s. sivaramakrishnan, b.g.thomas & s.pccc.illinois.edu/s/2000_presentations/tms_2000_1.3.pdf ·...

38
S. Sivaramakrishnan, B.G.Thomas & S.P.Vanka (University of Illinois at Urbana Champaign)

Upload: others

Post on 26-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

S. Sivaramakrishnan, B.G.Thomas & S.P.Vanka(University of Illinois at Urbana Champaign)

Page 2: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

● National Science Foundation for their research grant (NSF -Grant # DMI - 98-00274)

● Continuous Casting Consortium (CCC) at the University of Illinois at Urbana Champaign (UIUC) for their support of this research

● The National Center for Supercomputing Applications (NCSA) at the UIUC for computing time

● Dr. Mohammed Assar, Dr Pierre Dauby and the technicians at LTV Steel for their help with the PIV measurements

Acknowledgements

Page 3: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Ladle

Tundish

Submerged Entry Nozzle

Mold

Spray Cooling

Torch Cutoff Point

Molten Steel

Slab

Metallurgical Length

Liquid Pool

Strand

Solidifying Shell

Meniscus

z

Support roll

B.G. Thomas

Page 4: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

The Continuous Casting Mold

Page 5: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Characteristics of Fluid Flow in the Mold

• High Reynolds number (Reinlet ~ 50,000), swirling multiphase high temperature (T = 1500oC) jet at inlet

• Jet phases include liquid steel, argon gas bubbles and aluminaparticles

• Impingement of semi-confined jet with high heat transfer rates

• Recirculation region above and below the jet

• Flow field highly turbulent, three dimensional and transient

• Solidification of molten steel at and below the impingement face

• Free surface covered with flux powder

Page 6: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Need for Transient Mold Flow Modeling• Eliminate defects caused by transient flow phenomena, which

affect strand quality

- Entrainment of liquid flux by shear of the liquid layer- Entrapment of argon gas and alumina particles- Surface defects

• Improve sensors used to monitor fluid flow in the mold

• Input for subsequent modeling

- Heat transfer- Solidification- Thermal stress analysis

• Improve future caster design

Page 7: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Tools to Study Transient Fluid Flow● Water Modeling- Flow Visualization- Particle Image Velocimetry (PIV) Measurements

● Numerical Simulation- K-ε Models - Unsteady- Large Eddy Simulation (LES) – Transient

● Actual Caster- eg. Electromagnetic Sensors

Page 8: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Kinematic viscosity of molten steel is approximately equal to that of waterFluid flow in the caster can be studied using a scaled, transparent, Plexiglas water modelTake into account steel shell using appropriate taperUse Particle Image Velocimetry (PIV) to quantify the fluid flow in the water modelAs a first study perform Large Eddy Simulations (LES) of the fluid flow in the water model

Page 9: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

0 50 1000

100

200

300

400

500

600

700

800

900

65 mm

Tundish

Slide gate opening

40o

15o

Bore Dia 32mm

140 mm

242 mm

18 mm

77 mm

SEN

Mold

95 mm

31x31mm

39%areaopen

Z

Y

726 mmm

3x35 mm dia exit holesSpaced uniformly on bottom

MeniscusX

Y

Page 10: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Water Model

Planes illuminated by laser light

time t t + ∆t

∆x

v=∆x/∆t ∆t=0.002s

correlate images

v

camera

Page 11: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Tracer particles (negligible mass and momentum coupling) are injected into the flow

Two closely spaced (time) snapshots are taken using a CCD camera

Particle locations in two snapshots are correlated to obtain distance moved by particle

Flow velocity at particle location = Distance/Time

Page 12: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

• Resolution- CCD camera - DANTEC - Double Image 700 with

768x480 pixels- Number of pixels per interrogation area 16x16 – 64x64- Average of 32x32 used- 25% overlap used to capture particles near interrogation

area edges- Maximum vectors per measurement area – 31x19

• Time interval between snapsnots varies from 0.2 – 1s

• Time interval between correlated frames - 100 µs

• Seeding particle – Aluminum – ( 30µm)

• Correlation technique - Autocorrelation

Page 13: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Modifications - Boundary conditions

• Constant thickness assumed from top to bottom- Thickness variation is not large enough to justify using more complicated CFD

algorithm

• Free water surface simplified to rigid free slip boundary- Water level variations - spatially and temporally are small

• Only half the domain is modeled- Not enough evidence was available to assume large scale lower roll motions- A factor of two benefit is obtained in computational size

• Inflow swirl is replaced by fully-developed turbulent flow from square duct

- Modeling swirl would require using an iterative solver (AMG) as opposed to a direct (FFT) solver which would make at least a factor of five difference in computational time

- Helps check hypothesis of flow parameters being sensitive to inlet conditions - Square duct (LES) helps validate flow code

Page 14: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Modifications – Phenomena

• Single phase modeling- Water Model can be run easily in single phase mode to validate model for

single phase- Single phase solution can be used as a easy start point for multiphase

modeling

• Solidification neglected- Present only deep down in the mold and close to the narrow face and can

be neglected when modeling fluid flow- Will be of significance when modeling heat transfer

• Heat Transfer neglected- Secondary calculation if Boussinesq approximation is invoked- Like multiphase can be solved for when fluid flow phenomenon have been

captured

Page 15: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Computational Flow Simulation Domain

Z X

Y

Wal

l

Sym

mte

ry

Outflow

Free slip

Inflo

w

Page 16: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

∂vj

∂xj

= 0Continuity

∂∂t

ρvi +∂

∂x j

ρvjvi = −∂P∂xi

+∂

∂xj

µeff

∂vj

∂xi

+∂vi

∂xj

� � �

� � Momentum

( ) 21

2

22

2

)(

~

~;

Modely Smagorinsk

ijij

ST

ijijSGS

SGSTijijTijij

SSS

SC

SSq

qSSS

=

∆=

==−

ν

ννετ

Page 17: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Large Eddy Simulation MethodologyThe equations are discretized using a fractional step procedure on a staggered grid

A Second order accurate scheme in time and space is used

The implicit diffusion terms are solved for using Fast Fourier Transform (FFT) and Alternate Line Inversion (ALI)

The Pressure-Poisson equation is solved using direct FFT

For parallelization 1-D domain decomposition with MPI (Message Passing Interface) is used

Rectangular computational grid of 1.5 million nodes

18 CPU secs per 0.001s time step or 13 days CPU time (Origin 2000) for 60s of flow simulation

Page 18: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Flow Pattern and Jet Angle

Page 19: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),
Page 20: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

0.1 m/s

Instantaneous Velocity

Vector Plot

Simulation PIV measurement

Page 21: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

00.10.20.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3

Z X

Y

0.1 m/s

Page 22: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

00.050.10.150.20.250.30.35

0

0.05

0.1

0.15

0.2

0.250.1m /s

Page 23: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

00.050.10.150.20.250.30.350

0.05

0.1

0.15

0.2

0.250.1m/s

Page 24: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

00.050.10.150.20.250.30.35

0

0.05

0.1

0.15

0.2

0.250.1m /s

362mm

Port (31x31mm)

Page 25: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Staircase Effect and Time Scales

00.050.10.150.20.250.30.35

0

0.05

0.1

0.15

0.2

0.25

T s

00.050.10.150.20.250.30.35

0

0.05

0.1

0.15

0.2

0.25

T+0.2 s

00.050.10.150.20.250.30.35

0

0.05

0.1

0.15

0.2

0.25

T+0.4 s

00.050.10.150.20.250.30.35

0

0.05

0.1

0.15

0.2

0.25

T+0.6 s

0.5 m/s

Page 26: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

00.050.10.150.20.250.30.35

0

0.05

0.1

0.15

0.2

0.25

0.5 m/s

Page 27: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

00.050.10.150.20.250.30.35

0

0.05

0.1

0.15

0.2

0.25

Ts

00.050.10.150.20.250.30.35

0

0.05

0.1

0.15

0.2

0.25

T+2.4 s

00.050.10.150.20.250.30.35

0

0.05

0.1

0.15

0.2

0.25

T+7.2 s

0.5 m/s00.050.10.150.20.250.30.35

0

0.05

0.1

0.15

0.2

0.25

T+4.8 s

Page 28: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

00.050.10.150.20.250.30.350

0.05

0.1

0.15

0.2

0.1m/s

Page 29: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

00.050.10.150.20.250.30.350

0.05

0.1

0.15

0.2

0.1m/s

Page 30: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Velocity Time History Near Water Surface

TIME (s)

-UVE

LOC

ITY

(m/s

)

0 5 10 15 20 25 30 35 40 45 50 55 600

0.025

0.05

0.075

0.1

0.125

0.15

0.175

PIV

-UVE

LOC

ITY

(m/s

)

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

SIMULATION

Page 31: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

X

Y

Z

0.3696290.2297610.09663110.0756390.06678280.05624210.04141170.03572040.02035160.00516797

VELOCITY (M/S)

INLET

EXITS

Page 32: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Distance from wideface of caster (mm)

Wei

ghtin

gfa

ctor

forr

espe

ctiv

epl

anes

0 10 20 30 40 50 60 70 80 90 1000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Distance from wideface of water model (mm)0 40

Page 33: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

X

Y

Z

A

B

0.1 m/s

Distance from wideface = 35 mm

X

Y

Z

A

B

0.1 m/s

Distance from wideface = 9 mm

InstantaneousFlow Past

Sensor

Page 34: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Time (s)

-Uve

loci

ty(m

/s)

40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Sensor A - Probe 1Sensor A - Probe 2

Time (s)

-Uve

loci

ty(m

/s)

120.0 125.0 130.0 135.0 140.0 145.0 150.0 155.0 160.0-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Sensor B - Probe 1Sensor B - Probe 2

Qualitative Comparison

of Sensor Outputs

Page 35: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3

Z X

Y

0.3

0.4

0.5

0.6

00.10.20.3

0.05 m/s

Page 36: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Rolls Same SizeRight Roll Larger

0.2

0.3

0.4

0.5

0.6

0.7

-0.3-0.2-0.100.10.20.3

X

Y

Z

0.05 m/s

0.2

0.3

0.4

0.5

0.6

0.7

-0.3-0.2-0.100.10.20.3 X

Y

Z

0.05 m/s

Page 37: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

● Jet vector plots show a staircase pattern caused by the inlet swirl (PIV)

● The jet has many different time scales of motion (PIV)● Velocity variation close to the water surface has two time scales

(PIV and LES) ● Upper roll alternates between a single recirculation region and

a set of distinct vortices (PIV and LES). ● MFC sensor should be placed close to the water surface for

accurate interpretation● Lower rolls are significantly asymmetric (PIV)● Lower rolls go through a repeating sequence of flow structures

(PIV)- The short-circuit structure is significant to particle entrapment

Page 38: S. Sivaramakrishnan, B.G.Thomas & S.Pccc.illinois.edu/s/2000_Presentations/TMS_2000_1.3.pdf · Characteristics of Fluid Flow in the Mold • High Reynolds number (Reinlet ~ 50,000),

Table of ConditionsNo. Property Water model Simulation

1 Length of the model 0.950m 0.956m 2 Thickness of model Varies from 0.095m

at the top to 0.065m Constant 0.08m

3 Port opening 0.031 x 0.031m 0.031 x 0.031m 4 Top surface Free surface Free slip boundary 5 Flow rate through each port 3.528 x 10-4 m3/s

(5.6 gal/min) 3.528 x 10-4 m3/s (5.6 gal/min)

6 Average inlet velocity 0.4239m/s 0.4239m/s 7 Average jet inlet angle 30o 30o

8 Distance of top of port outlet from top surface (submergence depth)

0.075 m (Varies with time)

0.07207m

9 Outlet 1.5 35mm diameter outlets along each half of the bottom

1.5 35mm square outlets at the bottom

10 Fluid used Water Water 11 Kinematic viscosity 1 x 10-6 m2/s 1 x 10-6 m2/s 12 Gas flow rate (cubic ft / hr) 0.0 0.0