robotic models of active perception

66
Robo$c Models of Ac$ve Percep$on Dimitri Ognibene, PhD Laboratory for Morphological Computa:on and Learning (www.thrish.org )

Upload: dimitri-ognibene

Post on 12-Jul-2015

1.297 views

Category:

Science


3 download

TRANSCRIPT

Page 1: Robotic models of active perception

Robo$c  Models    of   Ac$ve  Percep$on  

Dimitri  Ognibene,  PhD  Laboratory  for  Morphological  Computa:on  and  Learning  

(www.thrish.org)    

Page 2: Robotic models of active perception
Page 3: Robotic models of active perception

To  subs:tute  humans  in  dangerous  jobs  is  one  of  the  

main  goals  of  robo:cs    

The  ac$ons  in  these  pictures  are  already  possible  for  robots  

of  today.    

However…..  

Page 4: Robotic models of active perception
Page 5: Robotic models of active perception

Perceiving  in  these  environments  is  very  complex:  

•  Unstructured  •  Changing  

•  Many  different  objects  of  different  scales  and  shapes  •  Occlusions  

•  Other  agents  to  perceive  and  coordinate  with  

Currently  only  humans  are  able  to  cope  with  such  level  of  perceptual  complexity…  

And  humans  perceive  ac$vely…    

Page 6: Robotic models of active perception

Active Perception  

Ognibene  &  Demiris  2013  

•  Robo:cs    •  Neuroscience    •  Automa:c  Diagnosis  •  Smart  Devices  &  Environments  

•  Data  mining  

Page 7: Robotic models of active perception

Foveal  Vision  (What  does  it  mean  to  perceive  ac:vely?)  

7  

Page 8: Robotic models of active perception

Foveal  Vision  (What  does  it  mean  to  perceive  ac:vely?)  

Try  to  grasp  an  apple  with  foveal  vision..  Seeing  becomes  like  sampling  and  remembering  

Page 9: Robotic models of active perception

Foveal  Vision  (What  does  it  mean  to  perceive  ac:vely?)  

Try  to  grasp  an  apple  with  foveal  vision..  Seeing  becomes  like  sampling  and  remembering  

Page 10: Robotic models of active perception

Foveal  Vision  (What  does  it  mean  to  perceive  ac:vely?)  

Try  to  grasp  an  apple  with  foveal  vision..  Seeing  becomes  like  sampling  and  remembering  

Page 11: Robotic models of active perception

Foveal  Vision  (What  does  it  mean  to  perceive  ac:vely?)  

Try  to  grasp  an  apple  with  foveal  vision..  Seeing  becomes  like  sampling  and  remembering  

Page 12: Robotic models of active perception

Foveal  Vision  (What  does  it  mean  to  perceive  ac:vely?)  

Try  to  grasp  an  apple  with  foveal  vision..  Seeing  becomes  like  sampling  and  remembering  

Page 13: Robotic models of active perception

Foveal  Vision  (What  does  it  mean  to  perceive  ac:vely?)  

Try  to  grasp  an  apple  with  foveal  vision..  Seeing  becomes  like  sampling  and  remembering  

Page 14: Robotic models of active perception

Ac:ve  Percep:on  (AP)  Issues*  •  Where  to  look?  •  What  to  remember?  •  When  to  stop  looking  and  start  ac:ng?  

– Enough  informa:on?  – Enough  :me?  – Acquired  informa:on  s:ll  valid?  

   

*See  also  The  Frame  Problem  

Page 15: Robotic models of active perception

Where  to  look?  Use  only  image  sta:s:cs?  

I]  &  Baldi  2010  

Main  limits    of    base  saliency  models  are:  •  No  task  informa:on  •  Do  not  consider  limited  field  of  view  

Page 16: Robotic models of active perception

Where  To  look?    Informa:on  on  Demand  

Yarbus 1967 16  

Page 17: Robotic models of active perception

Where  to  look?  Context  and  task  informa:on  used  to  drive  

percep:on  to  the  target  

Vogel  &  de  Freitas  2008  

Page 18: Robotic models of active perception

Unknown  Task  or  Goal  •  Task/Goal  depending  on  other  agents’  presence/goals  

•  Mul:ple  affordances  required  for  the  task  

Ognibene  &  Demiris  IJCAI  2013  

Page 19: Robotic models of active perception

Ac:ve  Percep:on  and  Mirror  Neurons  

19  

•  Encode  ac:on  goal  •  Abstracts  trajectory  •  Needs  percep:ons  

Can  Motor  Control  System  predict    others’  

ac:ons?  

Page 20: Robotic models of active perception

Human Robot Interaction as a Distributed Dynamic Event

 

Ognibene  &  Demiris  2013  

Page 21: Robotic models of active perception

Predic:ve  Ac:on  Recogni:on  

Field  of  view  

Ognibene  &  Demiris  2013  

Effec:ve  Percep:on-­‐Environment  Coupling  is  necessary  for  :mely  

Recogni:on  and  Survival  

Page 22: Robotic models of active perception

Predic:ve  Ac:on  Recogni:on  

Field  of  view  

Ognibene  &  Demiris  IJCAI    2013  

Effec:ve  Percep:on-­‐Environment  Coupling  is  necessary  for  :mely  

Recogni:on  and  Survival  

Page 23: Robotic models of active perception

Field  of  view  

Different  hypotheses  of  target  posi:on  Equally  probable,  not  seen  

Ognibene  &  Demiris  IJCAI    2013  

See  also  “Percep:ons  as  hypotheses:  saccades  as  experiments,  Friston  et  al.  

2012”  

Perceive  to  reduce  uncertainty  

Page 24: Robotic models of active perception

Field  of  view  

Hand  movement  changes  distribu:on  

Ognibene  &  Demiris  IJCAI    2013  

Perceive  to  reduce  uncertainty  

Page 25: Robotic models of active perception

Field  of  view  

Saccade  to  target  hypothesis  

Ognibene  &  Demiris  IJCAI    2013  

Perceive  to  reduce  uncertainty  

Page 26: Robotic models of active perception

Field  of  view  

No  target  at  posi:on  observed  

Ognibene  &  Demiris  IJCAI  2013  

Perceive  to  reduce  uncertainty  

Page 27: Robotic models of active perception

Field  of  view  

Update  Distribu:on  

Ognibene  &  Demiris  2013  

Perceive  to  reduce  uncertainty  

Page 28: Robotic models of active perception

2. Active Event Recognition

In this section the AER is defined and a solution based on a mixture of KFusing Information Gain (AERIG) is described.

Problem definition. The graphical model in figure 2 displays the formulationof the problem. The discrete hidden stochastic variable V represents the classof the event which is taking place, characterised by a di↵erent dynamic of theenvironment that the agent must predict and recognise. The environment iscomposed of a fixed set of elements E = {e1, e2 . . . eN} and thus its state X t attime t is composed of the states Xt

i of the di↵erent elements. For each value of Vthe evolution of X t is determined by a di↵erent dynamic system with di↵erentindependence conditions between the elements. At each time step the agentreceives for each element i an observation ot

i which depends on the currentconfiguration of the sensors ✓t. The states and observations are continuousvariables.

At every time step the goal of the system is to select the configuration ✓t

that will minimise the expected uncertainty over V (quantified by entropy H):

✓t = argmin✓

t

Z

O

p(ot|o0...t�1, ✓t)H(V |oo...t, ✓0...t)dot (1)

Proposed solution. For the recognition of the event and for the selection ofthe sensors configuration it is necessary to compute the posterior P (v|ot; ✓t).Given a prior distribution P (v,xt

1:N ) = P (xt1:N |v)P (v) and the independence

of the observed event from the sensor configuration P (v|✓) = P (v), the updateexpression of the posterior P (v|ot+1✓t+1) can be derived through the use of theBayes rule:

P (v|ot+1, ✓t+1) =P (ot+1|v, ✓t+1)P (v)

P (ot+1|✓t+1)(2)

The computation of eq.1 and eq.15 in the general case can pose severe compu-tational complexities. The solution proposed is based on the assumption that,once v is fixed, the dynamics is linear and the probability distributions are nor-mal. This enables the use of a mixture of KF with a distinct KF for each valueof v. Denoting with ot+1

v,✓t+1 the mean expected observation and with St+1v,✓t+1

its covariance matrix, both of which are conditioned on v and ✓ and computedduring the KF update, the following can be derived:

✓t+1 = argmin✓

t+1

X

v

P (v)⇣12ln |St+1

v,✓

t+1 |+Z

O

N (o; ot+1v,✓

t+1 ,St+1v,✓

t+1) ln(P (o|✓t+1))do⌘ (3)

Where |S| is the determinant of a matrix S. The first order Taylor expansion

5

Info  Gain  Percep:on  Control  for  Inten:on  An:cipa:on  

Minimizing  event  uncertainty  (condi:onal  entropy  H(v|..))  

Ognibene  &  Demiris  IJCAI    2013  

Page 29: Robotic models of active perception

2. Active Event Recognition

In this section the AER is defined and a solution based on a mixture of KFusing Information Gain (AERIG) is described.

Problem definition. The graphical model in figure 2 displays the formulationof the problem. The discrete hidden stochastic variable V represents the classof the event which is taking place, characterised by a di↵erent dynamic of theenvironment that the agent must predict and recognise. The environment iscomposed of a fixed set of elements E = {e1, e2 . . . eN} and thus its state X t attime t is composed of the states Xt

i of the di↵erent elements. For each value of Vthe evolution of X t is determined by a di↵erent dynamic system with di↵erentindependence conditions between the elements. At each time step the agentreceives for each element i an observation ot

i which depends on the currentconfiguration of the sensors ✓t. The states and observations are continuousvariables.

At every time step the goal of the system is to select the configuration ✓t

that will minimise the expected uncertainty over V (quantified by entropy H):

✓t = argmin✓

t

Z

O

p(ot|o0...t�1, ✓t)H(V |oo...t, ✓0...t)dot (1)

Proposed solution. For the recognition of the event and for the selection ofthe sensors configuration it is necessary to compute the posterior P (v|ot; ✓t).Given a prior distribution P (v,xt

1:N ) = P (xt1:N |v)P (v) and the independence

of the observed event from the sensor configuration P (v|✓) = P (v), the updateexpression of the posterior P (v|ot+1✓t+1) can be derived through the use of theBayes rule:

P (v|ot+1, ✓t+1) =P (ot+1|v, ✓t+1)P (v)

P (ot+1|✓t+1)(2)

The computation of eq.1 and eq.15 in the general case can pose severe compu-tational complexities. The solution proposed is based on the assumption that,once v is fixed, the dynamics is linear and the probability distributions are nor-mal. This enables the use of a mixture of KF with a distinct KF for each valueof v. Denoting with ot+1

v,✓t+1 the mean expected observation and with St+1v,✓t+1

its covariance matrix, both of which are conditioned on v and ✓ and computedduring the KF update, the following can be derived:

✓t+1 = argmin✓

t+1

X

v

P (v)⇣12ln |St+1

v,✓

t+1 |+Z

O

N (o; ot+1v,✓

t+1 ,St+1v,✓

t+1) ln(P (o|✓t+1))do⌘ (3)

Where |S| is the determinant of a matrix S. The first order Taylor expansionof P (o|✓) at point ot+1

v results in:

✓t+1 ⇡ argmin✓

X

v

P (v)

"1

2ln |St+1

v,✓t+1 | + lnVX

v0

⇣P (v0) N (ov,✓; o

t+1v0,✓t+1 ,S

t+1v0,✓t+1)

⌘#(4)

5

Info  Gain  Using  Kalman  Filters  

Expected  entropy  for  hypothesis  v  

Difference    of  predic:ons  between  the  models  

Page 30: Robotic models of active perception

Gaze  target  during  event  observa:on    

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time stesp

performer besttarget besttarget not bestperformer not bestRa

:o  of  saccade

s  on  the  elem

ent  

Ognibene  &  Demiris  IJCAI    2013  

Modelling  the  temporal  coupling  of  percep$on  with  external  events  

Page 31: Robotic models of active perception

Results  

Ognibene  &  Demiris  IJCAI  2013  

Page 32: Robotic models of active perception

Results  

Ognibene  &  Demiris  IJCAI  2013  

Page 33: Robotic models of active perception

Mul:ple  Complex  Simultaneous  Ac:vi:es  

Page 34: Robotic models of active perception

Hierarchical  Ac:on  Representa:on  to  Represent  Temporal  Structure  

Probabilis$c  Grammars  Dynamic  Bayes  Network  

Lee,  Ognibene,  Chang  ,  Kim,  Demiris  (Submimed)  

Page 35: Robotic models of active perception

Lee,  Ognibene,  Chang  ,  Kim,  Demiris  (Submimed)  

STARE  Spa:o-­‐Temporal  Amen:on  Reloca:on  for  Mul:ple  Structured  Ac:vi:es  Detec:on    

Page 36: Robotic models of active perception

Ac:ve  Percep:on  (AP)  Issues  

•  Where  to  look?  •  What  to  remember?  •  When  to  stop  looking  and  start  ac:ng?  

– Enough  informa:on?  – Enough  :me?  –  Is  acquired  informa:on  s:ll  valid?  

 

Page 37: Robotic models of active perception

Ac:ve  Percep:on  Issues

•  Why  has  evolu:on  selected  amen:on  and  reduc:on  of  percep:ve  space  for  many  species?    

•  Why  does  a  massively  parallel  system,  like  the  brain,  needs  to  use  a  serial  mechanism  like  amen:on?  

 

Is  AP  just  useful  to  cope  with  hidden  informa$on?  

Page 38: Robotic models of active perception

Ac:ve  Percep:on  Issues  

•  How  are  decision  making  and  planning  affected  by  AP?  How  computa:on  is  affected  by  AP?    

•  Is  AP  in  the  brain  reflected  by  a  peculiar  kind  of  “ac:ve  processing”?  

•  How  is  learning  affected  by  AP?  •  How  are  representa:ons  affected  by  AP?  •  How  can  the  brain  self-­‐organise  to  support  AP?  •  How  would  a  dysfunc:on  of  AP  be  manifest?      

Page 39: Robotic models of active perception

Ac:ve  Percep:on  Issues  

•  How  are  decision  making  and  planning  affected  by  AP?  How  computa:on  is  affected  by  AP?    

•  Is  AP  in  the  brain  reflected  by  a  peculiar  kind  of  “ac:ve  processing”?  

• How  is  learning  affected  by  AP?  • How  are  representa:ons  affected  by  AP?  

•  How  can  the  brain  self-­‐organise  to  support  AP?  •  How  would  a  dysfunc:on  of  AP  be  manifest?      

Page 40: Robotic models of active perception

Percep:on  control  is  strongly  dependent  on  the  task  

 

Learning  a  new  task  may  require  learning  a  new  percep:on  control  policy  

 

Ac:ve  Percep:on  and  Learning    

40  

Ognibene  &  Baldassare,  IEEE  TAMD,  2014  

Page 41: Robotic models of active perception

Foveal  Vision  and  Saliency  Map  May  Speed-­‐Up  Learning  of  “Ecological  Tasks”  

Ognibene  &  Baldassare,  IEEE  TAMD,  2014  

Page 42: Robotic models of active perception

Subjec:ve  and  efficient  representa:ons  

42  

Ognibene  &  Baldassarre,  IEEE  TAMD,  2014  

Agent  has  a  fovea  and  can  see  colors  only  at  the  center  of  its  field  of  view  Agent  is  rewarded  if  it  touched  the  red  block  The  red  block  is  always  on  the  leq  of  the  green  blocks  Green  blocks  are  very  easy  to  find  Blue  blocks  are  randomly  posi:oned  distractors  What  will  be  the  right  ac$on  to  do,  the  right  representa$on  to  learn  for  the  blue  object?  

Page 43: Robotic models of active perception

Subjec:ve  and  efficient  representa:ons  

43  

Ognibene  &  Baldassarre,  IEEE  TAMD,  2014  

What  will  be  the  right  ac$on  to  do,  the  right  representa$on  to  learn  for  the  blue  object?  While  a  random  ac$on  was  expected  due  to  random  posi:on  of  the  blue  block,  the  agent  learns  a  well  organised  representa:on.  It  moves  from  the  blue  block  up,  down    on  the  same  column  or  right.  The  policy  learnt  by  the  agent  for  the  green  and  red  blocks  biased  the  agent  percep$on  of  the  blue  object  making  it  a  landmark  to  find  the  red  object  and  the  agent  behaviour  effec$ve  even  without  memory.  

Page 44: Robotic models of active perception

Subjec:ve  and  efficient  representa:ons  

44  

Ognibene  &  Baldassarre,  IEEE  TAMD,  2014  

The  policy  learnt  by  the  agent  for  the  blue  an  red  blocks  biased  the  agent  percep:on  of  the  blue  object  while  making  its  behaviour  effec:ve.  The  agent  starts  usually  from  the  green  object  and  moves  to  elements  in  the  leq  adjacent  column  expec:ng  to  find  the  red  object.  This  leads  to  ignore  the  blue  blocks  that    are  not  in  the  columns  at  the  leq  of  the  green  blocks  (those  inside  the  orange  circle).  Next  picture  shows  the  resul:ng  perceived  structure  of  the  world.  

Page 45: Robotic models of active perception

Subjec:ve  and  efficient  representa:ons  

45  

Ognibene  &  Baldassarre,  IEEE  TAMD,  2014  

Perceived  World  biased  by  Ac$ve  Percep$on  The  policy  learnt  by  the  agent  for  the  green  and  red  blocks  biased  the  agent  percep$on  of  the  blue  object  making  it  a  landmark  to  find  the  red  object  and  the  agent  behaviour  effec$ve  even  without  memory.  

Sequence  of  observa:ons  and  their    frequency  

(grey)  aqer  learning  

Page 46: Robotic models of active perception

Subjec:ve  and  efficient  representa:ons  

46  

Ognibene  &  Baldassarre,  IEEE  TAMD,  2014  

Page 47: Robotic models of active perception

Representa:ons  Evolu:on  

47  

G  

R  

B  

Ognibene  et  al,  SAB  2008  

Representa:ons  are  not  formed  in  a  uniform  way.  

The  system  shows  a  sequen:al  forma:on  of  different  areas  of  ac:vity.  This  may  be  due  to  the  selec:ve  aspect  of  ac:ve  percep:on  which  enables  percep:on  and  change  only  

on  a  subset  of  s:muli.  

Page 48: Robotic models of active perception

Representa:ons  Evolu:on  

48  

G  

R  

B  

Ognibene  et  al,  SAB  2008  

Page 49: Robotic models of active perception

Representa:ons  Evolu:on  

49  

G  

R  

B  

Ognibene  et  al,  SAB  2008  

As  representa:ons  are  not  formed  in  a  uniform  way  the  same  is  true  for  the  behaviours  acquired  by  the  

agent.  The  sequen:al  forma:on  of  

different  areas  of  ac:vity  may  not  only  be  reflected  in  the  behaviours  sequen:ally  acquired  but  also  be  caused  by  the  increasing  capability  of  the  agent  due  to  acquiring  other  

behaviours  and  give  place  to  “scaffolding”  supported  by  AP  

Page 50: Robotic models of active perception

Representa:ons  Evolu:on  

50  

G  

R  

B  

Ognibene  et  al,  SAB  2008  

Page 51: Robotic models of active perception

Ac:ve  Percep:on  Issues  

•  How  are  decision  making  and  planning  affected  by  AP?  How  computa:on  is  affected  by  AP?    

•  Is  AP  in  the  brain  reflected  by  a  peculiar  kind  of  “ac:ve  processing”?  

•  How  are  representa:ons  affected  by  AP?  •  How  is  learning  affected  by  AP?  •  How  can  the  brain  self-­‐organise  to  support  AP?  •  How  would  a  dysfunc:on  of  AP  be  manifest?    

Page 52: Robotic models of active perception

Inten:on  aware  resource  alloca:on  in  3D  Tracking  for  Precision  Manipula:on  

Page 53: Robotic models of active perception

Ini:al  Improvements  

Introduc:on  of  constraints  for  spa:o-­‐temporal  consistency  and  op:misa:on  to  exploit  GPUs  and  mul:core  CPUs  

….  but  STILL  TOO  SLOW  

Page 54: Robotic models of active perception

Ini:al  Improvements  

Page 55: Robotic models of active perception

Inten:on  Aware  Resource  Alloca:on  in  3D  Tracking  for  Precision  

Manipula:on  Humans  are  able  of  fast  adap:ve  reac:ons  to  unforeseen  events…  

which  requires  fast  (maybe  imprecise)  percep:on  

Page 56: Robotic models of active perception

Inten:on  Aware  Resource  Alloca:on  in  3D  Tracking  for  Precision  

Manipula:on  

DARWIN Attention

3D Pose Estimator

Depth Image

Mask Builder

Tracker

Other Object Masks

External Motion Info

Mask

OcclusionOcclusion

OcclusionImage

Camera Image

ID

ImageImage

ConfidenceConfidence

Confidence

OUTPUT

3D Posture ConfidenceClass ID

2D Object Detector

DARWIN Cognitive Architecture3D Posture ConfidenceClass ID

Rendered Image

3D Posture ConfidenceClass ID

Rendered ImageRendered

Image

3D Posture ConfidenceClass ID

OBJECT REPRESENTATION

3D Posture ConfidenceClass ID

Rendered Image

3D Posture ConfidenceClass ID

Rendered ImageRendered

Image

3D Posture ConfidenceClass ID

Intentions Predictions

Context Sensitive Resource Allocation

Appearence Based Fast Tracker

Complex  visual  percep:on  system  running  on  parallel  hardware  with  direct  and  indirect  dependencies  

between  the  components  

Page 57: Robotic models of active perception

Inten:on  Aware  Resource  Alloca:on  in  3D  Tracking  for  Precision  

Manipula:on  

DARWIN Attention

3D Pose Estimator

Depth Image

Mask Builder

Tracker

Other Object Masks

External Motion Info

Mask

OcclusionOcclusion

OcclusionImage

Camera Image

ID

ImageImage

ConfidenceConfidence

Confidence

OUTPUT

3D Posture ConfidenceClass ID

2D Object Detector

DARWIN Cognitive Architecture3D Posture ConfidenceClass ID

Rendered Image

3D Posture ConfidenceClass ID

Rendered ImageRendered

Image

3D Posture ConfidenceClass ID

OBJECT REPRESENTATION

3D Posture ConfidenceClass ID

Rendered Image

3D Posture ConfidenceClass ID

Rendered ImageRendered

Image

3D Posture ConfidenceClass ID

Intentions Predictions

Context Sensitive Resource Allocation

Appearence Based Fast Tracker

Page 58: Robotic models of active perception

Inten:on  Aware  Resource  Alloca:on  in  3D  Tracking  for  Precision  

Manipula:on  

DARWIN Attention

3D Pose Estimator

Depth Image

Mask Builder

Tracker

Other Object Masks

External Motion Info

Mask

OcclusionOcclusion

OcclusionImage

Camera Image

ID

ImageImage

ConfidenceConfidence

Confidence

OUTPUT

3D Posture ConfidenceClass ID

2D Object Detector

DARWIN Cognitive Architecture3D Posture ConfidenceClass ID

Rendered Image

3D Posture ConfidenceClass ID

Rendered ImageRendered

Image

3D Posture ConfidenceClass ID

OBJECT REPRESENTATION

3D Posture ConfidenceClass ID

Rendered Image

3D Posture ConfidenceClass ID

Rendered ImageRendered

Image

3D Posture ConfidenceClass ID

Intentions Predictions

Context Sensitive Resource Allocation

Appearence Based Fast Tracker

Ac$ve  Percep$on  and  Computa$on  to  reduce  uncertainty  

•  Intrinsic  scene  saliency:  maximise  expected  overall  predictability  (e.g.  an  object  moving  will  make  salient  also  nearby  objects  that  may  occlude  it  or  deviate  it)  

•  Agent  Inten:on    -­‐>  rise  saliency  changing  predic:ons  

Page 59: Robotic models of active perception

1.  Humans  apply  certain  strategies  to  detect  hard  abnormali:es  in  soq  :ssues  

2.  Op:mally  chosen  speed  and  load  of  tac:le  probing  will  lead  to  improved  tumour  detec:on  and  bemer  clinical  outcomes  

3. Embodied  percep.on  of  environment  should    be  considered  to  define  op:mal  probing  behaviour    

Jelizaveta  Konstan:nova  

Laboratory  for  Morphological  Computa$on  and  Learning  

(Thrish.org  KCL)    

Nantachai  Sornkarn  

Thrishantha  Nanayakkara  (PI)  

Embodied  Percep:on  and  Tac:le  Explora:on  

Page 60: Robotic models of active perception

Embodied  Percep:on  

[1]J.  Konstan$nova,  M.  Li,  M.  Gautam,  P.  Dasgupta,  K.  Althoefer  and  T.  Nanayakkara.  “Behavioral  Characteris:cs  of  Manual  Palpa:on  to  Localize  Hard  Nodules  in  Soq  Tissues”,  in  press,  IEEE  Transac$ons  on  Biomedical  Engineering,  2014.    

[2]  Nantachai  Sornkarn,  Thrishantha  Nanayakkara,  Mamhew  Howard,  “Internal  Impedance  Control  Helps  Informa:on  Gain  in  Embodied  Percep:on”,  in  IEEE  Interna:onal  Conference  on  Robo:cs  and  Automa:on  (ICRA),  2014  

Page 61: Robotic models of active perception

Human  Robot  Hap:c  Guidance  

Anuradha  Ranasinghe  

Thrishantha  Nanayakkara  (PI)  

Guiding  agent  can  be  modeled  as  3rd  order  predic:ve  model  using  a  simple  linear  auto-­‐regressive  model  (Arx).    Human  follower  can  be  molded  as  2nd  order  reac:ve  control  policy.    

The  guider  can  modulate  the  pulling  force  in  response  to  the  confidence  level  of  the  follower.  

Confidence   of   the   fo l lower  correlates   to   model   v irtual  damping   and   can   be   ac$vely  measured  

Page 62: Robotic models of active perception

Ac:ve  Percep:on  Issues  

•  How  are  decision  making  and  planning  affected  by  AP?  How  computa:on  is  affected  by  AP?    

•  Is  AP  in  the  brain  reflected  by  a  peculiar  kind  of  “ac:ve  processing”?  

•  How  are  representa:ons  affected  by  AP?  •  How  is  learning  affected  by  AP?  •  How  can  the  brain  self-­‐organise  to  support  AP?  •  How  would  a  dysfunc:on  of  AP  be  manifest?    

Page 63: Robotic models of active perception

Predic:ve  Coding   Mumford  1992  Rao  and  Ballard  1999  

Friston  2005  Spratling  2008  Hinton  2007  Clark  2013  

Hierarchical  Bayesian  Predic:ve  (Genera:ve)  Model  Predic:ons  flow  backward  and  predic:on  errors  forward  (fast  reac:on)  Accumula:on  of  sensory  evidence  reduces  Predic:on  Error  (or  Surprisal)  and  realises  both  Perceptual  inference  and  Learning  in  a  Unified  Framework  Amen:on  can  be  understood  as  inferring  the  level  of  [un]certainty  (c.f.,  Kalman  gain)  

Figure  from    Feldman  &  Friston  2010  

Page 64: Robotic models of active perception

Ac:ve  Inference  Friston  2003,2010  BBS  Review  by  Clark  2013  

Ac:ve  Inference  is  a  generalisa:on  of  Predic:ve  Coding  to  Ac:on  comple:ng  the  Sensorimotor  Loop  

Ac:ons  reduce  predic:on  error  by  realising    predic:ons,  e.g.  predicted  propriocep:ve  state  results  in  a  predic:on  error  which  produces  a  reac:on  (e.g.,  reflects)  

Innate  priors  and  interac:on  with  the  environment  determine  behaviour  –  no  need  for  norma:ve  quan::es  like  reward  Varia:onal  Free  Energy  allows  to  consider  –  in    a  tractable  (approximate)  analy:cal  form  –  predic:ons  and  predic:on  error  under  uncertainty  Ac:on,  Percep:on,  Learning  and  Planning  are  unified  under  the  same  computa:onal  principle    

Page 65: Robotic models of active perception

Ac:ve  Inference  and  Ac:ve  Percep:on  

P !u | !o,γ( ) =σ (γ ⋅Q(π ))Qτ (π ) = EQ(oτ |π )[ln P(oτ |m)]" #$$$ %$$$

+ EQ(oτ |π )[D[Q(sτ | oτ ,π ) ||Q(sτ |π )]]" #$$$$$$ %$$$$$$Extrinsic  value   Epistemic  value  

Friston,  Rigoli,  Ognibene  et  al    (submimed)  

Agent  priors  on  behaviour  π  now  contain  an  epistemic/explora:ve  part:  an  agent  will  tend  to  execute  ac:ons  that  reduce  its  uncertainty  about  states  of  the  world  (c.f.,  maximise  informa:on  gain)    Epistemic  value  corresponds  to  the  Bayesian  Surprise.  Empirically  people  tend  to  direct  their  gaze  towards  salient  visual  features  with  high  Bayesian  surprise  (I]  &  Baldi  2009)  

Minimising  Predic:on  Error  in  a  trivial  way  may  lead  an  agent  to  get  stuck  in  the  non-­‐adap:ve  states,  precluding  Explora:ve  Behaviour  

Page 66: Robotic models of active perception

Collaborators  

Karl  Friston  (UCL)  

Hector  Geffner  (UPF)  

Thrish  Nanayakkara  

(KCL)  

Kris  De  Meyer  (KCL)  

Giovanni  Pezzulo    (CNR)  

Giuseppe  Giglia  (Uni  Pa)  

Yiannis  Demiris  (Imperial)  

Gianluca  Baldassarre  

(CNR)  

Vito  Trianni  (CNR)  

Kyuhwa  Lee  (EPFL)