreviations: NArt, number of articles, which utilized such parameter; F, force; Imp, impulse; Vert, vertical; Med-lat, mediolateral; IC, initial contact; LR, loading response; MS, mid stance; TS, terminal stance; diff, difference; ex,exion;ext,extension;add,adduction;abd,abduction;int.internal; rot,rotation;exte.external;plant,plantar; dorsiex,dorsiexion; r,relative;COMcenterofbody mass.Y.SagawaJr.etal./Gait&Posture33(2011)511526521unilateral amputations rely more on their sound leg to compensatefor some of the deciencies associated with prostheses [57].However,theincreasedloading periodmayexplainthedevelop-mentof complications intheremaining limb [58].Some studies have demonstrated positive effects from specicprostheticcomponents.Subjectsfeltmorecondentwithsuchaprosthetic foot and therefore compensated less on the sound side[14]. Theuseanappropriatedsocket, andthroughappropriatetting, the degree of gait asymmetry can be reduced [30].AppropriatedttingmaybeofferingLLAbettercontrolovertheprosthesis position, possibly by improving proprioceptionandforce transfer to the prosthesis. This probably improves thesymmetryof their gait[30].Foot at time is another spatio-temporal parameter that seemsappropriatefor LLAgait analysis. ABsubjectsreachedfoot atphaseat1217%of thegaitcycle[54,59]comparedtosubjectsusingasolidanklecushionheel(SACH)foot,whowerefoundtomakeheel contactonlyfortherst20%[60]or44.5%[59]. Theinability to achieve foot at contact during loading phase could beattributed to the compromised plantar exion of some prostheticfeet. For example, Seattle Light foot has been reported to provideonly 238 of motion [54]. Reduced motion during weightacceptance mayresult ina periodof instabilityduringwhichbalance relies onthe rear foot. It is therefore likely that thecontractionof theadjacent muscles(e.g., quadricepsandham-strings) could represent an attempt to provide joint stability duringthisphaseof thegaitcycle.Powers et al. [54] suggest that individuals with transtibial (TT)amputationneedtostabilize the knee duringweight acceptance duetotheprolongedheel-onlycontactcausedbyreducedprostheticfoot mobility. Nevertheless, other prosthetic feet, such as theGolden-Ankle one, attainedthe foot at phase signicantlyearlier inthegaitcycle(14%) comparedwiththosettedwitheithertheSeattle Light foot (21%), or the SACH foot (20%) [60]. Golden-Anklefoot users showed a more natural gait pattern, probably because itsankle articulation approached natural ankle function [60].4.4.2. JointangleparametersReducedhiprangeof motion(ROM) inthesagittal planeisassociated with ischiumsocket interference in TF amputees [61].ReducedhipROM, mainlyduringhipextension, alsoemployscompensatory mechanisms on the pelvis and on the sound side inorder to maintain adequate speed. Rabuffetti et al. [61] suggestedthat, when the hip on the prosthetic side is extended the ischiumsocket interference limits the physiological ROM. In order tomaintain functional step length, the pelvic range of motion (ROM)in the sagittal plane and the hip exion of the sound side increasedcomparedtoABsubjects. Inaccordancewithprevious studies[61,62], Goujon-Pillet et al. [63] found that, for TF subjects (88 58),the pelvis ROMis twice that of AB subjects (48 18). In the long-term,this motor strategy may cause lower back pain, whichis oftenreportedbyTF amputees. The literature reviewedsuggests, thatprosthetic feet have no inuence [40] or a minor inuence [48] on thehip motion inthe sagittal plane inTT and TF amputees.Pelvic ROMin the frontal plane is increased, in LLA compared toABsubjects. Suet al. [57] foundasignicant differencewhencomparing LLA at self-selected speeds (8.48 2.88) to AB subjects atslowspeeds (6.38 2.18). LLA lifted the pelvis on the swing side whilewalking. Thiscompensatorymotion, knownashiphiking, isoftenobserved inindividualswith unilateral TTor TF amputationsand isbelievedtocompensatefortheinabilitytodorsiextheprostheticankle. Hip hiking increases the prosthetic foot clearance [57];however, it mayalsorequire additional metabolic energytoliftbody mass against gravity, thus reducing gait efciency. Individualswithbilateral TTamputations displaybilateral hiphiking, whichprobably requires increased energy expenditure during walkingcompared tounilateralamputees[57].Knee exion during the loading phase has a shock-absorbingeffectwhichisimportantinthepreventionofwearandtearofweight-bearing joints [56]. For AB subjects or the LLAs sound side,this parameter value is about 15188 [54,57,64]. For TT amputees,itislimitedto9128[54,56,57];however, forTFamputees, itisoftenabsent or negative[64]. Duringgait speedchanges, thisparameter is less variable on the prosthetic side than on the soundside [56,57]. It can be inuenced by many conditions, such shoed orbarefootwalking[65], thetypeofsocket[66]andrehabilitation[62]. However, Segal et al. [64] demonstrated that TF patients whoused microprocessor controlled knee (e.g., C-Leg) designed toallow controlled stance phase knee exion, this did not normalize.They suggested that, although stance phase knee exion ispossible, it is difcult for TF amputees toachieve it, possiblybecausethey associatethis action with buckling andfalling.Table3Themainscientic journalspertaining togait analysesandthe distributionofarticles.Journals IF2008 N Articles L(meanSD,minmax)JBiomech 2.784 1 14 7GaitPosture 2.743 8 20,23,24,54,55,74,103,107 91.3, 711IEEETransNeuralSyst RehabilEng 2.7 1 34 9Phys Ther 2.190 2 15,100 8.50.7,89ArchPhys MedRehabil 2.159 11 17,22,27,37,46,47,63,67,70,78,98 8.91.2,711ScandJ RehabilMed 215 2 18,90 7.50.7,78ClinBiomech 2 2 44,76 81.4, 79JRehabilMed 1.983 1 91 10EurJ ApplPhysiol 1.931 1 86 12ClinOrthopRelatRes 1.893 1 92 8ClinRehabil 1.840 1 43 3AmJPhys MedRehabil 1.695 6 19,65,72,73,80,81 8.30.5,89JRehabilResDev 1.446 13 21,26,33,35,42,57,60,64,87,96,104106 8.31.8,612BullProsthet Res 1.29 1 97 8FootAnkle 1.061 1 58 6Orthopedics 0.588 2 58,102 5PhysiotherResInt 0.561 1 31 10ProsthetOrthot Int 0.377 30 25,2830,32,36,3841,45,48,56,59,61,62,66,68,71,75,77,80,8285,89,95,108,1097.52,311IntJRehabilRes 0.343 1 99 6AnnPhys RehabilMed 1 93 3JOrthopSports PhysTher 1 88 11ProcInst ofMechEngPartH, JEng Med 1 94 6Abbreviations:IF,impact factor;N,number;L, levelofevidenceobtainedfromthe vanderLinde etal.[8] criterialist withamaximum scoreof13 points.Y.Sagawa Jr.etal. / Gait&Posture33(2011)511526 522Plantar exion in the early stance phase is an importantparameter, which quanties the prosthetic foots capabilities to beat ontheground, allowingmoreoorcontact, whichpermitsbetterstabilityduringthestancephase. Thisparameterchangesconsiderably with the prosthetic foot design. Most of the dynamicprostheticfeetarecomposedbyabladewithoutanarticulatedanklejoint, sothat themeasuredankleplantar exionmotionduring the early stance phase is primarily due to heel compression.This feature has been reported by Postema et al. [48], who foundthat theMultiexarticulatedfoot hasbetter plantar exionatnormalspeeds(NS)(8.38 .48)andfastspeeds(FS)(6.58 .78)than other so-called exible feet: Springlite II (NS: 6.18 3.28; FS:4.98 .28); CarboncopyII (NS: 4.58 .98; FS: 4.68 .78); andSeattle light foot (NS: 4.68 .68; FS: 4.88 .78).The next important parameter is the dorsiexion motion duringthemid-to-latestancephase. Prostheticfeet providelessanklemotion during the stance phase than the natural ankle motion inAB subjects: 12.58 3.18 at self-selected speeds for LLAversus20.28 3.58atslowspeedsforABsubjects[48,67]. Thisparameteralsoseemstobegreatlyinuencedbyprostheticfootdesigns. Asexplained above, for dynamic prosthetic feet the dorsiexion motionalsodependsofthebladecapacitytobend.Poweretal.[67]foundbetter results for Flex foot (23.28) and Quantum (19.58) feet than forSeattle (15.18),Carbon copy II(12.18)orSACH (128)feet.The last parameter is the total ankle ROM in the sagittal plane.Nolan and Lee [68] reported a 218 ROM for AB subjects, a 208 ROMfor the LLAs prosthetic side and a 268 ROMfor their sound side. TheincreasedROMforthesoundlimbwasattributedtothelimitedanklemovement ontheprostheticlimb: LLAneedtoincreasesound limb length in order to clear the prosthetic limb during theswingphase, acompensationmethodthat hasbeenpreviouslyreported forTF amputee gait.Nolan andLee [68] also foundthatthe type of prosthesis used can affect lower-limb kinematics. Theyobserved in their study that TT amputees using a SACHfoot had 108ROM less in the prosthetic ankle and 158 ROM greater in the soundanklethanwhenthey usedamulti-axis foot.4.4.3. JointmomentparametersMcNealy and Gard [40] found that the mean hip joint momentin the sagittal plane at initial contact in LLA was +.8 Nm/kg, whichwas more than twice the one observed in AB subjects (+.3 Nm/kg).It appearedthat thehipjoint intheLLAgroupwas critical ingeneratingpower duringthe earlystance phase. Since the TFamputees investigated did not have any active control of the ankleand knee joints, the moment generated at the hip probably assistedforwardprogression[40]. NolanandLee[68]alsofoundsimilarresults for the same moment on the sound hip side. Seroussi et al.[70] found that the hip moment became a exor moment(external) substantially earlier for the sound limb than theprosthetic limbof LLAand both limbsofAB subjects.The greatest difference between LLAand ABsubjects for the kneemomentinthesagittal planeoccursduringtheexternal exionmoment in the loading-response phase. According to Powers et al.[54], ABsubjectsrelyonthekneeextensors, whichareactingtocontrol knee exion during weight acceptance. This was conrmedthroughanEMGof thevastus lateralis, whichdemonstratedanaverage intensity of 29% of a maximal muscle contraction test andlasted until 22% of the gait cycle [54]. In contrast, the moment dataobtained fromthe TT amputees suggested negligible extensordemandas the knee exionmoment was signicantlysmallerduringthestancephase. However, theEMGresultsshowedthatactivityof thevastus lateralis intheTTgroupwas signicantlygreaterthanthatoftheABgroup. Onaverage, theTTamputeesdemonstrateda25%increaseinthemeanintensityofthevastuslateralisandsignicantlylongerdurationofactivity(lastinguntil33% of the gait cycle) compared to normal values [54].Theinconsistencybetweenthemoment dataandtheEMGresultsforthispopulationindicatesadiscrepancybetweenthemechanical measurements of knee extensor demandandthephysiological response. Hence, cautionis neededwhileinter-preting the results [54]. For TF amputees, the knee exionmomentis even smaller because the prosthetic knee cannot replacequadricepsmuscleactivity. However, Segal etal. [64] foundasmall but signicant exor knee moment when TF subjects usedthemicroprocessor kneeC-Leg(.14 .05 N m/kg), comparedtosubjectsusingamechanicalknee(.06 .07 N m/kg). Thesevaluesare still modest when compared with those of AB subjects(.47 .1 N m/kg).LLAdevelopanexternalplantaranklemomentovertherst20%ofthegaitcycle, whereasABsubjectsdisplaythismomentonly for the rst 9% of the gait cycle [40]. AB subjects are able torapidly achieve the foot at phase and to transfer the load onto theleadinglegduringtheloading-responsephaseinpreparationforsinglesupport. Indoingso, theyadvancethecenterofpressureunderthefoottoapositionanteriortotheanklejointaxis[40].Additionally, the stance phase knee exion in AB subjects probablyhelpstoreducethedurationofthenegativeanklemoment[40].LLAspendmoretime, comparedtoABsubjects, rotatingtheirprosthetic legs forward until the foot at phase is achieved. This isdue to reduced movement of the prosthetic ankle, combined withthe absenceofstance phaseknee exion[40].Sjodahl et al. [62] found that, both before and after arehabilitationprogram, therewasabumpintheexternal ankledorsiexionmomentat26%ofthegaitcycleonthesoundside,indicating that LLA were using a vaulting movement. Thisadaptationwasprobablyusedtofacilitatetoeclearanceontheprosthetic side[55,68].Suet al. [57] reportedthat the external ankle dorsiexionmoment at the end of the stance phase of unilateral TT amputeeswas only 6070%of the moment foundinABsubjects. Theysuggested that this reduction was due to the absence of the ankleplantar exors. Another possibility is that the keel of the prostheticfoot was functionally shorter thanthat of the biological foot,reducingthemomentarmbetweentheGRFsandtheanklejointcenter during stance [71]. However, the ankle moment on both theprosthetic andsoundsidesmayvaryaccordingtotherehabilita-tion program [62] or prosthetic foot characteristics [14,17,44]. AsUndewood et al. [44] have shown, LLA using a dynamic Flex foothave 15% greater ankle dorsiexion moment when compared to anon-dynamic footprosthesis.4.4.4. JointpowerparametersOnboththeprostheticandsoundsides, LLAhaveagreateramplitude and duration of hip joint power lasting throughout therst half of the stance phase (5560% of gait cycle) than AB subjects(20%of gaitcycle) [72]. Sadeghi etal. [72]calledthishipjointpowertherstlimbpropellerparameter. Theincreaseinhipextensor power output in TT amputees corresponds to an increasein the gluteus maximus and hamstring activity, as shown by EMG.Increased hip extensor use in the early stance phase appears bothto control knee exion during limb loading and to pull the trunkforward after heel strike as the foot makes contact with the oor.Using hip extensors as a source of power represents a compensa-tion for the lack of appropriate ankle function during push-off [72].The excessive work produced at the hip may further contribute tothe increasedenergy expenditure inLLAwalking[57].The increased hip power has been conrmed by other studies[44,57,62,73,74]. Seroussi et al. [70] found an increase of 270% inthe concentric hip extensor work in the early stance phase on thesound side of LLA when the prosthetic limb was pushing off. Gitteret al. [73] have shown an increased use of concentric hip extensorenergy generation during the early and mid stance (H1S) inY.SagawaJr.etal. / Gait&Posture33(2011) 511526 523ambulation with a non-dynamic foot, such as the SACH. Inaddition, Underwood et al. [44] conrmed the inuence of the typeofprostheticfoot. Theyshowed, thattheH1Spowergenerationtended to be smaller on both the prosthetic limb (a 66% decrease)and the sound limb (a 75% decrease) when LLA were wearing thedynamic Flex foot, compared to a SACH foot. This nding suggeststhat the dynamic Flex foot requires less passive and active stability,compared toaconventional prostheticfoot.ComparedtoABsubjects, LLAexhibitanotherlargesourceofpower generation at the hip joint prior to toe off (H3S) [40,70,72].The H3S power burst represents theactionof the hipexorspulling the lower-limbupwardandforward. As showninABsubjects, the ankle power generation and the H3S hip power burstsoccur simultaneouslyduringthegait cycleastheleadinglimbprepares for the swing phase. Thus, LLA apparently compensate forthe lackof energyproducedinthe prosthetic ankle (A2S) byincreasing power generation at the hip (H3S) immediately prior totoeoff [40,70,72].Sadeghi et al. [72] reported a reductionof 63%in the knee powerabsorption during the loading-response phase (K1S) on theprostheticsideofTTamputees,comparedtothesoundside.Theproblemwas worse for TF amputees because the negative externalknee moment did not allow prosthetic knee motion in the stancephase. Thustherewasnoenergystorage(K1S)orenergyreturn(K2S) in the knee power curves during this phase of the gait cycle[40]. Consequently, thekneejoint didnot contributetoshockabsorption,energystorageorenergy returnsformostofthegaitcycle[40].Both theTTandTFamputees appearedto usethehipjoint as an alternative means of shock absorption, powerabsorption and power generation [40,72], or they overloadedtheirsound knees[62].There are twoimportant parameters for ankle power: the anklepowerabsorption(A1S)attheloading-responsephaseandthemid stance phase and the ankle power generation (A2S) at the endof the stance phase. The deformation properties of dynamic feetallowfor a greater power absorption (A1S) during weightacceptance and, consequently, a trend towards a greater externaldorsiexionmoment; power generation(A2S) takes place atpush-off. Althoughtheuseof thedynamicfoot increasedthedorsiexion moment and push-off power of the prosthetic ankle,thesevalues werestill well belowthosefor theanklesof ABsubjects [44]. Seroussi et al. [70] found that the LLAs prostheticankle at push-off reachedonlyabout 20%of the ankle workgenerated by the AB subjects ankle.Suetal. [57]foundthattheprostheticsideof TTamputees,walkingataself-selectedspeed(.38 .18 W/kg), generatedfourtimes less ankle power than the AB subjects, walking at a slow speed(1.26 .38 W/kg). For the same ankle parameter, Sadeghi et al. [72]found a reduction of 76% for the TT prosthetic side compared to thesound side, which was expected because of the limited deformationcapability of prosthetic feet [72]. Ankle power parameters seem to begreatly inuencedby the type of prosthetic foot [14,44,46,48,70] or bytherehabilitationprogram [62].It has been shown that the ankle plantarexors at push-off are amajor source of energy generation when walking [70]. Therefore,the decrease in prosthetic ankle push-off represents a substantiallossof themechanical workgeneratedbythelower extremityduringwalking, resultinginanumberofpossiblecompensatorymechanisms[70,72].Seroussietal.[70]describedthreepossiblecompensatory mechanisms in their study. First, the sound ankle ofLLA generates approximately one third more work than the anklesof theABsubjectsduringpush-off. Second, thedecreaseintheprosthetic ankle push-off creates an increase in the concentric hipextensor work in the early stance phase on the sound side of LLA.Third, there is a relative increase in the concentric hip pull-off intheprosthetic limb(H3S) [70].4.5. ThemainlimitationsofstudiesandparametersdiscussedThereisalackof studiesintheliteratureonbiomechanicalmodels adapted for LLA, which would take into account thecharacteristics of prosthetic components (i.e., mass, center ofarticulation, center of mass, moment of inertia). All resultsforankle motion in the sagittal plane described above were obtainedusing a method in which the joint position of the prosthetic anklewas assumed to be in the same position as that of an intact ankle.However, arecentstudy[69]hasshownthatthemotionoftheprosthetic feet is different from that of the intact ankle. Thus, theuseofthismethodissubjecttosystematicerrorsasitcouldnotreect the real motion of the prosthetic foot. The same is probablythe case for other prosthetic components, such as the polycentrickneemechanisms, andthe sameerrors shouldbeexpected.Moreover, manyof thestudies investigatedstatedthat theprostheticcomponentswereadjustedandalignedbyanexperi-enced prosthetist, without providing any more information.However, individual tting characteristics may affect motionanalysisandleadtoerror. Themanufacturersof somedynamicfeet, for example, recommend that for an optimal function, thesefeet require to be set in slight plantar exion. Another example isthesocketof TFsubjects, whichisoftenmanufacturedwithaninitial exion to facilitate support during gait. Thus, if thisinformationis not explicit, it couldbias interpretations of LLAgaitanalysis.Indeed, in our opinion, further work is required to establish amethodological consensus or a guideline before clinicallymeaningful measurements canbe condently based on LLA gaitanalysis.5. ConclusionIn this study, we presented and discussed the 32 most commonparameterspublisheduntilnow. Manyoftheparametersfoundwere not reported in enough studies or in enough detail to allow auseful discussion. The diversity in the outcomes selected todescribe the LLA gait cannot be explained by differences inresearchobjectivesonly. Thisparameterdiversitysuggeststhatthere is a lack of consensus among researchers about the aspects ofgaitthat areimportantwhen assessingLLAoutcomes.Finally, due to the methodological inconsistency of the studiesandtheparameterdiversity,ithasbeendifculttoidentifythemainparametersthat shouldbeusedingait analysisforLLA.Althoughthissystematicreviewcannotcorrectthebiasesandmethodological awsobservedintheoriginal studies, itcouldhelp guide future studies for choosing parameters, thus bringingabout a more evidence-based compromise. Further researchemphasizing the clinical usefulness of LLA gait analysis may helpdetermine which gait parameters provides the most usefulinformation.AcknowledgmentsThe present research work has been supported by OSEO projectnumberA0607009N, International CampusonSafetyandInter-modalityinTransportation, theNord-Pas-de-Calais Region, theEuropeanCommunity, theRegionalDelegationforResearchandTechnology, theMinistryofHigherEducationandResearch, andthe National Center for Scientic Research. The authors gratefullyacknowledgethe supportofthese institutions.Conict of interestThe authors state that no conicts of interest are present in thisresearch.Y.Sagawa Jr.etal. / Gait&Posture33(2011)511526 524Appendix A. Supplementary dataSupplementary data associated with this article can be found, intheonline version,at doi:10.1016/j.gaitpost.2011.02.003.References[1] Amputationcoalitionof America[cited2010March, 23]; Availablefrom:www.amputee-coalition.org.[2] Dillingham TR, Pezzin LE, MacKenzie EJ. Limb amputation and limb decien-cy: epidemiology and recent trends inthe United States. SouthMed J2002;95:87583.[3] DillinghamTR, Pezzin LE, Shore AD. Reamputation, mortality, and health carecostsamongpersonswithdysvascularlower-limbamputations. ArchPhysMedRehabil2005;86:4806.[4] HafnerBJ, SandersJE, Czerniecki J, FergasonJ. Energystorageandreturnprostheses: does patient perception correlate with biomechanical analysis?ClinBiomech 2002;17(5):32544.[5] Michael JW. Modernprosthetickneemechanisms. ClinOrthopRelat Res1999;361:3947.[6] GerzeliS,TorbicaA,FattoreG.Costutilityanalysisofkneeprosthesiswithcompletemicroprocessorcontrol (C-leg)comparedwithmechanical tech-nology intrans-femoralamputees.Eur JHealthEcon2009;10:4755.[7] GaileyRS, RoachKE, ApplegateEB, ChoB, CunniffeB, LichtS, etal. Theamputeemobilitypredictor:aninstrumenttoassessdetermiantsof thelower-limb amputees ability to ambulate. Arch Phys Med Rehabil2002;83:61327.[8] vander LindenML, HofstadCJ, Geurts AC, PostemaK, GeertzenJH, vanLimbeek J. A systematic literature review of the effect of different prostheticcomponets on human functioning with a lower-limb prosthesis. J Rehabil ResDev2004;41:55570.[9] SansamK, NeumannV, OCornnorR, BhaktaB. Predictingwalkingabilityfollowinglowerlimbamputation: asystematicreviewof theliterature. JRehabilMed2009;41:593603.[10] van Tulder MW, Assendelft WJ, Koes BW, Bouter LM. Method guidelines forsystematicreviewsintheCochraneCollaborationBackReviewGroupforspinaldisorders.Spine1997;22:232330.[11] Verhagen AP, de Vet HC, de Bie RA, Kessels AG, Boers M, Bouter LM, et al. TheDelphi list: a criteria list for quality assessment of randomized clinical trialsfor condctingsystematic reviews developedbyDelphi consensus. J Clinepidemiol 1998;51:123541.[12] English RD, Hubbard WA, McElroy GK. Establishment of consistent gait aftertting ofnewcomponents. JRehabilResDev1995;32:325.[13] Landis JR, Koch GG. An application of hierarchical kappa-type statistics in theassessment of majorityagreement amongmultipleobservers. Biometrics1977;33:36374.[14] van der Linden ML, Solomonidis SE, Spence WD, Li N, Paul JP. A methodologyfor studying the effects of various types of prosthetic feet on the biomechan-ics oftrans-femoralamputeegait. JBiomech 1999;32:87789.[15] Powers CM, Boyd LA, Fontaine CA, Perry J. The inuence of lower-extremitymuscle force on gait characteristics in individuals with below-knee amputa-tions secondarytovasculardisease.Phys Ther1996;76:36977.[16] Benedetti MG, Catani F, Leardini A, Pignotti E, Giannini S. Data managementin gaitanalysisforclinicalapplications.ClinBiomech 1998;13:20415.[17] Lehmann JF, Price R, Boswell-Bessette S, Dralle A, Questad K. Comprehensiveanalysis of dynamic elastic response feet: Seattle Ankle/Lite Foot versus SACHfoot. ArchPhys MedRehabil1993;74:85361.[18] Boonstra AM, Schrama J, Fidler V, Eisma WH. The gait of unilateral transfe-moral amputees.Scand JRehabilMed1994;26:21723.[19] Gitter A, Czerniecki J, Weaver K. A reassessment of center-of-mass dynamicsas a determinate of the metabolic inefciency of above-knee amputeeambulation. AmJPhys MedRehabil1995;74:3328.[20] Houdijk H, Pollmann E, Groenewold M, Wiggerts H, Polomski W. The energycost for the step-to-step transition in amputee walking. Gait Posture2009;30:3540.[21] Paysant J, Beyaert C, Datie AM, Martinet N, Andre JM. Inuence of terrain onmetabolicandtemporalgaitcharacteristicsofunilateraltranstibialampu-tees. JRehabilResDev2006;43:15360.[22] Hoffman MD, Sheldahl LM, Buley KJ, Sandford PR. Physiological comparisonofwalkingamongbilateralabove-kneeamputeeandable-bodiedsubjects,and a model to account for the differences in metabolic cost. Arch Phys MedRehabil1997;78:38592.[23] Schmalz T, Blumentritt S, Jarasch R. Energy expenditure and biomechanicalcharacteristics of lower limbamputeegait: theinuenceof prostheticalignment anddifferent prosthetic components. Gait Posture2002;16:25563.[24] Detrembleur C, Vanmarsenille JM, De Cuyper F, Dierick F. Relationshipbetweenenergycost, gait speed, vertical displacement of centreof bodymass and efciency of pendulum-like mechanism in unilateral amputee gait.Gait Posture2005;21:33340.[25] JonesME, SteelJR, BashfordGM, DavidsonIR. Staticversusdynamicpros-theticweightbearinginelderlytrans-tibial amputees. ProsthetOrthotInt1997;21:1006.[26] Kahle JT, Highsmith MJ, Hubbard SL. Comparison of nonmicroprocessor kneemechanism versusC-Legonprosthesisevaluationquestionnaire,stumbles,falls, walkingtests, stair descent andkneepreference. J Rehabil ResDev2008;45:113.[27] LemaireED, FisherFR. Osteoarthritisandelderlyamputeegait. ArchPhysMedRehabil1994;75:10949.[28] Sapin E, Goujon H, de Almeida F, Fode P, Lavaste F. Functional gait analysis oftrans-femoral amputees usingtwodifferent single-axis prosthetic kneeswithhydraulicswing-phasecontrol:kinematicandkineticcomparisonoftwoprosthetic knees.ProsthetOrthot Int2008;32:20118.[29] Baker PA, Hewison SR. Gait recovery pattern of unilateral lower-limb ampu-teesduringrehabilitation.ProsthetOrthot Int1990;14:804.[30] Board WJ, Street GM, Caspers C. A comparison of trans-tibial amputee suctionandvacuumsocket conditions.ProsthetOrthot Int2001;25:2029.[31] NadollekH, BrauerS, IslesR. Outcomesaftertrans-tibial amputation:therelationship between quiet stance ability, strength of hip abductor musclesandgait. PhysiotherResInt2002;7:20314.[32] Mizuno N, Aoyama T, Nakajima A, Kasahara T, Takami K. Functional evalua-tionbygaitanalysisofvariousankle-footassembliesusedbybelow-kneeamputees.ProsthetOrthotInt 1992;16:17482.[33] BergeJS, CzernieckiJM, KluteGK. Efcacyofshock-absorbingversusrigidpylonsforimpact reductionintranstibial amputeesbasedonlaboratory,eld,andoutcome metrics.JRehabilResDev2005;42:795807.[34] LeeWCC, ZhangM, ChanPPY, BooneDA. Gaitanalysisoflow-costexible-shank transtibial prostheses. IEEE Trans Neural Syst Rehabil Eng 2006;14:3707.[35] WirtaRW, MasonR, CalvoK, GolbransonFL. Effect ongait usingvariousprostheticankle-footdevices.J RehabilResDev1991;28:1324.[36] Chin T, Sawamura S, Fujita H, Ojima I, Oyabu H, Nagakura Y, et al. %VO2max asan indicator of prosthetic rehabilitation outcome after dysvascular amputa-tion.Prosthet OrthotInt2002;26:449.[37] Casillas JM, Dulieu V, Cohen M, Marcer I, Didier JP. Bioenergetic comparisonofa new energy-storing foot and SACH foot in traumatic below-knee vascularamputations.ArchPhys MedRehabil1995;76:3944.[38] Wright DA, Marks L, Payne RC. A comparative study of the physiological costsofwalkinginten bilateralamputees.ProsthetOrthot Int2008;32:5767.[39] Datta D, Harris I, Heller B, Howitt J, Martin R. Gait, cost and timeimplicationsforchangingfromPTBtoICEXsockets. ProsthetOrthotInt2004;28:11520.[40] McNealy LL, Gard SA. Effect of prosthetic ankle units onthe gait of persons withbilateral trans-femoral amputations. Prosthet Orthot Int 2008;32:11126.[41] GoujonH, BonnetX, Sautreuil P, MaurissetM, DarmonL, FodeP, etal. Afunctionalevaluationofprostheticfootkinematicsduringlower-limbam-puteegait. ProsthetOrthot Int2006;30:21323.[42] Gard SA, Konz RJ. The effect of a shock-absorbing pylon on the gait of personswithunilateraltranstibialamputation. JRehabilResDev2003;40:10924.[43] Datta D, Heller B, Howitt J. A comparative evaluation of oxygen consumptionand gait pattern in amputees using Intelligent Prostheses and conventionallydampedknee swing-phasecontrol. ClinRehabil2005;19:398403.[44] Underwood HA, Tokuno CD, Eng JJ. A comparison of two prosthetic feet on themulti-joint and multi-plane kinetic gait compensations in individuals with aunilateraltrans-tibialamputation. ClinBiomech2004;19:60916.[45] BoonstraAM,FidlerV,Spits GM,TuilP, Hof AL.Comparisonof gait usingaMultiexfoot versus a Quantumfoot inknee disarticulationamputees.ProsthetOrthot Int1993;17:904.[46] GrahamLE, DattaD, Heller B, Howitt J, Pros D. Acomparativestudyofconventionalandenergy-storingprostheticfeetinhigh-functioningtrans-femoralamputees.ArchPhys MedRehabil2007;88:8016.[47] Zmitrewicz RJ, Neptune RR, Walden JG, Rogers WE, Bosker GW. The effect offootandankleprostheticcomponentsonbrakingandpropulsiveimpulsesduringtranstibialamputeegait. ArchPhys MedRehabil2006;87:13349.[48] Postema K, Hermens HJ, de Vries J, Koopman HF, Eisma WH. Energy storageand release of prosthetic feet. Part 1: biomechanical analysis related to userbenets.ProsthetOrthot Int1997;21:1727.[49] BoutronI, TubachF, GiraudeauB, RavaudP. Methodologicaldifferencesinclinical trials evaluatingnonpharmacological andpharmacological treat-mentsofhip andkneeosteoarthritis.JAMA 2003;290:106270.[50] BoutronI, TubachF, GiraudeauB, RavaudP. Blindingwas judgedmoredifculttoachieveandmaintaininnonpharmacologicthanpharmacologictrials.JClinEpidemiol 2004;57:54350.[51] Boutron I, Guittet L, Estellat C, Moher D, Hrobjartsson A, Ravaud P. Reportingmethods of blindinginrandomizedtrials assessing nonpharmacologicaltreatments.PLoSMed2007;4:e61.[52] Montero-Odasso M, Schapira M, Varela C, Pitteri C, Soriano ER, Kaplan R, et al.Gait velocity in senior people. An easy test for detecting mobility impairmentincommunityelderly. JNutr HealthAging2004;8:3403.[53] Montero-Odasso M, Schapira M, Soriano ER, Varela M, Kaplan R, Camera LA,et al. Gait velocity as a single predictor of adverse events in healthy seniorsaged75 yearsandolder.J GerontolABiolSciMedSci2005;60:13049.[54] PowersCM, RaoS, PerryJ. Kneekineticsintrans-tibialamputeegait. GaitPosture1998;8:17.[55] Sanderson DJ, Martin PE. Lower extremity kinematic and kinetic adaptationsinunilateral below-kneeamputeesduringwalking. Gait Posture1997;6:12636.[56] Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C. Inuence of speed ongait parameters and on symmetry in trans-tibial amputees. Prosthet OrthotInt1996;20:1538.Y.SagawaJr.etal. / Gait&Posture33(2011) 511526 525[57] Su PF, Gard SA, Lipschutz RD, Kuiken TA. Gait characteristics of persons withbilateraltranstibialamputations.J RehabilResDev2007;44:491501.[58] Pinzur MS, Asselmeier M, Smith D. Dynamic electromyography in active andlimited walkingbelow-kneeamputees.Orthopedics1991;14:5357.[59] GohJCH,SolomonidisSE,SpenceWD,PaulJP.BiomechanicalevaluationofSACHanduniaxial feet.Prosthet OrthotInt1984;8:14754.[60] PrinceF, Winter DA, SjonnensenG, Powell C, WheeldonRK. Mechanicalefciencyduringgaitof adultswithtranstibial amputation: apilotstudycomparing the SACH, Seattle, and Golden-Ankle prosthetic feet. J Rehabil ResDev1998;35:17785.[61] RabuffettiM,RecalcatiM,FerrarinM.Trans-femoralamputeegait:socket-pelvis constraints and compensation strategies. Prosthet Orthot Int2005;29:18392.[62] Sjodahl C, JarnloGB, SoderbergB, PerssonBM. Kinematicandkineticgaitanalysisinthesagittal planeof trans-femoral amputeesbeforeandafterspecialgait re-education.Prosthet OrthotInt2002;26:10112.[63] Goujon-PilletH, SapinE, FodeP, LavasteF. Three-dimensional motionsoftrunk and pelvis during transfemoral amputee gait. Arch Phys Med Rehabil2008;89:8794.[64] Segal AD, Orendurff MS, Klute GK, McDowell ML, Pecoraro JA, Shofer J, et al.Kinematic and kinetic comparisons of transfemoral amputee gait using C-LegandMauchSNSprosthetic knees.J RehabilResDev2006;43:85770.[65] HanTR, ChungSG, ShinHI. Gaitpatternsof transtibial amputeepatientswalkingindoors barefoot.AmJPhys MedRehabil2003;82:96100.[66] Isakov E, KerenO, Benjuya N. Trans-tibial amputee gait: time-distanceparametersandEMGactivity.Prosthet OrthotInt2000;24:21620.[67] Powers CM, Torburn L, Perry J, Ayyappa E. Inuence of prosthetic foot designonsoundlimbloadinginadultswithunilateral below-kneeamputations.ArchPhys MedRehabil1994;75:8259.[68] Nolan L, Lees A. The functional demands on the intact limb during walking foractivetrans-femoral andtrans-tibial amputees. Prosthet OrthotInt2000;24:11725.[69] RusawD, Ramstrand N. Sagittal plane position of the functional joint centre ofprosthetic foot/anklemechanisms.ClinBiomech2010;25:71320.[70] Seroussi RE, Gitter A, Czerniecki JM, Weaver K. Mechanical work adaptations ofabove-knee amputee ambulation. Arch Phys Med Rehabil 1996;77:120914.[71] Hansen AH, Meier MR, Sessoms PH, Childress DS. The effects of prosthetic footroll-over shape arc length on the gait of trans-tibial prosthesis users. ProsthetOrthotInt2006;30:28699.[72] Sadeghi H, Allard P, Duhaime PM. Muscle power compensatory mechanismsinbelow-knee amputeegait.AmJ Phys MedRehabil2001;80:2532.[73] Gitter A, Czerniecki JM, DeGroot DM. Biomechanical analysis of the inuenceof prosthetic feet on below-knee amputee walking. Am J Phys Med Rehabil1991;70:1428.[74] SilvermanAK, FeyNP, PortilloA, WaldenJG, BoskerG, NeptuneRR. Com-pensatory mechanisms in below-knee amputee gait in response to increasingsteady-statewalkingspeeds.GaitPosture2008;28:6029.[75] Arya AP, Lees A, Nirula HC, Klenerman L. A biomechanical comparison of theSACH, Seattle and Jaipur feet using ground reaction forces. Prosthet Orthot Int1995;19:3745.[76] BaeTS, ChoiK, HongD, MunM. Dynamicanalysisofabove-kneeamputeegait. ClinBiomech2007;22:55766.[77] Barnett C, Vanicek N, Polman R, Hancock A, Brown B, Smith L, et al. Kinematicgait adaptations inunilateral transtibial amputees duringrehabilitation.ProsthetOrthot Int2009;33:13547.[78] Buckley JG, Spence WD, Solomonidis SE. Energy cost of walking: comparisonof intelligent prosthesis withconventional mechanism. ArchPhysMedRehabil1997;78:3303.[79] Chin T, Sawamura S, Shiba R. Effect of physical tness on prosthetic ambula-tion inelderlyamputees.AmJ Phys MedRehabil2006;85:9926.[80] ChinT, Machida K, Sawamura S, Shiba R, OyabuH, Nagakura Y, et al.Comparison of different microprocessor controlled knee joints on the energyconsumptionduringwalkingintrans-femoral amputees: intelligent kneeprosthesis(IP)versusC-Leg.Prosthet OrthotInt2006;30:7380.[81] Chin T, Oyabu H, Maeda Y, Takase I, Machida K. Energy consumption duringprosthetic walking and wheelchair locomotion by elderly hip disarticulationamputees.AmJPhys MedRehabil2009;88:399403.[82] CortesA, VioscaE, HoyosJV, PratJ, Sanchez-LacuestaJ. Optimisationoftheprescriptionfor trans-tibial (TT) amputees. Prosthet Orthot Int 1997;21:16874.[83] Culham EG, Peat M, Newell E. Below-knee amputation: a comparison of theeffectoftheSACHfootandsingleaxisfootonelectromyographicpatternsduringlocomotion. ProsthetOrthot Int1986;10:1522.[84] Doane NE, Holt LE. Acomparison of the SACHand single axis foot in the gait ofunilateralbelow-kneeamputees.Prosthet OrthotInt1983;7:336.[85] Gailey RS, Wenger MA, Raya M, Kirk N, Erbs K, Spyropoulos P, et al. Energyexpenditure of trans-tibial amputees during ambulationat self-selectedpace.Prosthet OrthotInt1994;18:8491.[86] Genin JJ, Bastien GJ, Franck B, Detrembleur C, Willems PA. Effect of speed onthe energy cost of walking in unilateral traumatic lower limb amputees. Eur JApplPhysiol 2008;103:65563.[87] GohJC, Lee PV, Chong SY. Comparative study between patellar-tendon-bearingand pressure cast prosthetic sockets. J Rehabil Res Dev 2004;41:491501.[88] HsuMJ, NielsenDH, YackHJ, Shurr DG. Physiological measurements ofwalking and running in people with transtibial amputations with 3 differentprostheses.J OrthopSportsPhys Ther1999;29:52633.[89] HurleyGRB, McKenneyR, RobinsonM, ZadravecM, PierrynowskiMR. Therole of the contralateral limb in below-knee amputee gait. Prosthet Orthot Int1990;14:3342.[90] IsakovE, SusakZ, Becker E. Energyexpenditureandcardiacresponseinabove-kneeamputeeswhileusingprostheseswithopenandlockedkneemechanisms.ScandJRehabilMed 1985;17:10811.[91] IsakovE,BurgerH,KrajnikJ,GregoricM,Marincek C.Kneemuscle activityduring ambulation of trans-tibial amputees. J Rehabil Med 2001;33:1969.[92] Jaegers SM, Arendzen JH, de Jongh HJ. An electromyographic study of the hipmuscles of transfemoral amputees in walking. Clin Orthop Relat Res1996;328:11928.[93] LacroixB, JaninF, FouquetB, GrandmontagneM, PasteneJ, Jehl JL, etal.Energy consumption of walking in young traumatic leg amputated patientsupperthekneeaccordingtodifferent typesof kneeprotheses. AnnPhysRehabilMed1992;35:2731.[94] Lee S, Hong J. The effect of prosthetic ankle mobility in the sagittal plane onthegaitoftransfemoralamputeeswearingastancephasecontrolledkneeprosthesis. In: Proceedings of the Institution of Mechanical Engineers Part H. JEng Med2009;223:263271.[95] Lemaire ED, Fisher FR, Robertson DG. Gait patterns of elderly men with trans-tibialamputations. ProsthetOrthot Int1993;17:2737.[96] MichaudSB, GardSA, ChildressDS. Apreliminaryinvestigationof pelvicobliquitypatternsduringgaitinpersonswithtranstibialandtransfemoralamputation. JRehabilResDev2000;37:110.[97] Murray MP, Sepic SB, Gardner GM, Mollinger LA. Gait patterns of above-kneeamputees using constant-friction knee components. Bull Prosthet Res 1980;10:3545.[98] Murray MP, Mollinger LA, Sepic SB, Gardner GM, Linder MT. Gait patterns inabove-kneeamputeepatients:hydraulicswing controlvsconstant-frictionkneecomponents. ArchPhys MedRehabil1983;64:33945.[99] Nyska M, Shabat S, Arya A, McCabe C, Linge K, Klenerman L. A comparativestudy of different below-knee prostheses by dynamic foot pressure analysis.IntJ RehabilRes2002;25:3414.[100] PagliaruloMA, WatersR, HislopHJ. Energycostofwalkingofbelow-kneeamputeeshavingnovasculardisease.Phys Ther1979;59:53843.[101] Pinzur MS, Perona P, Patwardhan A, Havey R. Loading of the contralateral footin peripheral vascular insufciency below-knee amputees. Foot Ankle1991;11:36871.[102] Pinzur MS, GoldJ, SchwartzD, GrossN. Energydemandsfor walkingindysvascular amputeesasrelatedtothelevel of amputation. Orthopedics1992;15:10336.[103] RoyerTD, WasilewskiCA. Hipandkneefrontalplanemomentsinpersonswithunilateral,trans-tibial amputation.GaitPosture 2006;23:3036.[104] Segal AD, Orendurff MS, Czerniecki JM, Shofer JB, Klute GK. Transtibialamputee joint rotation moments during straight-line walking and a commonturning task with and without a torsion adapter. J Rehabil Res Dev2009;46:37583.[105] Snyder RD, Powers CM, Fontaine C, Perry J. The effect of ve prosthetic feet onthe gait and loading of the sound limb in dysvascular below-knee amputees. JRehabilResDev1995;32:30915.[106] TorburnL, Powers CM, Guiterrez R, PerryJ. Energyexpenditure duringambulation in dysvascular and traumatic below-knee amputees: a compari-sonofveprosthetic feet.J RehabilResDev1995;32:1119.[107] Traballesi M, PorcacchiaP, AvernaT, Brunelli S. Energycost of walkingmeasurements in subjects with lower limb amputations: a comparison studybetweenoorandtreadmilltest.GaitPosture 2008;27:705.[108] Van Jaarsveld HWL, Grootenboer HJ, De Vries J. Accelerations due to impact atheel strike using below-knee prosthesis. Prosthet Orthot Int 1990;14:636.[109] Zhang M, Lee WC. Quantifying the regional load-bearing ability of trans-tibialstumps.ProsthetOrthot Int2006;30:2534.Y.Sagawa Jr.etal. / Gait&Posture33(2011)511526 526