running head: micro-level malaria exposure & morbidity · 87 the study was carried out in webuye...

31
1 Mosquito exposure and malaria morbidity; a micro-level analysis of household mosquito 1 populations and malaria in a population-based longitudinal cohort in western Kenya 2 3 Running head: Micro-level malaria exposure & morbidity 4 Summary: In this study, we measure the relationship between fine-scale spatio-temporal 5 heterogeneity in exposure to infected and successfully-fed malaria vectors, the incidence of 6 malaria, and their interaction with ITN use in a population-based cohort. 7 Authors and Affiliations 8 Wendy Prudhomme O’Meara 1,2,3 , Ryan Simmons 1,4 , Paige Bullins 1 , Betsy Freedman 2 , Lucy Abel 5 , 9 Judith Mangeni 6 , Steve M. Taylor 1,2 , Andrew A. Obala 7 10 1. Duke Global Health Institute, Duke University, Durham, NC 27708 11 2. Department of Medicine, School of Medicine, Duke University, Durham, NC 27708 12 3. School of Public Health, College of Health Sciences, Moi University, Eldoret, Kenya 13 4. Department of Biostatistics and Bioinformatics, School of Medicine, Duke University, 14 Durham, NC 27708 15 5. Academic Model Providing Access to Healthcare, Moi Teaching and Referral Hospital, 16 Eldoret, Kenya 17 6. School of Nursing, College of Health Sciences, Moi University, Eldoret, Kenya 18 7. School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya 19 20 Corresponding Author 21 All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint (which was this version posted October 18, 2019. ; https://doi.org/10.1101/19008854 doi: medRxiv preprint NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Upload: others

Post on 17-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Mosquitoexposureandmalariamorbidity;amicro-levelanalysisofhouseholdmosquito1

    populationsandmalariainapopulation-basedlongitudinalcohortinwesternKenya2

    3

    Runninghead: Micro-levelmalariaexposure&morbidity4

    Summary:Inthisstudy,wemeasuretherelationshipbetweenfine-scalespatio-temporal5

    heterogeneityinexposuretoinfectedandsuccessfully-fedmalariavectors,theincidenceof6

    malaria,andtheirinteractionwithITNuseinapopulation-basedcohort.7

    AuthorsandAffiliations8

    WendyPrudhommeO’Meara1,2,3,RyanSimmons1,4,PaigeBullins1,BetsyFreedman2,LucyAbel5,9

    JudithMangeni6,SteveM.Taylor1,2,AndrewA.Obala710

    1. DukeGlobalHealthInstitute,DukeUniversity,Durham,NC2770811

    2. DepartmentofMedicine,SchoolofMedicine,DukeUniversity,Durham,NC2770812

    3. SchoolofPublicHealth,CollegeofHealthSciences,MoiUniversity,Eldoret,Kenya13

    4. DepartmentofBiostatisticsandBioinformatics,SchoolofMedicine,DukeUniversity,14

    Durham,NC2770815

    5. AcademicModelProvidingAccesstoHealthcare,MoiTeachingandReferralHospital,16

    Eldoret,Kenya17

    6. SchoolofNursing,CollegeofHealthSciences,MoiUniversity,Eldoret,Kenya18

    7. SchoolofMedicine,CollegeofHealthSciences,MoiUniversity,Eldoret,Kenya19

    20

    CorrespondingAuthor21

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

    https://doi.org/10.1101/19008854

  • 2

    WendyPrudhommeO’MearaPhD,AssociateProfessorinMedicineatDukeUniversitySchoolof22

    MedicineandAssociateResearchProfessorofGlobalHealthatDukeGlobalHealthInstitute,23

    DukeUniversity,Durham,NC27708;[email protected];919-681-771124

    Abstract2526Background:Malariamorbidityishighlyoverdispersedinthepopulation.Fine-scaledifferences27

    inmosquitoexposuremaypartiallyexplainthisheterogeneity.However,exposurevariability28

    hasnotbeenrelatedtoindividualmalariaoutcomes.29

    Methods:Weestablishedacohortof38householdstoexploretheeffectofhousehold-level30

    mosquitoexposureandindividualinsecticidetreatednet(ITN)useonrelativerisk(RR)of31

    diagnostically-confirmedmalaria.Weconductedmonthlyactivesurveillance(n=254;2,62432

    person-months)andweeklymosquitocollectioninallhouseholds(2,092household-daysof33

    collection).Weusedmoleculartechniquestoconfirmhumanbloodfeedingandexposureto34

    infectiousmosquitoes.35

    Results:Of1,494femaleanopheles(89.8%Anophelesgambiaes.l.).88.3%werefed,51.9%had36

    ahumanbloodmeal,and9.2%weresporozoite-infected.168laboratory-confirmedmalaria37

    episodeswerereported(incidencerate0.064episodesperperson-monthatrisk,95%38

    confidenceinterval[CI]:0.055,0.074).Malariariskwasdirectlyassociatedwithexposureto39

    sporozoite-infectedmosquitoes(RR=1.24,95%CI:1.11,1.38).Nodirecteffectwasmeasured40

    betweenITNuseandmalariamorbidity,however,ITNusedidmoderatetheeffectofmosquito41

    exposureonmorbidity.42

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 3

    Conclusions:Malariariskincreaseslinearlywithvectordensityandfeedingsuccessforpersons43

    withlowITNuse.Incontrast,malariariskamonghighITNusersisconsistentlylowand44

    insensitivetovariationinmosquitoexposure.45

    46Keywords:malaria,anopheles,cohort,insecticidetreatednet4748Wordcount49Abstract:20050Manuscript:2871 51

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 4

    Background52

    53

    Cases of malaria are highly over-dispersed in human populations [1-4]: as little as 20% of54

    individuals experience 80% of the disease burden. The reason for this heterogeneity is55

    undoubtedlymultifactorial,andevenafteradjustingforageandbehavioraldifferencessuchas56

    ITNuse,theimbalanceremains[2-4].Quantifyingtheheterogeneityattributabletovariabilityin57

    entomological exposure requires fine-scale measurement of bothmosquito populations and58

    malariaincidenceatahouseholdorindividuallevel.Thishasrarelybeendoneandinsteadhuman59

    cohortstudiesthatincorporateexposuresubstituteeitherlocalinfectionprevalenceinhumans60

    asaproxyforexposure[3,5]orextrapolateentomologicalindicatorsfromsentinelvillagesor61

    households [4, 6-9]. Both approaches have limitations with regards to understanding the62

    relationship between exposure and disease risk owing to the fact that disease risk is63

    heterogeneous below the village level [10-13]. Such studies present inconsistent findings64

    regarding exposure and incidence. Although cross-sectional studies of vector biting65

    heterogeneitydemonstratesignificantover-dispersion inexposuretomosquitobites, thishas66

    notbeenlinkedtosubsequentinfectionordiseasedistribution[14].67

    68

    Recentstudiessupporttheroleofmosquitoexposureheterogeneityinunderstandingevolving69

    malaria transmission dynamics, particularly in areas where endemicity is declining [14-18].70

    Mathematicalmodels predict that exposure heterogeneity could reduce the effectiveness of71

    malaria control measures [19]. Linking individual mosquito exposure to morbidity outcomes72

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 5

    would enablemore accurate estimation of the effects of vector control interventions at the73

    populationlevel.However,cohortstudiesrarelymeasurefine-scaleentomologicalexposure.74

    75

    Here we offer a high-resolution picture of individual-level incidence of symptomatic disease76

    relatedtoweeklyhouseholdmosquitoexposuremetrics.Weconductedalongitudinalstudyof77

    36 households in a moderate-transmission setting in Western Kenya in which we collected78

    weeklyindoor-restingmosquitoesandpassively-detectedcasesofmalaria.Wehypothesizedthat79

    excessvariability in individualmalariariskwouldbeat leastpartlyexplainedbymoreprecise80

    measures of mosquito exposure and that the relationship between disease and mosquito81

    exposurewouldincreasewithincreasingspecificityofexposuremetric;fromvectorabundance,82

    tofeedingsuccess,tohumanbitingrate,andfinallyvectorinfectiousness.83

    84

    Methods85

    Studysite86

    The studywas carried out inWebuye East andWest sub-counties located inwestern Kenya87

    approximately400kilometersnorthwestofNairobiand60fromtheborderwithUganda.The88

    sub-countiesareruralandmostfamiliesengageinsmall-scalefarmingandanimalhusbandry.89

    Veryfewfamilieshaveaccesstoamenitiessuchasmunicipalwaterorelectricity(

  • 6

    distributionanduse; IRShasnot takenplace in thisareaandtheuseof individualprotective95

    measuressuchasspraysandcoilsisveryuncommon.96

    97

    Cohort98

    InJuly2017,weestablishedacohortof36householdsinthreevillagesthatexhibiteddifferent99

    levelsofmalariatransmissionbasedonpreviouswork[21,22].Weenrolledanindexhousehold100

    at random and then neighboring households radiating outwards until 12 households were101

    enrolled per village in a natural grouping. Two households were replaced with neighboring102

    households when the entire household migrated. All residents older than 12 months who103

    regularlysleptinthehouseholdwereenrolled.Children

  • 7

    If theparticipanthadanegative test, theywere referredwith the test results to thenearest117

    healthfacility.Ifthetestwasapositive,theparticipantcollectedquality-assuredACTfromthe118

    localpharmacyatnochargetotheparticipant.119

    120

    Mosquitocollectionandidentification121

    Onceperweek,onthesamedayeachweek,thestudyteamvisitedeachhouseholdearlyinthe122

    morning to collect indoor resting mosquitoes via aspiration with Prokopacks (JohnW. Hock123

    Company).Participantswereaskedtoleavewindowsanddoorscloseduntiltheteamarrived.124

    Mosquitoeswerestoredincollectioncupsincoolboxeswithicepacksuntiltheyweretransported125

    backtothelaboratory.Mosquitoeswereseparatedbygenusandsex,andfemalesweregraded126

    according to theirabdominal status. FemaleAnopheleswere imagedundermagnification for127

    post-hocspeciation,firstbystudystaffandthenbyaseniorentomologist inasubsetof25%.128

    After imaging,mosquitoesweredissectedbetweenthethoraxandabdomen,andtheseparts129

    werestoredinseparatetubespackedwithdesiccantatroomtemperature.130

    131

    Moleculardetectionofparasitesandhumanbloodinmosquitoes132

    Mosquitospecimensweremanuallydisrupted in individualtubesandthengenomicDNAwas133

    extractedusingaChelex-100protocol.EachgDNAextractwastestedinaduplexTaqManreal-134

    timePCRassaytargetingbothP.falciparumandhumanbeta-tubulin[23].Samplesweretested135

    in duplicate in 384-well plates on an ABI Quantstudio 6 platform; threshold lines were set136

    manuallyintheexponentialphaseofamplification.Reactionplateswerepreparedindedicated137

    workspaceswithfilteredpipettips,andeachincludedP.falciparumgDNAandhumanDNAas138

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 8

    positivecontrolsandmolecular-gradewaterasanegativecontrol.GenomicDNAwasextracted139

    fromhumandriedbloodspotsandtestedinthesamereal-timePCRassay.140

    141

    Dataanalysis142

    Theprimaryoutcomewasmalaria,whichwasdefinedasself-reportedillnessleadingtoapositive143

    malariaRDTresultinthepreceding30days.Testresultswereconfirmedbyreviewingthemedical144

    recordwheneverpossible.Followingapositivetest,individualswerecensoredfor21days.The145

    primaryobjectiveofouranalysiswastoestimatetheimpactofhousehold-levelmosquitoindices146

    onanindividual’sriskofmalaria.Weinvestigatedtheimpactoffourdifferentmosquitoindices,147

    calculatedforeachhouseholdineachmonthasthesumofthecountsfromweeklymosquito148

    collectionvisits: the totalnumberof1) femaleAnopheles,2)blood-fed femaleAnopheles,3)149

    femaleAnophelesmosquitoescollectedwithhumanblooddetectedbyPCRintheabdomen,and150

    4) femaleAnopheleswith P falciparum sporozoites detected in the head.Due to collinearity151

    betweentheexposures(e.g.thenumberofsporozoitepositivemosquitoesbeingasubsetofthe152

    total number ofmosquitoes collected, etc.), separatemodelswere fit for the effect of each153

    exposureoneachmorbidityoutcome.154

    155

    Weusedgeneralizedlinearmixedmodels(GLMM),withtheoutcomedefinedasthepresenceor156

    absenceofmalariaforeachindividualateachfollow-upmonth.Toestimaterelativerisks,we157

    usedarobust(modified)Poissonmodel[24].Toaccountforclusteringbyhousehold,themodel158

    includeda random interceptonhouseholdwitha compoundsymmetric covariance structure159

    (notethatthisassumeshouseholdclustering isconstantovertime).Toaccountforclustering160

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 9

    withinindividualovertime,themodelincludedarandominterceptonindividual,nestedwithin161

    household, with a homogenous first-order autoregressive covariance structure. Each model162

    includedafixed-effectforvillage,ageatbaseline(codedasacategoricalvariablewithfive-levels:163

    =18years),gender,andnumberofnightsofITNuseinthepastweek164

    (dichotomized as >=6 and

  • 10

    All heads of household were asked to consent for participation in mosquito collection and182

    household data collection. Each individual provided consent for monthly dried blood spot183

    collectionandRDTtesting.Aparentorlegalguardianprovidedconsentonbehalfofachildunder184

    18yearsofage.Childrentenyearsandabovewerealsoaskedtoprovideassentforparticipation.185

    ThestudywasreviewedandapprovedbyDukeUniversityInstitutionalReviewBoardandMoi186

    UniversityandMoiTeachingandReferralHospitalInstitutionalResearchEthicsCommittee.187

    188

    Results189

    FromJune12,2017untilJuly31,2018,254participantsfrom38householdswerefollowedby190

    monthlyactivesurveillanceandweeklyentomologicalsurveillanceforatotalof2,624person191

    months of observation. The cohort demographics are described in Table 1. Sixty percent of192

    participantswerechildrenlessthan18yearsofageatenrollmentandeachpersonprovidedan193

    average of 11.1 months of follow-up. At enrollment, 54.9% (133/242) of participants were194

    infectedwithP.falciparumasdetectedbyahighly-sensitivePCRassay.72%ofparticipantshad195

    anITNfortheirsleepingspace;thisproportionwasslightlylowerinVillageS(59%)comparedto196

    Village K andM (82% and 78%, respectively). In 76.7% (2,013/2,624) ofmonthly follow-ups,197

    participantsreportedsleepingundertheirneteachdayoftheprevioussevendays.198

    199

    Mosquitoindices200

    Across2,092household-days,wecollectedatotalof1,494femaleanophelesmosquitoes(Table201

    2, Figure 1). Nearly 90% (n=1,023) were identified as Anopheles gambiae group and this202

    proportion varied only slightly across the villages. VillageM recorded the highest number of203

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 11

    malariavectorsoverall(66.5perhousehold)andthehighestproportionofAn.funestus(9.3%).204

    OtherAnophelesspp.wereobservedatlowfrequencies.Bymicroscopicevaluation,themajority205

    ofmosquitoeshadrecentlyfed:11.2%(n=168)werefreshlybloodfed,31.9%(n=477)werehalf206

    gravid,and39%(n=587)weregravid.InPCRtesting,wedetectedhumanbloodin51.9%ofall207

    abdomens(n=776),including79.8%(n=134)ofthefreshlybloodfedspecimens.Theprevalence208

    ofP.falciparumsporozoitesintheheadsoffemaleAnopheleswas9.2%(n=134).Theproportions209

    ofmosquitoeswithhumanbloodorsporozoitesdidnotdifferbyspeciesorvillage.210

    211

    Malariaincidence212

    During2,624person-monthsoffollow-up,therewere168casesofmalariain107people(Figure213

    1),yieldinganoverall incidencerateof0.064(95%CI:0.055,0.075)casesperperson-month.214

    Amongthese107people,66(61.7%)reportedonlyasingleepisode,26(24.3%)reportedtwo215

    episodes,and15(14.0%)reported3ormoreepisodes(themaximumwas5).Themediannumber216

    of days between sequential episodes was 37 (IQR: 62). Overall, 30% (n=74) of participants217

    experienced80%(n=135)ofepisodes(SupplementalFigure1)and58%(n=147)ofparticipants218

    neverexperiencedanepisodeofmalaria.219

    220

    Associationsbetweenmosquitoindicesandmalaria221

    We estimated the relative risk ofmalaria inmodelswithout andwith each of ourmosquito222

    indices(Table3).Asexpected,theriskofmalariadeclinedwithincreasingage,andtherewasno223

    associationwithgender(RR1.00;95%CI0.72–1.40).RelativetohighITNusers,thosewithlow224

    usewereatsimilarrisk(RR1.16;95%CI0.76–1.79).Inmodelswithindividualmosquitoindices,225

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 12

    malariariskwasnotsignificantlyassociatedwiththemonthlyhouseholdabundanceofmalaria226

    vectors(RR1.02;95%CI0.97–1.08)northenumberofmosquitoeswhohadhumanbloodin227

    theirabdomen(RR1.04;95%CI0.97–1.12).However,theriskofmalariaincreasedby24%with228

    eachadditionalinfectiousmosquitocollectedthepreviousmonth(RR1.24;95%CI1.11–1.38).229

    230

    BecausehighITNusewasnotassociatedwithareducedriskofmalaria,wehypothesizedthat231

    ITNusemaymodifytheeffectofmosquitoexposureonmalariarisk.Wetestedthishypothesis232

    byexaminingtheinteractionbetweenITNuseandeachmosquitoexposurevariable(Table4).233

    Wedemonstratesignificantcorrelationbetweenbothmosquitoabundanceandmalariarisk,and234

    mosquitofeedingsuccessandmalariarisk,inmodelsthatincludetheexposure:ITNinteraction235

    term.TherelativeriskofmalariaamonghighITNuserscomparedtolowITNusersdecreasedby236

    6%(RR=0.94,95%CI:0.89-0.99)foreachadditionalanophelesmosquitointhehouseholdandby237

    10%(RR=0.90,95%CI:0.82-0.99)foreachadditionalhuman-fedmosquito.ITNusenowappears238

    positivelycorrelatedwithmalariariskinmodelsthatincludetheinteractionterm,however,we239

    can understand this when we examine the results graphically (Figure 2). At low mosquito240

    abundance,individualswithhighITNusehaveequalorslightlyelevatedmalariariskcompared241

    tothosewhohavelowerITNuse.However,theriskofmalariaincreaseslinearlywithincreasing242

    mosquitoexposureamongthosewithlowITNuse,butremainslowandconstantforthosewho243

    useanITNconsistently.Similartrendsareseenformosquitofeedingsuccessandhumanfeeding244

    success.245

    246

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 13

    InanalysesofmarginalR2with incorporationofmosquito indices inmalariariskmodels,age,247

    household size, and exposure to sporozoite-infected mosquitoes accounted for the largest248

    increaseinR2(2.6%,2.9%and2.3%,respectively;Figure3).Othermosquitoexposuresaccounted249

    foronlyaverysmallproportionoftheheterogeneity.DespitethesmallabsolutechangeinR2,it250

    is interesting to note that household exposure to infectiousmosquitoes and age contribute251

    nearlyequallytoexplainingthedistributionofmalariaincidenceinthepopulation.252

    253

    Discussion:254

    Inthishigh-resolutionpairedentomologicalandepidemiologicalcohort,wemeasuredweekly255

    household-levelmosquitoexposurealongsidelaboratory-confirmedmalariaepisodesina256

    population-basedsampleof254individualsin38households.Weshowthat,amongputative257

    entomologicalindices,theriskofmalariainhumansismediatedbyneithertheabundanceof258

    mosquitoesoverallnorthosethatareblood-fedmosquitoesbutratheronlybytheriskof259

    malariainmosquitoes(sporozoites).Wefurtherdemonstrateaninteractionbetweentheeffect260

    ofITNuseandmosquitoexposureonmalariaepisodes,inthat,comparedtosuboptimalITN261

    use,highITNuseattenuatesthedeleteriouseffectsofvectordensityandfeedingsuccesson262

    theriskofmalaria.263

    264

    Therelationshipbetweenmosquitoexposureandhumanmalariariskisdifficulttoquantifydue265

    tothetimelagbetweenaninfectiousbiteandpatentinfection,andtheuncertaintyinassigning266

    individualexposurebasedonentomologicalvariables.Somestudiescomparepopulationbased267

    measuresofdiseaseprevalenceorincidencewithvectordensityobservedatsentinellocations268

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 14

    andareessentiallyecologicalcomparisonsoftwopopulationsovertime[6,15].Alternatively,269

    valuesfromsentinelhouseholdsarelocallyextrapolatedtounmeasuredhouseholds[4,7-9].270

    Althoughwefallshortofassigningindividualexposure,whichmayvarywithinahousehold[26,271

    27],ourweeklyhousehold-levelentomologicalmeasurementsgivenewinsightintothenature272

    oftherelationshipbetweenmosquitoexposureanddiseaseandameanstoestimatethe273

    changeinriskunderdifferentexposurecontrolstrategies.Forexample,sinceboththeeffectof274

    mosquitoabundanceandfeedingsuccessonmalariamorbidityaremoderatedbyindividualITN275

    use,wecanestimateapersonalprotectiveefficacyofITNuseofupto30%asexposure276

    increases.Inhouseholdswhereasfewas8mosquitoeswerecollectedinamonth,ITNsoffer277

    measurableprotectionrelativetothosewhodonotuseanITN.Thelow,butnon-zero,malaria278

    riskexperiencedbyconsistentITNusersmayreflectexposureoutsideofthenet,dueto279

    modifiedmosquitobehaviorssuchasbitingearlyintheeveningoroutdoors[28-32].280

    281

    Ourfindingsrelatingriskofmalariatobasicdemographicfactorsareconsistentwithprevious282

    studies.Weandothers[3,4,33-35]measuredecliningincidenceofclinicalmalariawith283

    increasingage.Theobservationthatincreasinghouseholdsizeisassociatedwithdecreasing284

    individualriskcanbeinterpretedasreducedindividualriskofexposurewhenmorehostsare285

    available.AlthoughindividualITNusehasbeenassociatedwithreducedriskofmalariain286

    longitudinalstudiesofyoungchildreninthecontextofhightransmissionandlowITNcoverage287

    [1,13],weandothersfailtodetectadirect,individualprotectiveeffect[3,7].Overall,288

    behavioralanddemographicdifferencesexplainrelativelylittleoftheheterogeneityinmalaria289

    cases.AfterincorporatingentomologicalexposuresandtheeffectofITNuseonthose290

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 15

    exposures,theproportionalamountofheterogeneityexplainedincreasedby36%,howeverthe291

    absolutevalueofR2remainedsmall.292

    293

    Therearenotablelimitationstothisstudy.First,thetimespanisrelativelyshort(13months);a294

    longerdurationofobservationwouldbedesirabletocaptureimportantannualvariationin295

    transmissionandexposure.Second,themalariamorbidityoutcomeisbasedonrecallovera296

    one-monthperiod.However,wemitigatedpossiblerecallbiasandmissinginformationby297

    reviewingmedicalrecordstoconfirmtestresultsandensuringaffordably,timelyandaccurate298

    malariadiagnosiswasavailabletoparticipants.299

    300

    Despitetheselimitations,wedemonstratethatinfectionsinmosquitoeswithinahouseholdare301

    adirectriskfactorforinfectionsinindividuals.ThisriskisnotmitigatedbyITNuse.Other302

    entomologicalexposuresmeasuredatthehousehold-level,includingmalariavectordensityand303

    human-fedanopheles,increasetheriskofmalariaepisodesdifferentiallyinindividualswhodo304

    notuseanITNconsistently.WeshowthatindividualprotectiveefficacyofITNsscaleswith305

    exposureandfine-scaledentomologicalmeasurescanexplainasmuchheterogeneityinmalaria306

    riskinthepopulationasage.307

    308

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 16

    Footnotepage309

    310

    Fundingsource:ResearchreportedinthispublicationwassupportedbytheNationalInstitute311

    ofAllergyandInfectiousDiseasesoftheNationalInstitutesofHealthunderAwardNumber312

    R21AI126024.Thecontentissolelytheresponsibilityoftheauthorsanddoesnotnecessarily313

    representtheofficialviewsoftheNationalInstitutesofHealth314

    315

    Acknowledgements:Wewouldliketothankourexceptionalfieldteam(I.Khaoya,L.Marango,316

    E.Mukeli,E.Nalianya,J.Namae,L.Nukewa,E.Wamalwa,andA.Wekesa)andallthefamilies317

    whogavetheirvaluabletimeforthisstudy.318

    319

    Conflictofinterestdisclosure:Theauthorsdeclarenoconflictsofinterestexist.320

    321

    322 323

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 17

    Table1:Participantcharacteristics,baselinebednetuse,follow-uptimeandmalaria

    episodesreportedbyvillageandtotalnumbers

    VillageK VillageM VillageS Total

    Demographics

    Households 12 13 13 38

    Participants 80 78 96 254

    MedianHouseholdsize

    (range)6.5(5-13) 6(3-15) 8(3-14) 6.5(3-15)

    Female 45(51.7%) 46(57.5%) 57(57.0%) 148(55.4%)

  • 18

    Suspectedmalariaepisodes

    withpositivemalariatest51(37.5%) 55(37.9%) 62(40.8%) 168(38.8%)

    a2peopleinVillageK,2invillageMand4invillageSweremissingsleepingspaceinformation 324

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 19

    Table2:Abundanceandcharacteristicsofanophelesmosquitoescollectedinthecohorthouseholds

    VillageK VillageM VillageS Total

    No.ofhouseholds

    TotalfemaleAnoph.collected 404 858 232 1494

    AnophelesperHH,mean(range) 33.7(8-72) 66(7-198) 17.8(4-45) 38.4(4-201)

    Microscopicanalysis,no.(%)

    Unfed 67(16.7%) 81(9.4%) 20(8.6%) 168(11.2%)

    Freshlyfed 111(27.6%) 297(34.6%) 69(29.7%) 477(31.9%)

    Halfgravid 165(41.0%) 320(37.3%) 102(44.0%) 587(39.3%)

    Gravid 58(14.4%) 158(18.4%) 39(16.8%) 255(17.1%)

    Undetermined 3(0.7%) 2(0.2%) 2(0.9%) 7(0.5%)

    HumanbloodinabdomenbyPCR,

    %(n/N)

    53.1

    (207/390)

    53.5

    (447/835)

    54.7

    (122/223)

    53.6

    (776/1448)

    P.falciparumsporozoites,%(n/N)10.2

    (40/393)

    9.3

    (78/839)

    7.0

    (16/230)

    9.2

    (134/1462)

    Species1 319 631 189 1139

    An.gambiaes.l 298(93.4%) 544(86.2%) 181(95.8%) 1023(89.8%)

    An.funestuscomplex 14(4.4%) 55(8.7%) 2(1.1%) 71(6.2%)

    An.demeilloni 3(0.9%) 6(1.0%) 3(1.6%) 12(1.1%)

    An.pretoriensis 1(0.3%) 11(1.7%) 1(0.5%) 13(1.2%)

    Other2 3(1.0%) 15(2.4) 2(1.1%) 20(1.8%)

    3251355mosquitoeswerenotidentifiedtospeciesduetotechnicalproblemswiththemicroscope.326

    Totalsandpercentageshereonlyincludeidentifiedmosquitoes.3272OtherspeciesincludeAn.maculipalpis(3),An.salbaii(4),An.rufipes(2),An.dancalicus(5),328

    An.coustani(6)329

    330

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 20

    Table3:Relativeriskofmalariaintheprior30dinbasemodelandinmodelsincluding331

    mosquitoindices.TheeffectofmonthlyindividualITNuseandmonthlyhousehold-level332

    mosquitoexposureontherelativeriskofmalariainthelast30days.Eachmodelisadjustedfor333

    householdandindividual-leveldemographiccharacteristics.334

    Basemodel Individualmosquitoindexmodels

    1 2 3 4

    Village

    (Kinesamovs.Sitabich)

    0.70

    (0.43,1.14)

    0.68

    (0.42,1.10)

    0.68

    (0.42,1.11)

    0.68

    (0.42,1.1)

    0.63

    (0.39,1.00)

    Village

    (Marutivs.Sitabich)

    0.91

    (0.51,1.62)

    0.81

    (0.43,1.53)

    0.81

    (0.43,1.55)

    0.81

    (0.43,1.51)

    0.77

    (0.41,1.42)

  • 21

    No.ofAnoph.mosquitoes 1.02

    (0.97,1.08)

    No.BloodfedAnoph.

    mosquitoes

    1.03

    (0.97,1.08)

    No.HumanbloodfedAnoph.

    mosquitoes

    1.04

    (0.97,1.12)

    No.Sporozoitepositive

    mosquitoes

    1.24

    (1.11,1.38)

    335

    336

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 22

    337Table4:TheeffectofindividualITNuse,mosquitoexposure,andtheinteractionbetweenITN338

    useandmosquitoexposureontherelativeriskofmalariainthelast30days.Eachcolumn339

    representsaseparatemodeladjustedforage,householdsize,gender,andvillage.340

    341

    Relativeriskofmalaria

    inthelast30daysModel1 Model2 Model3 Model4

    ITNUse 1.69 1.66 1.71 1.44

    (Highvs.Low) (1.05,2.72) (1.04,2.64) (1.07,2.74) (0.90,2.30)

    Total#ofAnoph.

    Mosquitoes

    1.08

    (1.0131.12)

    #ofFedAnoph.

    Mosquitoes

    1.08

    (1.03,1.13)

    #ofAnoph.Mosquitoes

    FedonHumanBlood

    1.13

    (1.04,1.22)

    #ofSporozoitePositive

    Anoph.Mosquitoes

    1.24

    (1.14,1.36)

    ITNUse*Exposure

    Interaction

    0.94 0.94 0.90 0.99

    (0.89,0.99) (0.88,0.99) (0.82,0.99) (0.85,1.16)

    342

    343

    344

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 23

    345 346

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 24

    References347

    1.ClarkTD,GreenhouseB,Njama-MeyaD,etal.Factorsdeterminingtheheterogeneityof348

    malariaincidenceinchildreninKampala,Uganda.TheJournalofinfectiousdiseases2008;349

    198:393-400.350

    2.MwangiTW,FeganG,WilliamsTN,KinyanjuiSM,SnowRW,MarshK.Evidenceforover-351

    dispersioninthedistributionofclinicalmalariaepisodesinchildren.PloSone2008;3:e2196.352

    3.NdunguFM,MarshK,FeganG,etal.Identifyingchildrenwithexcessmalariaepisodesafter353

    adjustingforvariationinexposure:identificationfromalongitudinalstudyusingstatistical354

    countmodels.BMCmedicine2015;13:183.355

    4.RogierC,TallA,DiagneN,FontenilleD,SpiegelA,TrapeJF.Plasmodiumfalciparumclinical356

    malaria:lessonsfromlongitudinalstudiesinSenegal.Parassitologia1999;41:255-9.357

    5.OlotuA,FeganG,WambuaJ,etal.Estimatingindividualexposuretomalariausinglocal358

    prevalenceofmalariainfectioninthefield.PloSone2012;7:e32929.359

    6.BeierJC,OsterCN,OnyangoFK,etal.Plasmodiumfalciparumincidencerelativeto360

    entomologicinoculationratesatasiteproposedfortestingmalariavaccinesinwesternKenya.361

    TheAmericanjournaloftropicalmedicineandhygiene1994;50:529-36.362

    7.DegefaT,ZeynudinA,GodessoA,etal.Malariaincidenceandassessmentofentomological363

    indicesamongresettledcommunitiesinEthiopia:alongitudinalstudy.Malariajournal2015;364

    14:24.365

    8.SmithDL,DushoffJ,SnowRW,HaySI.TheentomologicalinoculationrateandPlasmodium366

    falciparuminfectioninAfricanchildren.Nature2005;438:492-5.367

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 25

    9.SmithT,MaireN,DietzK,etal.Relationshipbetweentheentomologicinoculationrateand368

    theforceofinfectionforPlasmodiumfalciparummalaria.TheAmericanjournaloftropical369

    medicineandhygiene2006;75:11-8.370

    10.BejonP,WilliamsTN,NyundoC,etal.Amicro-epidemiologicalanalysisoffebrilemalariain371

    CoastalKenyashowinghotspotswithinhotspots.eLife2014;3:e02130.372

    11.BrookerS,ClarkeS,NjagiJK,etal.Spatialclusteringofmalariaandassociatedriskfactors373

    duringanepidemicinahighlandareaofwesternKenya.Tropicalmedicine&international374

    health:TM&IH2004;9:757-66.375

    12.GaudartJ,PoudiougouB,DickoA,etal.Space-timeclusteringofchildhoodmalariaatthe376

    householdlevel:adynamiccohortinaMalivillage.BMCpublichealth2006;6:286.377

    13.KreuelsB,KobbeR,AdjeiS,etal.Spatialvariationofmalariaincidenceinyoungchildren378

    fromageographicallyhomogeneousareawithhighendemicity.TheJournalofinfectious379

    diseases2008;197:85-93.380

    14.GuelbeogoWM,GoncalvesBP,GrignardL,etal.Variationinnaturalexposuretoanopheles381

    mosquitoesanditseffectsonmalariatransmission.eLife2018;7.382

    15.ChurcherTS,TrapeJF,CohuetA.Human-to-mosquitotransmissionefficiencyincreasesas383

    malariaiscontrolled.Naturecommunications2015;6:6054.384

    16.KangoyeDT,NoorA,MidegaJ,etal.Malariahotspotsdefinedbyclinicalmalaria,385

    asymptomaticcarriage,PCRandvectornumbersinalowtransmissionareaontheKenyan386

    Coast.Malariajournal2016;15:213.387

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 26

    17.StresmanGH,MwesigwaJ,AchanJ,etal.Dohotspotsfuelmalariatransmission:avillage-388

    scalespatio-temporalanalysisofa2-yearcohortstudyinTheGambia.BMCmedicine2018;389

    16:160.390

    18.BurkotTR,BugoroH,ApairamoA,etal.Spatial-temporalheterogeneityinmalaria391

    receptivityisbestestimatedbyvectorbitingratesinareasnearingelimination.Parasites&392

    vectors2018;11:606.393

    19.SmithDL,McKenzieFE,SnowRW,HaySI.Revisitingthebasicreproductivenumberfor394

    malariaanditsimplicationsformalariacontrol.PLoSbiology2007;5:e42.395

    20.CommissiononRevenueAllocation.KenyaCountyFactSheets.1ed,2011.396

    21.MangeniJN,OngoreD,MwangiA,VululeJM,O’MearaWP,ObalaA.Prevalence,397

    heterogeneity,ofasymptomaticmalariainfectionsandassociatedfactorsinahightransmission398

    region.EastAfricanMedicalJournal2017;94.399

    22.MangeniJN,OngoreD,MwangiA,VululeJM,ObalaA,O’MearaWP.Malaria“hotspots”400

    withinalargerhotspot;what’stheroleofbehavioralfactorsinfinescaleheterogeneityin401

    westernKenya?EastAfricanMedicalJournal2017;94.402

    23.TaylorSM,SumnerKM,FreedmanB,MangeniJN,ObalaAA,O’MearaWP.Directestimation403

    ofsensitivityofPlasmodiumfalciparumrapiddiagnostictestforactivecasedetectioninahigh-404

    transmissioncommunitysetting.AmericanJournalofTropicalMedicineandHygiene2019;IN405

    PRESS.406

    24.YellandLN,SalterAB,RyanP.PerformanceofthemodifiedPoissonregressionapproachfor407

    estimatingrelativerisksfromclusteredprospectivedata.Americanjournalofepidemiology408

    2011;174:984-92.409

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 27

    25.NakagawaS,JohnsonPCD,SchielzethH.ThecoefficientofdeterminationR(2)andintra-410

    classcorrelationcoefficientfromgeneralizedlinearmixed-effectsmodelsrevisitedand411

    expanded.JournaloftheRoyalSociety,Interface2017;14.412

    26.KnolsBG,deJongR,TakkenW.Differentialattractivenessofisolatedhumanstomosquitoes413

    inTanzania.TransactionsoftheRoyalSocietyofTropicalMedicineandHygiene1995;89:604-6.414

    27.LindsaySW,AdiamahJH,MillerJE,PleassRJ,ArmstrongJR.Variationinattractivenessof415

    humansubjectstomalariamosquitoes(Diptera:Culicidae)inTheGambia.Journalofmedical416

    entomology1993;30:368-73.417

    28.MatowoNS,MooreJ,MapuaS,etal.Usinganewodour-baiteddevicetoexploreoptions418

    forluringandkillingoutdoor-bitingmalariavectors:areportondesignandfieldevaluationof419

    theMosquitoLandingBox.Parasites&vectors2013;6:137.420

    29.MilaliMP,Sikulu-LordMT,GovellaNJ.Bitesbeforeandafterbedtimecancarryahighriskof421

    humanmalariainfection.Malariajournal2017;16:91.422

    30.ReddyMR,OvergaardHJ,AbagaS,etal.OutdoorhostseekingbehaviourofAnopheles423

    gambiaemosquitoesfollowinginitiationofmalariavectorcontrolonBiokoIsland,Equatorial424

    Guinea.Malariajournal2011;10:184.425

    31.RussellTL,GovellaNJ,AziziS,DrakeleyCJ,KachurSP,KilleenGF.Increasedproportionsof426

    outdoorfeedingamongresidualmalariavectorpopulationsfollowingincreaseduseof427

    insecticide-treatednetsinruralTanzania.Malariajournal2011;10:80.428

    32.SougoufaraS,DiedhiouSM,DoucoureS,etal.BitingbyAnophelesfunestusinbroad429

    daylightafteruseoflong-lastinginsecticidalnets:anewchallengetomalariaelimination.430

    Malariajournal2014;13:125.431

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • 28

    33.SondenK,DoumboS,HammarU,etal.AsymptomaticMulticlonalPlasmodiumfalciparum432

    InfectionsCarriedThroughtheDrySeasonPredictProtectionAgainstSubsequentClinical433

    Malaria.TheJournalofinfectiousdiseases2015;212:608-16.434

    34.ZhouG,AfraneYA,MallaS,GithekoAK,YanG.Activecasesurveillance,passivecase435

    surveillanceandasymptomaticmalariaparasitescreeningillustratedifferentagedistribution,436

    spatialclusteringandseasonalityinwesternKenya.Malariajournal2015;14:41.437

    35.Lopera-MesaTM,DoumbiaS,KonateD,etal.Effectofredbloodcellvariantsonchildhood438

    malariainMali:aprospectivecohortstudy.TheLancetHaematology2015;2:e140-9.439

    440

    All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854

  • All rights reserved. No reuse allowed without permission. not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

    The copyright holder for this preprint (which wasthis version posted October 18, 2019. ; https://doi.org/10.1101/19008854doi: medRxiv preprint

    https://doi.org/10.1101/19008854