ross alejandra silva torres ingeniería eléctrica 223590 física moderna experimentos clásicos

30
Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Upload: celia-san-segundo-coronel

Post on 24-Jan-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Ross Alejandra Silva TorresIngeniería eléctrica

223590 física moderna

Experimentos clásicos

Page 2: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Contenido

1. Frank-Hertz (cuatización de la energía)

2. Efecto Fototeléctrico (dualidad de la luz)

3. Efecto Compton (universalidad de la dualidad de la luz)

4. Davisson and Germer (Propiedades ondulatorias de la materia)

5. Michelson-Morley (Inexistencia del Eter y v=c)

Page 3: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

cuatización de la energía

Bohr

Frank-Hertz

dualidad de la luz

Einstein

H. Hertz

universalidad de la dualidad

de la luz

Propiedades ondulatorias de

la materia

Inexistencia del Eter

Page 4: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Niveles de energia

• En 1914 se realizo un experimento con el fin de probar uno de los postulados de Bohr.

• Si los niveles postulados existían, los átomos solo podrán ser excitados cuando la energía suministrada sea igual a la diferencia de la energía entre dos niveles energéticos de átomo considerado.

Page 5: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

1. Los electrones desde el filamento caliente, son acelerados por una diferencia de potencial Vo

2. Los electrones chocan con los átomos del gas encerrado.

6. Nance una corriente fácilmente medible a través del amperímetro conectado al cátodo P (electrodo de recogida)

5.Los electrones pasan a través de larejilla G son sometidos a una diferencia de potencial negativo con respecto al ánodo y por lo tanto es más lento

9. Permite el análisis de la energía con la que los electrones pasan a través de la rejilla G

4. El ánodo G cuya superficie es una rejilla metálica con parámetro de red calculada para proporcionar una transparencia adecuada para el haz de electrones incidente

3.Los electrones cruzan un Espacio con potencial entre en ánodo Y el cátodo G

7. Los electrones que lleguen al ánodo G con una energía cinética menor que eVr no podrán Alcanzar el colector (generan choques inelásticos)

8. Se observa una disminución de la corriente ene la amperímetro

Page 6: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Resultados del experimento

1. Cuando un electrón alcanza una energía de 4.9eV la corriente

disminuye

Un electrón al alcanzar esa energía tiene una colisión inelástica con el mercurio desde toda su energía y no llega al colector, por consecuencia tampoco al amperímetro

2. Al aumentar el voltaje los electrones alcanzan a 9.8 eV y

nuevamente disminuye la energía

Después de cada colisión los átomos excitados regresan a su estado base emitiendo radiación electromagnética

Un fotón de 4.9 eV de energía emite radiación de una longitud de onda de 2536 Amstrong, correspondiente a la primera línea de espectro atómico del mercurio.

Page 7: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Cuantizacion de la energia

Hay orbitales en el átomo pero no todas las órbitas son posibles. Únicamente pueden existir aquellas órbitas para las cuales el momento angular del electrón sea un múltiplo entero de la constante de Plank sobre 2pi.

Teoría

Page 8: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Cuantizacion de la energía

experimentadores• Gustav Ludwig Hertz fue un

físico alemán, sobrino de Heinrich Rudolf Hertz. Ganador del premio Nobel de Física de 1925 por sus estudios.

• James Franck fue un físico alemán, ganador del Premio Nobel de Física en 1925

Page 9: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Efecto fotoeléctricoCuando la luz chocaba con una superficie metálica, algunos Electrones cercanos a la superficie absorben la energía suficiente para superar la atracción de sus respectivos núcleos, y escapaban al espacio circundante. Este fenómeno se explica otorgando al espectroelectromagnético propiedades de corpúsculos

Page 10: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Resultados experimentales

1. Incide un haz monocromático sobre c Generando un desprendimiento de electrones

2. Si hay una diferencia de Potencial entre las placas los electrones se aceleraran hacia A

3. Se registra una corriente Llamada fotocorriente, proporcional a la intensidad de la radiación.

4. Si se aplica un voltaje negativoLos electrones serán repelidos Y solo llegaran a A aquellos cuya energíaCinética sea mayor que eV .

5. Para un voltaje V* los fotones Ya no podrán alcanzar el colector o A y la fotocorriente será nula.V* = voltaje de frenado

Page 11: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Análisis grafica

Ib e Ia son:Corrientes de saturación

Corriente de saturación: se da cuando todos los electrones emitidos por el metal llegan al electrodo por ello la fotocorriente se vuelve constante.

Potencial de frenado: para anular la corriente era necesario aplicar un potencial de frenado, es decir negativo. . no depende de la intensidad pero si se relaciona proporcionalmente a la frecuencia de la radiación.

Potencial de frenado

Page 12: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Grafica contra voltaje o potencial de frenado

El punto de corte de cada recta con el eje horizontal es el valor de la frecuencia umbral para Cada material.

Page 13: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Energía cinética

Energía con la cual sale un electrón del material. [kmax=hv-φ]

Cuando un electrón se libera bajo el efecto y queda en reposo se dice que su energía cinética nula:

[hv0=φ] vo es la frecuencia umbral.h constante de planck V frecuencia.Kmax energía cinética máximaΦ función trabajo

Page 14: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Conclusiones de experimento

Frecuencia umbral o de corte : frecuencia electromagnética mínima para producir desprendimiento de electrones.

Función de trabajo: es la fuerza que mantiene a un electrón ligado con su átomo, y es inherente a cada material.

Page 15: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Explicación clásica

Al incidir radiación electromagnética sobre un electrón hay una interacción electrostática entre la carga del electrón y el campo oscilante, la cual se manifiesta por una fuerza que hace oscilar los electrones con una amplitud proporcional a la amplitud de la oscilación de la radiación incidente.

Page 16: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Experimentador

• Heinrich Rudolf Hertz fue un físico alemán descubridor del efecto fotoeléctrico y de la propagación de las ondas electromagnéticas, así como de formas de producirlas y detectarlas

• Nace : 22 de febrero de 1857

Page 17: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Explicación cuántica

Una onda electromagnética , esta compuesta por paquetes de energía (fotón) cuyo valor es proporcional

a la frecuencia de la radiación.

Tenemos un proceso de colisión inelástica entre dos partículas un fotón y un electrón, en el cual el fotón

cede toda su energía al electrón.

La absorción de energía suficiente puede liberar un electrón, la cantidad mínima se llama función de

trabajo.

Page 18: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Efecto ComptonEl efecto Compton ocurre cuando un

fotón choca con electrón cediendo parte de su energía, que permite que el electrón se libre pero a la vez este choque genera una liberación de una segunda radiación en otro ángulo.

Page 19: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Efecto compton

1. Haz de rayos monocromáticos

3. Blanco de grafito, donde

es dispersado a diferentes ángulos.

2. Colimador, instrumento que

logra un haz de luz uniforme de uno

divergente

Radiación electromagnética de gran energía y

una sola frecuencia

Page 20: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Resultados

• Corrimiento Compton: se obtuvo dos haces de luz una con la frecuencia original y una nueva.

Δλ=λ-λoLa longitud de onda λo depende del ángulo de

dispersión. La longitud de onda referente a la

implementada en el experimento es λ.

Page 21: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Resultados del experimento

Corrimiento Compton: se obtuvo dos haces de luz una con la frecuencia original y una nueva.

Δλ=λ-λoLa longitud de onda λo depende del ángulo de dispersión. La longitud de onda referente a la implementada en el experimento es λ.

Page 22: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Ondas de materia

• Una partícula con carga eléctrica crea a su alrededor un campo eléctrico que se propaga en el espacio mediante ondas llamadas ondas electromagnéticas.

• Una partícula en movimiento crea a su alrededor un campo que llamaremos campo material y que también se propagara mediante ondas que llamaremos ondas de materia.

Page 23: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

1. Se calienta un filamento del cual se

desprenden electrones y se aceleran por

medio de una diferencia de potencial

2. El haz cae sobre un

mono-cristal de Niquel.

3.El haz de electrones es dispersado

4. El numero de electrones dispersados y el ángulo, es medido. Después de pasar una diferencia de potencial

menor al primero.

5. Medimos los electrones que han perdido poca o ninguna energía en la colisión con el

cristal.

Page 24: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Resultados del experimento

•Para voltajes aceleradores mas grandes se ha podido observar un segundo máximo en la corriente eléctrica producida por los electrones dispersados, el cual corresponde al segundo orden de difracción.

1.

•Las partículas materiales se les puede asociar ondas se a demostrado con átomos, moléculas y partículas sin carga.

2.

Page 25: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Broglie

Es necesario tanto para la materia como para la radiación, en particular la luz, introducir simultáneamente el concepto de partícula y el concepto de onda. Como no pueden ser independientes debe existir un paralelismo entre el movimiento de la partícula y la propagación de la onda asociada que gobierna el movimiento .

Page 26: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

Davisson - Germer• Clinton Joseph Davisson,

fue un destacado físico estadounidense galardonado en 1937 con el premio Nobel de Física. Es conocido por las investigaciones que llevó a cabo en los campos de la electricidad, el magnetismo y la energía radiante.

• Lester Halbert Germer (Chicago, 10 de octubre de 1896) físico estadunidense junto con su colega prueba en 1927 las ondas de materia.

Page 27: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

El éter

Siendo la luz una onda, necesita de un

medio.

En reposo era el marco de referencia

con respecto a la velocidad de la luz

Page 28: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

1. Rayo de luz sobre un espejo semitransparente

2. Lo divide en dos rayos perpendiculares entre

3. Incide en los espejos y es reflejado el espejo

semitransparente y luego ala pantalla

Page 29: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

resultados

• No se pudo observar un corrimiento en la posición de las franjas de interferencia y por lo tanto no se pudo medir la velocidad del viento de éter

Page 30: Ross Alejandra Silva Torres Ingeniería eléctrica 223590 física moderna Experimentos clásicos

experimentadores

Físico estadounidense, colaborador de Michelson en el experimento que demostró la constancia de la velocidad de la luz. Hijo de un ministro de la iglesia congregacionista.

Albert Abraham Michelson fue un físico, conocido por sus trabajos acerca de la velocidad de la luz. Recibió el Premio Nobel de Física en 1907