rlc circuit transient response solutions

Upload: aaron-mueller

Post on 01-Jun-2018

238 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/9/2019 RLC Circuit Transient Response Solutions

    1/15

    EE305 Lecture 6

    Aaron Mueller

    February 11, 2013

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 1 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    2/15

    Roots for various damping ratios

    s 1,2 =   (−ζ ± ζ 2−1)ω 0

    (−ζ ± j  

    1−ζ 2)ω 0   = σ ± j ω d    if   ζ  

  • 8/9/2019 RLC Circuit Transient Response Solutions

    3/15

    Location of roots in complex plane

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 3 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    4/15

    Location of roots in complex plane

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 4 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    5/15

    Total responses for various damping ratios

    x (t ) =

    (   s 2s 1−s 2

    )e s 1t + (   s 1s 2−s 1

    )e s 2t + 1 if ζ  > 1,

    −(ω 0t  + 1)e −ω 0t + 1 if ζ  = 1,−e −σ t (cos(ω d t ) +

      σ ω d 

    sin(ω d t )) + 1 if ζ  

  • 8/9/2019 RLC Circuit Transient Response Solutions

    6/15

    Total responses for various damping ratios

    x (t ) =

    (   s 2s 1−s 2

    )e s 1t + (   s 1s 2−s 1

    )e s 2t + 1 if ζ  > 1,

    −(ω 0t  + 1)e −ω 0t + 1 if ζ  = 1,−e −σ t (cos(ω d t ) +

      σ ω d 

    sin(ω d t )) + 1 if ζ  

  • 8/9/2019 RLC Circuit Transient Response Solutions

    7/15

    General procedure for solving for second order responses

    1 Find the homogeneous solution (natural response) to the differential

    equation. This will generally contain two unknown coefficients.

    x n (t ) = A1x n ,1(t ) +A2x n ,2(t )

    2 Find the particular solution (forced response) to the differential equation.

    This can often be done using the method of undetermined coefficients.

    For a constant forcing function (DC voltage and/or current source), this

    solution will be a constant.  x F (t ) = x f 3 Construct the total solution, which is the sum of the homogeneous and

    particular solutions.

    x (t ) = x n (t ) + x F (t ) = A1x n ,1(t ) +A2x n ,2(t ) + x f 

    4 Solve for the unknown coefficients (A1  and A2) by, for example, using

    known the known values for  x (t ) and/or its derivative x (t ) at a given timeor times. If these values are not directly given. They can usually be

    obtained by using the original (integro-)differential equation and/or other

    circuit relations.Aaron Mueller   EE305 Lecture 6   February 11, 2013 7 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    8/15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    9/15

    Overdamped CaseThe natural response is of the form x n (t ) = A1e 

    s 1t +A2e s 2t . Assume

    x F (t ) = x f , x (0) = x 0, and x (0) = x 1  (all constant) are given. Then we can

    solve for A1

     and A2

    .

    x (t ) = A1e s 1t +A2e 

    s 2t +x f 

    x (0) = A1 +A2 +x f  = x 0

    (t ) = A1s 1e s 1t 

    +A2s 2e s 2t 

    x (0) = A1s 1 +A2s 2 =  x 1

    We have two equations with two unknowns. Solving, we get

    A1 = x 1 + (x f −x 0)s 2

    s 1− s 2 ,   A2 =

     x 1 + (x f − x 0)s 1s 1−s 1

    General overdamped solution

    x (t ) =   x 1+(x f −x 0)s 2s 1−s 2

    e s 1t +  x 1+(x f −x 0)s 1s 1−s 1

    e s 2t 

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 9 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    10/15

    Critically Damped CaseThe natural response is of the form x n (t ) = (A3 +A4t )e 

    st . Assume x F (t ) = x f ,x (0) = x 0, and x 

    (0) = x 1  (all constant) are given. Then we can solve for  A3and A

    4.

    x (t ) = (A3 +A4t )e st +x f 

    x (0) = A3 +x f  = x 0

    (t ) = e st 

    [s (A3 +A4t ) +A4]

    x (0) = A3s +A4 =  x 1

    We have two equations with two unknowns. Solving, we get

    A3 =  x 0−x f ,   A4 =  x 1− (x 0−x f )s 

    General critically damped solution

    x (t ) = {(x 0− x f ) + [x 1− (x 0−x f )s ]t }e st +x f 

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 10 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    11/15

    Underdamped CaseThe natural response is of the form x n (t ) = e 

    −σ t [A5cos(ω d t ) +A6sin(ω d t )].Assume x F (t ) = x f , x (0) = x 0, and x 

    (0) = x 1  (all constant) are given. Thenwe can solve for  A

    5 and A

    6.

    x (t ) = e −σ t [A5cos(ω d t ) +A6sin(ω d t )] +x f 

    x (0) = [A5 + 0] + x f  = x 0

    x (t ) = e −σ t [(A6ω d −A5σ )cos(ω d t )− (A5ω d  +A6σ )sin(ω d t )]

    x (0) = A6ω d −A5σ  = x 1

    We have two equations with two unknowns. Solving, we get

    A5 =  x 0−x f ,   A6 = x 1 + σ (x 0− x f )

    ω d 

    General underdamped solution

    x (t ) = e −σ t [(x 0−x f )cos(ω d t ) + x 1+σ (x 0−x f )

    ω d sin(ω d t )] + x f 

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 11 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    12/15

    Problem 7.101 (1)

    Given the circuit below, solve for  v 0(t ) for t  > 0.

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 12 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    13/15

    Problem 7.101 (2)

    t  = 0−

    By inspection,

    i L(0−) = 0

    v C (0−) = −12V 

    t  > 0

    We can construct a Thévenin equivalent for the

    portion of the circuit to the right of the inductor.

    Here

    V OC  = 4V ,   R Th  =  4k Ω

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 13 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    14/15

    Problem 7.101 (3)The integro-differential equation that governs the circuit behavior for  t  > 0 is(using KCL)

    (R 2 +R Th )i (t ) +Ldi dt 

    +   1C 

       t 

    0i (t )dt  +v C (0) = V OC .

    Differentiating to get the purely differential form,

    d 2i 

    dt 2 + (

    R 2 +R Th L )

    di 

    dt +

      1

    LC i  = 0.

    The characteristic equation is

    s 2 + (R 2 +R Th 

    L)s +

      1

    LC = 0, or

    s 2 + 4×106s + 3×1012 = 0

    ⇒ s 1 = −1×106,s 2 = −3×10

    6

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 14 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    15/15

    Problem 7.101 (4)

    i (t ) = A1e s 1t +A2e s 2t + i (∞)

    Since the capacitor acts as an open circuit at steady state,  i (∞) = v 0(∞) = 0.We know that i (0+) = i L(0

    −) = 0 = A1 +A2, but how do we get a value fordi dt t =0 (so that we can use

      di dt 

     = A1s 1e s 1t +A2s 2e 

    s 2t )?

    Use the original (integro-differential) equation at t  = 0:

    (R 2 +R Th )i (0) +Ldi dt 

    t =0

    +v C (0) = V OC 

    i (0) =   V OC −v C (0)L

      = (4− (−12))/(2.5×10−3) = 6400 A/sA1 +A2 =  0 & (−1×10

    6A1−3×106A2 =  6400)

    ⇒ A1 =  0.0032,A2 = −0.0032⇒ i (t ) = 3.2(e −1×10

    6t −e 3×106t ) mA

    ⇒ v 0(t ) = R 2i (t ) = 19.2(e −1×106t −e 3×10

    6t ) V

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 15 / 15