rīgas tehniskā universitāte enerģētikas un elektrotehnikas fakultāte vides aizsardzības un...

13
Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts www.videszinatne.lv DEVELOPMENT OF DH SYSTEMS - COGENERATION VERSUS ENERGY EFFICIENCY OF END USER Dagnija Blumberga, Gatis Bazbauers, Andra Blumberga, Ginta Cimdina, Claudio Rochas Institute of Energy Systems and Environment, Riga Technical University

Upload: kane-abbs

Post on 29-Mar-2015

232 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts  DEVELOPMENT OF

Rīgas Tehniskā universitāteEnerģētikas un elektrotehnikas fakultāte

Vides aizsardzības un siltuma sistēmu institūtswww.videszinatne.lv

DEVELOPMENT OF DH SYSTEMS - COGENERATION VERSUS ENERGY

EFFICIENCY OF END USER

Dagnija Blumberga, Gatis Bazbauers, Andra Blumberga,

Ginta Cimdina, Claudio Rochas

Institute of Energy Systems and Environment,

Riga Technical University

Page 2: Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts  DEVELOPMENT OF

Vides aizsardzības un siltuma sistēmu institūts

2

Large CHP and DH system development features Cogeneration load decrease

Energy efficiency of buildings improvement Energy consumption of DH system decrease Load dispersion large

Technological development Dispersed energy generation Diversification energy generation and supply

as well as energy resources Innovative technologies

Page 3: Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts  DEVELOPMENT OF

Vides aizsardzības un siltuma sistēmu institūts

3

Case study:To be or not to be. Riga DH system (part of Daugava river right bank)

Large energy sources 4 CHP CHP 1 – RTEC 1 – 144 MWe (natural gas) -

2005 CHP 2/0 – RTEC 2 – 200 MWe (natural gas) –

before 2000 CHP 2/1 – RTEC 2/1 – 400 MWe (natural gas) -

2010 CHP 2/2 - RTEC 2/2 – 400 MWe (natural gas) -

2013

Page 4: Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts  DEVELOPMENT OF

Vides aizsardzības un siltuma sistēmu institūts

4

Historical data

2006 2007 2008 2009 20100

200

400

600

800

1000

1200

1400

1600

1800

Energ

y prod

uctio

n, GW

h/yea

r

electricity RTEC1

electricity RTEC2thermal energy RTEC1

thermal energy RTEC2

Page 5: Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts  DEVELOPMENT OF

Vides aizsardzības un siltuma sistēmu institūts

5

Riga DH load duration curve. Existing situation

0

200

400

600

800

1000

1200

Th

erm

al

loa

d,

MW

th

hours0

41

3

82

6

12

39

16

52

20

65

24

78

28

91

33

04

37

17

41

30

45

43

49

56

53

69

57

82

61

95

66

08

70

21

74

34

78

47

82

60

Total thermal loadQ=2827 thous. MWhth/year

TEC2 thermal loadQ=1790 thous. MWhth/year

TEC1 thermal loadQ=1037 thous. MWhth/year

Page 6: Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts  DEVELOPMENT OF

Vides aizsardzības un siltuma sistēmu institūts

6

Changes in thermal energy demand

Today energy efficiency measures have been introduced in 21 apartment buildings only, which constitute less than 1% of the total number of the apartment buildings in Riga.

The consumption of thermal energy in the existing buildings most likely will decrease by 20 – 30 % (in some cases by 50%).

The newly constructed apartments could increase thermal energy consumption, however the increase over the next 10-20 year period will not offset the reduction in consumption which will be gained through the introduction of energy efficiency measures.

Page 7: Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts  DEVELOPMENT OF

Vides aizsardzības un siltuma sistēmu institūts

7

Initial data

Heat duration curve

Hypothesis for energy

consumption

Analysis of heat load of energy

sources

Heat duration curve

Technological calcuations &

solutions

Analysis of heat load of energy

sources

Scenario nScenario ….Scenario 1

justification

Economical Ecological

justification

Economical Ecological

justification

Economical Ecological

Comparison

Best solution

Page 8: Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts  DEVELOPMENT OF

Vides aizsardzības un siltuma sistēmu institūts

8

Riga DH load duration curve. Forecast

0

200

400

600

800

1000

1200

Th

erm

al

loa

d,

MW

th

hours0

41

3

82

6

12

39

16

52

20

65

24

78

28

91

33

04

37

17

41

30

45

43

49

56

53

69

57

82

61

95

66

08

70

21

74

34

78

47

82

60

Total thermal loadQ=1764 thous. MWhth/year

Accululated heat energy Qaccum = 714 GWh

Page 9: Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts  DEVELOPMENT OF

Vides aizsardzības un siltuma sistēmu institūts

9

Scenarious

Scenario 1. Continue to operate in regime when each plant operates for 3000 hours/year

Scenario 2. Heat load is covered by Riga TEC2/1 by using heat storage systems

Scenario 3. Natural gas is replaced by wood fuel in Riga TEC 1 and heat storage is installed

Page 10: Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts  DEVELOPMENT OF

Vides aizsardzības un siltuma sistēmu institūts

10

Thermal energy production and accumulation

basic Scen. 1 Scen. 2 Scen. 3 0

500

1000

1500

2000

2500

3000

3500

total production accumulated energy summer production

Th

erm

al

en

erg

y,

GW

h/y

ea

r

Page 11: Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts  DEVELOPMENT OF

Vides aizsardzības un siltuma sistēmu institūts

11

Economical data

Scenario 3. Natural gas is replaced by wood fuel in Riga TEC 1 and heat storage is installed

Scenarios1 2 3

Heat produced, GWhth/year 1764 1764 1764

Electricity produced, GWhe/year1757 1764 889

Natural gas consumption, GWhf/year 4131 4151 25

Wood fuel consumption, GWhf/year3093

Fuel costs, MLs/year 104 105 35Capital costs, MLs/year 76 55 52Operation and maintenance costs, MLs/year 17 7 9

Total costs, MLs/year 197 167 96Costs of electricity, Ls/MWhe 80 62 43

A

Page 12: Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts  DEVELOPMENT OF

Vides aizsardzības un siltuma sistēmu institūts

12

Conclusions

Existing situation. The thermal energy consumption of the Riga right bank DH system is possible to cover demand with the existing, recently reconstructed cogeneration station at Riga TEC 1 and the first unit of TEC 2 (RTEC-2/1). However, the Riga TEC-2 first unit will operate only 3000 – 5000 hours per year.

Forecast of heat load. The thermal energy consumption will decrease by 20 – 30% because of the energy efficiency measures..

Page 13: Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts  DEVELOPMENT OF

Vides aizsardzības un siltuma sistēmu institūts

13

Conclusions

No expanding of natural gas cogeneration regime. If the equipment of the new second unit of Riga TEC 2 is connected to the DH system of Riga and will operate in cogeneration mode for 3000 hours/year then it would require operation of the equipment of Riga TEC 1 or Riga TEC 2 first unit in the condensation mode.

Future for biomass cogeneration. An economic comparison of the three scenarios indicates that the lowest costs of electricity may be obtained if wood-fired cogeneration plant in combination with seasonal heat storage system is installed instead of the gas-fired gas turbine combined cycle cogeneration plants.