richard belsho missouri state university maa student

83
Wallis’ Formula and Other Infinite Products Richard Belshoff Missouri State University MAA Student Chapter Talk January 29, 2009

Upload: others

Post on 22-Nov-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Wallis’ Formula and Other Infinite Products

Richard BelshoffMissouri State University

MAA Student Chapter Talk

January 29, 2009

Wallis’ formula

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

(2

1· 2

3

)(4

3· 4

5

)(6

5· 6

7

)· · · =

π

2.

Now pull out every other pair of terms.(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · · =

√2

AMAZING!

Wallis’ formula

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

(2

1· 2

3

)(4

3· 4

5

)(6

5· 6

7

)· · · =

π

2.

Now pull out every other pair of terms.(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · · =

√2

AMAZING!

Wallis’ formula

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

(2

1· 2

3

)(4

3· 4

5

)(6

5· 6

7

)· · · =

π

2.

Now pull out every other pair of terms.

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · · =

√2

AMAZING!

Wallis’ formula

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

(2

1· 2

3

)(4

3· 4

5

)(6

5· 6

7

)· · · =

π

2.

Now pull out every other pair of terms.(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · · =

√2

AMAZING!

Wallis’ formula

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

(2

1· 2

3

)(4

3· 4

5

)(6

5· 6

7

)· · · =

π

2.

Now pull out every other pair of terms.(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · · =

√2

AMAZING!

Wallis’ formula

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

(2

1· 2

3

)(4

3· 4

5

)(6

5· 6

7

)· · · =

π

2.

Now pull out every other pair of terms.(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · · =

√2

AMAZING!

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”

p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1,

p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2,

p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3,

. . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . ,

pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an,

. . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M,

then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:

∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

The Factor Theorem

Theorem (Factor Theorem)

A real number r is a root of a polynomial p(x) if and only if(x − r) is a factor of p(x).

Example

A polynomial with roots −2, −1, 0, 1, and 2 is

p(x) = (x + 2)(x + 1)x(x − 1)(x − 2)

= x(x2 − 1)(x2 − 4).

But this is not unique

p(x) = Cx(x2 − 1)(x2 − 4)

The Factor Theorem

Theorem (Factor Theorem)

A real number r is a root of a polynomial p(x) if and only if(x − r) is a factor of p(x).

Example

A polynomial with roots −2, −1, 0, 1, and 2 is

p(x) = (x + 2)(x + 1)x(x − 1)(x − 2)

= x(x2 − 1)(x2 − 4).

But this is not unique

p(x) = Cx(x2 − 1)(x2 − 4)

The Factor Theorem

Theorem (Factor Theorem)

A real number r is a root of a polynomial p(x) if and only if(x − r) is a factor of p(x).

Example

A polynomial with roots −2, −1, 0, 1, and 2 is

p(x) = (x + 2)(x + 1)x(x − 1)(x − 2)

= x(x2 − 1)(x2 − 4).

But this is not unique

p(x) = Cx(x2 − 1)(x2 − 4)

The Factor Theorem

Theorem (Factor Theorem)

A real number r is a root of a polynomial p(x) if and only if(x − r) is a factor of p(x).

Example

A polynomial with roots −2, −1, 0, 1, and 2 is

p(x) = (x + 2)(x + 1)x(x − 1)(x − 2)

= x(x2 − 1)(x2 − 4).

But this is not unique

p(x) = Cx(x2 − 1)(x2 − 4)

The Factor Theorem

Theorem (Factor Theorem)

A real number r is a root of a polynomial p(x) if and only if(x − r) is a factor of p(x).

Example

A polynomial with roots −2, −1, 0, 1, and 2 is

p(x) = (x + 2)(x + 1)x(x − 1)(x − 2)

= x(x2 − 1)(x2 − 4).

But this is not unique

p(x) = Cx(x2 − 1)(x2 − 4)

The Factor Theorem

Theorem (Factor Theorem)

A real number r is a root of a polynomial p(x) if and only if(x − r) is a factor of p(x).

Example

A polynomial with roots −2, −1, 0, 1, and 2 is

p(x) = (x + 2)(x + 1)x(x − 1)(x − 2)

= x(x2 − 1)(x2 − 4).

But this is not unique

p(x) = Cx(x2 − 1)(x2 − 4)

An infinite number of roots?

What about an infinite number of roots?

Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x

(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, .....

sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · =

limx→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·

I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · =

limx→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · =

limx→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · =

limx→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · =

limx→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · =

limx→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · = lim

x→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · = lim

x→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · = lim

x→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · = lim

x→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · = lim

x→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · = lim

x→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

Digression: The Basel Problem

Aside: Euler used this identity

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

to prove

1 +1

22+

1

32+

1

42+ · · · =

π2

6.

Our goal: prove Wallis’ formula.

Digression: The Basel Problem

Aside: Euler used this identity

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

to prove

1 +1

22+

1

32+

1

42+ · · · =

π2

6.

Our goal: prove Wallis’ formula.

Digression: The Basel Problem

Aside: Euler used this identity

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

to prove

1 +1

22+

1

32+

1

42+ · · · =

π2

6.

Our goal: prove Wallis’ formula.

Digression: The Basel Problem

Aside: Euler used this identity

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

to prove

1 +1

22+

1

32+

1

42+ · · · =

π2

6.

Our goal: prove Wallis’ formula.

Digression: The Basel Problem

Aside: Euler used this identity

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

to prove

1 +1

22+

1

32+

1

42+ · · · =

π2

6.

Our goal: prove Wallis’ formula.

Digression: The Basel Problem

Aside: Euler used this identity

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

to prove

1 +1

22+

1

32+

1

42+ · · · =

π2

6.

Our goal: prove Wallis’ formula.

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · ·

(2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2

· 1 · 32 · 2

· 3 · 54 · 4

· 5 · 76 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2

· 3 · 54 · 4

· 5 · 76 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4

· 5 · 76 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6

· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]

sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

The infinite product for√

2

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

cos(π/4) =

(3

4

)(35

36

)(99

100

)· · ·

1√2

=

(1 · 32 · 2

)(5 · 76 · 6

)(9 · 11

10 · 10

)· · ·

Therefore,√

2 =

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · ·

The infinite product for√

2

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

cos(π/4) =

(3

4

)(35

36

)(99

100

)· · ·

1√2

=

(1 · 32 · 2

)(5 · 76 · 6

)(9 · 11

10 · 10

)· · ·

Therefore,√

2 =

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · ·

The infinite product for√

2

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

cos(π/4) =

(3

4

)(35

36

)(99

100

)· · ·

1√2

=

(1 · 32 · 2

)(5 · 76 · 6

)(9 · 11

10 · 10

)· · ·

Therefore,√

2 =

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · ·

The infinite product for√

2

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

cos(π/4) =

(3

4

)(35

36

)(99

100

)· · ·

1√2

=

(1 · 32 · 2

)(5 · 76 · 6

)(9 · 11

10 · 10

)· · ·

Therefore,√

2 =

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · ·

The infinite product for√

2

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

cos(π/4) =

(3

4

)(35

36

)(99

100

)· · ·

1√2

=

(1 · 32 · 2

)(5 · 76 · 6

)(9 · 11

10 · 10

)· · ·

Therefore,

√2 =

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · ·

The infinite product for√

2

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

cos(π/4) =

(3

4

)(35

36

)(99

100

)· · ·

1√2

=

(1 · 32 · 2

)(5 · 76 · 6

)(9 · 11

10 · 10

)· · ·

Therefore,√

2 =

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · ·

That’s all folks!

THE END

References

Su, Francis E., et al. ”Wallis’ Formula.” Mudd Math FunFacts. http://www.math.hmc.edu/funfacts.

Vandervelde, S., “Newton’s Sums and the Infinite ProductRepresentation for sinπx ,” Mathematics and InformaticsQuarterly, 9 (1999), pp. 64-69.

References

Su, Francis E., et al. ”Wallis’ Formula.” Mudd Math FunFacts. http://www.math.hmc.edu/funfacts.

Vandervelde, S., “Newton’s Sums and the Infinite ProductRepresentation for sinπx ,” Mathematics and InformaticsQuarterly, 9 (1999), pp. 64-69.