research article multilinear singular integrals and ...singular integral on herz space with variable...

11
Research Article Multilinear Singular Integrals and Commutators on Herz Space with Variable Exponent Amjad Hussain 1,2 and Guilian Gao 1,3 1 Department of Mathematics, Zhejiang University, Hangzhou 310027, China 2 Department of Mathematics, HITEC University, Taxila, Pakistan 3 School of Science, Hangzhou Dianzi University, Hangzhou 310018, China Correspondence should be addressed to Amjad Hussain; [email protected] Received 7 October 2013; Accepted 23 December 2013; Published 12 February 2014 Academic Editors: V. Maiorov and Q. Xu Copyright Β© 2014 A. Hussain and G. Gao. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e paper establishes some sufficient conditions for the boundedness of singular integral operators and their commutators from products of variable exponent Herz spaces to variable exponent Herz spaces. 1. Introduction In recent years, the interest in multilinear analysis for study- ing boundedness properties of multilinear integral operators has grown rapidly. e subject was founded by Coifman and Meyer [1] in their seminal work on singular integral operators like CalderΒ΄ on commutators and pseudosdifferential oper- ators having multiparameter function input. Subsequently, many authors including Christ and JournΒ΄ e[2], Kenig and Stein [3], and Grafakos and Torres [4] have substantially added to the exiting theory. Let be a locally integrable function defined away from the diagonal = 1 =β‹…β‹…β‹…= in (R ) +1 , which for >0 satisfies the estimates (, 1 ,..., ) ≀ ( βˆ’ 1 +β‹…β‹…β‹…+ βˆ’ ) , (1) and for >0, (, 1 ,..., ) βˆ’ ( , 1 ,..., ) ≀ βˆ’ (βˆ‘ =1 βˆ’ ) + , (2) whenever | βˆ’ | ≀ (1/2) max{| βˆ’ 1 |, . . . , | βˆ’ |}, and (, 1 ,..., ,..., ) βˆ’ ( , 1 ,..., ,..., ) ≀ βˆ’ (βˆ‘ =1 βˆ’ ) + , (3) whenever | βˆ’ | ≀ (1/2) max{|βˆ’ 1 |, . . . , |βˆ’ |} for all 1≀ ≀. en is called -linear CalderΒ΄ on-Zygmund kernel. In this paper, we consider an -linear singular integral operator associated with the kernel , which is initially defined on product of the Schwartz space S(R ) and takes its values in the space of tempered distribution S (R ) such that ( 1 ,..., ) () =∫ (R ) (, 1 ,..., ) 1 ( 1 )β‹…β‹…β‹… ( ) 1 β‹… β‹… β‹… , (4) for βˆ‰β‹‚ =1 supp , where 1 ,..., ∈ ∞ (R ), the space of compactly supported bounded functions. If is bounded from 1 Γ—β‹…β‹…β‹…Γ— to with 1< 1 β‹…β‹…β‹… <∞ and 1/ 1 + β‹… β‹… β‹… + 1/ = 1/, then we say that is an -linear CalderΒ΄ on-Zygmund operator. It has been proved in [4] that Hindawi Publishing Corporation ISRN Mathematical Analysis Volume 2014, Article ID 626327, 10 pages http://dx.doi.org/10.1155/2014/626327

Upload: others

Post on 10-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Research ArticleMultilinear Singular Integrals and Commutators onHerz Space with Variable Exponent

    Amjad Hussain1,2 and Guilian Gao1,3

    1 Department of Mathematics, Zhejiang University, Hangzhou 310027, China2Department of Mathematics, HITEC University, Taxila, Pakistan3 School of Science, Hangzhou Dianzi University, Hangzhou 310018, China

    Correspondence should be addressed to Amjad Hussain; [email protected]

    Received 7 October 2013; Accepted 23 December 2013; Published 12 February 2014

    Academic Editors: V. Maiorov and Q. Xu

    Copyright Β© 2014 A. Hussain and G. Gao. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

    The paper establishes some sufficient conditions for the boundedness of singular integral operators and their commutators fromproducts of variable exponent Herz spaces to variable exponent Herz spaces.

    1. Introduction

    In recent years, the interest in multilinear analysis for study-ing boundedness properties of multilinear integral operatorshas grown rapidly. The subject was founded by Coifman andMeyer [1] in their seminal work on singular integral operatorslike Calderón commutators and pseudosdifferential oper-ators having multiparameter function input. Subsequently,many authors including Christ and Journé [2], Kenig andStein [3], and Grafakos and Torres [4] have substantiallyadded to the exiting theory.

    Let 𝐾 be a locally integrable function defined away fromthe diagonal π‘₯ = 𝑦

    1= β‹… β‹… β‹… = 𝑦

    π‘šin (R𝑛)π‘š+1, which for 𝐢 > 0

    satisfies the estimates

    𝐾 (π‘₯, 𝑦1, . . . , π‘¦π‘š) ≀

    𝐢

    (π‘₯ βˆ’ 𝑦1

    + β‹… β‹… β‹… +π‘₯ βˆ’ π‘¦π‘š

    )π‘šπ‘›, (1)

    and for πœ– > 0,

    𝐾 (π‘₯, 𝑦

    1, . . . , 𝑦

    π‘š) βˆ’ 𝐾 (π‘₯

    , 𝑦1, . . . , 𝑦

    π‘š)

    ≀

    𝐢π‘₯ βˆ’ π‘₯

    πœ–

    (βˆ‘π‘š

    𝑗=1

    π‘₯ βˆ’ 𝑦𝑗

    )π‘šπ‘›+πœ–

    ,

    (2)

    whenever |π‘₯ βˆ’ π‘₯| ≀ (1/2)max{|π‘₯ βˆ’ 𝑦1|, . . . , |π‘₯ βˆ’ 𝑦

    π‘š|}, and

    𝐾 (π‘₯, 𝑦

    1, . . . , 𝑦

    𝑖, . . . , 𝑦

    π‘š) βˆ’ 𝐾 (π‘₯

    , 𝑦1, . . . , 𝑦

    𝑖, . . . , 𝑦

    π‘š)

    ≀

    πΆπ‘¦π‘–βˆ’ 𝑦

    𝑖

    πœ–

    (βˆ‘π‘š

    𝑗=1

    π‘₯ βˆ’ 𝑦𝑗

    )π‘šπ‘›+πœ–

    ,

    (3)

    whenever |π‘¦π‘–βˆ’π‘¦

    𝑖| ≀ (1/2)max{|π‘₯βˆ’π‘¦

    1|, . . . , |π‘₯βˆ’π‘¦

    π‘š|} for all 1 ≀

    𝑖 ≀ π‘š. Then 𝐾 is called π‘š-linear Calderón-Zygmund kernel.In this paper, we consider an π‘š-linear singular integraloperator 𝑇 associated with the kernel 𝐾, which is initiallydefined on product of the Schwartz space S(R𝑛) and takesits values in the space of tempered distribution S(R𝑛) suchthat

    𝑇 (𝑓1, . . . , 𝑓

    π‘š) (π‘₯)

    = ∫(R𝑛)π‘š

    𝐾(π‘₯, 𝑦1, . . . , 𝑦

    π‘š) 𝑓1(𝑦1) β‹… β‹… β‹… 𝑓

    π‘š(π‘¦π‘š) 𝑑𝑦1β‹… β‹… β‹… π‘‘π‘¦π‘š,

    (4)

    for π‘₯ βˆ‰ β‹‚π‘šπ‘—=1

    supp𝑓𝑗, where 𝑓

    1, . . . , 𝑓

    π‘šβˆˆ 𝐿∞

    𝐢(R𝑛), the space

    of compactly supported bounded functions. If 𝑇 is boundedfrom 𝐿𝑝1 Γ— β‹… β‹… β‹… Γ— πΏπ‘π‘š to 𝐿𝑝 with 1 < 𝑝

    1β‹… β‹… β‹… π‘π‘š

    < ∞ and1/𝑝1+ β‹… β‹… β‹… + 1/𝑝

    π‘š= 1/𝑝, then we say that 𝑇 is an π‘š-linear

    Calderón-Zygmund operator. It has been proved in [4] that

    Hindawi Publishing CorporationISRN Mathematical AnalysisVolume 2014, Article ID 626327, 10 pageshttp://dx.doi.org/10.1155/2014/626327

  • 2 ISRNMathematical Analysis

    𝑇 is a bounded operator on product of Lebesgue spaces andendpoint weak estimates hold. For the boundedness of 𝑇 andits commutators on the product of Herz-type spaces we referthe reader to see [5, 6] and [7], respectively.

    In the last few decades, however, a number of researchpapers have appeared in the literature which study theboundedness of integral operators, including the maximalfunction, singular operators, and fractional integral andcommutators on function spaces with nonstandard growthconditions. Such kind of spaces is named as variable exponentfunction spaces which include variable exponent Lebesgue,Sobolev, Lorentz, Orlicz, and Herz-type function spaces.Among them the most fundamental and widely exploredspace is the Lebesgue space 𝐿𝑝(π‘₯) with the exponent 𝑝depending on the point π‘₯ of the space. We will describe itbriefly in the next section; however, we refer to the book[8] and the survey paper [9] for historical background andrecent developments in the theory of 𝐿𝑝(π‘₯) spaces. Despitethe progress made, the problems of boundedness of mul-tilinear singular integral operators and their commutatorson 𝐿𝑝(π‘₯) spaces remain open. Recently, Huang and Xu [10]proved the boundedness of such integral operators on theproduct of variable exponent Lebesgue space. Motivated bytheir results, in this paper we will study the multilinearsingular integral on Herz space with variable exponent.Similar results for the boundedness of commutators gen-erated by these operators and BMO functions are alsoprovided.

    Herz-type spaces are an important class of functionspaces in harmonic analysis. In [11, 12], Izuki independentlyintroduced Herz space with variable exponent 𝑝, by keepingthe remaining two exponents 𝛼 and π‘ž as constants. Variabilityof alpha was recently considered by Almeida and Drihem[13] in proving the boundedness results for some classicaloperators on such spaces. More recently, Samko [14] intro-duced the generalized Herz-type spaces where all the threeexponents were allowed to vary. In this paper, we will studythe multilinear singular operators on variable exponent Herzspace �̇�𝛼,π‘ž

    𝑝(β‹…)introduced in [12].

    Throughout this paper, 𝐢 denotes a positive constantwhich may change from one occurrence to another. The nextsection contains some basic definitions and the main resultsof this study. Finally, the last section includes the proofs ofmain results along with some supporting lemmas.

    2. Main Results

    Let Ξ© be a measurable subset of R𝑛 with Lebesgue measure|Ξ©| > 0. Given a measurable function 𝑝(β‹…) : Ξ© β†’ [1,∞],then for someπœ† > 0wedefine the variable exponent Lebesguespace as

    𝐿𝑝(β‹…)

    (Ξ©) := {𝑓 is measurable : ∫Ω

    (

    𝑓 (π‘₯)

    πœ†)

    𝑝(π‘₯)

    𝑑π‘₯ < ∞} ,

    (5)

    and the space 𝐿𝑝(β‹…)loc (Ξ©) as

    𝐿𝑝(β‹…)

    loc (Ξ©) := {𝑓 : 𝑓 ∈ 𝐿𝑝(β‹…)

    (𝐾) βˆ€ compact subset 𝐾 βŠ‚ Ξ©} .(6)

    The Lebesgue space 𝐿𝑝(β‹…)(Ξ©) becomes a Banach functionspace when equipped with the norm

    𝑓𝐿𝑝(β‹…)(Ξ©)

    := inf {πœ† > 0 : ∫Ω

    (

    𝑓 (π‘₯)

    πœ†)

    𝑝(π‘₯)

    𝑑π‘₯ ≀ 1} . (7)

    Given a locally integrable function 𝑓 on Ξ©, the Hardy-Littlewood maximal operator𝑀 is defined by

    𝑀𝑓(π‘₯) := supπ‘Ÿ>0

    π‘Ÿβˆ’π‘›βˆ«π΅(π‘₯,π‘Ÿ)∩Ω

    𝑓 (𝑦) 𝑑𝑦, (8)

    where 𝐡(π‘₯, π‘Ÿ) := {𝑦 ∈ R𝑛 : |π‘₯ βˆ’ 𝑦| < π‘Ÿ}. We denote

    π‘βˆ’:= ess inf {𝑝 (π‘₯) : π‘₯ ∈ Ξ©} ,

    𝑝+:= ess sup {𝑝 (π‘₯) : π‘₯ ∈ Ξ©} .

    (9)

    We also defineP (Ξ©) := {𝑝 (β‹…) : 𝑝

    βˆ’> 1, 𝑝

    +< ∞} ,

    B (Ξ©) := {𝑝 (β‹…) : 𝑝 (β‹…) ∈ P (Ξ©) ,

    𝑀 is bounded on 𝐿𝑝(β‹…) (Ξ©)} .

    (10)

    Cruz-Uribe et al. [15] and Nekvinda [16] independentlyproved the following sufficient conditions for the bounded-ness of𝑀 on 𝐿𝑝(β‹…)(Ξ©).

    Proposition 1. Let Ξ© be an open set. If 𝑝(β‹…) ∈ P(Ξ©) satisfies

    𝑝 (π‘₯) βˆ’ 𝑝 (𝑦) ≀

    𝐢

    βˆ’ log (π‘₯ βˆ’ 𝑦), if π‘₯ βˆ’ 𝑦

    ≀1

    2,

    𝑝 (π‘₯) βˆ’ 𝑝 (𝑦) ≀

    𝐢

    log (𝑒 + |π‘₯|), if 𝑦

    β‰₯ |π‘₯| ,

    (11)

    then one has 𝑝(β‹…) ∈ B(Ξ©).

    Define P0(Ξ©) to be the set of measurable functions 𝑝 :Ξ© β†’ (0,∞) such that

    π‘βˆ’:= ess inf {𝑝 (π‘₯) : π‘₯ ∈ Ξ©} > 0,

    𝑝+:= ess sup {𝑝 (π‘₯) : π‘₯ ∈ Ξ©} < ∞.

    (12)

    Given 𝑝 ∈ P0(Ξ©), one can define the space 𝐿𝑝(β‹…) as above.Since we will not use it in the this paper, we omit the detailshere and refer the reader to see [10, 17].

    Let π΅π‘˜:= {π‘₯ : |π‘₯| ≀ 2

    π‘˜}, π΄π‘˜= π΅π‘˜\ π΅π‘˜βˆ’1

    and πœ’π‘˜= πœ’π΄π‘˜

    bethe characteristic function of the set 𝐴

    π‘˜for π‘˜ ∈ Z.

    Definition 2. For 𝛼 ∈ R, 0 < π‘ž ≀ ∞ and 𝑝(β‹…) ∈ P(R𝑛), thehomogeneous Herz space with variable exponent𝐾𝛼,π‘ž

    𝑝(β‹…)(R𝑛) is

    defined by

    �̇�𝛼,π‘ž

    𝑝(β‹…)(R𝑛) := {𝐿

    𝑝(β‹…)

    loc (R𝑛\ {0}) :

    𝑓�̇�𝛼,π‘ž

    𝑝(β‹…)(R𝑛)

    < ∞} , (13)

  • ISRNMathematical Analysis 3

    where

    𝑓�̇�𝛼,π‘ž

    𝑝(β‹…)(R𝑛)

    := {

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    2π‘˜π›Όπ‘žπ‘“πœ’π‘˜

    π‘ž

    𝐿𝑝(β‹…)(R𝑛)

    }

    1/π‘ž

    . (14)

    In the sequel, unless stated otherwise, we will work onthe whole space R𝑛 and will not mention it. Taking 𝑏

    1and 𝑏2

    in 𝐡𝑀𝑂, Huang and Xu in [10] define the three commutatoroperators for suitable functions 𝑓 and 𝑔. One of them is theoperator

    [𝑏1, 𝑏2, 𝑇] (𝑓, 𝑔) (π‘₯)

    = 𝑏1(π‘₯) 𝑏2(π‘₯) 𝑇 (𝑓, 𝑔) (π‘₯) βˆ’ 𝑏

    1(π‘₯) 𝑇 (𝑓, 𝑏

    2𝑔) (π‘₯)

    βˆ’ 𝑏2(π‘₯) 𝑇 (𝑏

    1𝑓, 𝑔) (π‘₯) + 𝑇 (𝑏

    1𝑓, 𝑏2𝑔) (π‘₯) .

    (15)

    As corollaries of their main results they give the followingestimates.

    Theorem A. Let 𝑇 be 2-linear Calderón-Zygmund operatorand 𝑝(β‹…) ∈ P0(R𝑛). If 𝑝

    1(β‹…), 𝑝2(β‹…) ∈ B(R𝑛) such that 1/𝑝(π‘₯) =

    1/𝑝1(π‘₯) + 1/𝑝

    2(π‘₯), then there exists a constant 𝐢 independent

    of the functions 𝑓, π‘“β„Žβˆˆ 𝐿𝑝1(β‹…), 𝑔, 𝑔

    β„Žβˆˆ 𝐿𝑝2(β‹…) and β„Ž ∈ N such

    that𝑇(𝑓, 𝑔)

    𝐿𝑝(β‹…)≀ 𝐢

    𝑓𝐿𝑝1(β‹…)

    𝑔𝐿𝑝2(β‹…)

    ,

    (

    ∞

    βˆ‘

    β„Ž=1

    𝑇 (π‘“β„Ž, π‘”β„Ž)

    π‘Ÿ

    )

    1/π‘ŸπΏπ‘(β‹…)

    ≀ 𝐢

    (

    ∞

    βˆ‘

    β„Ž=1

    π‘“β„Ž

    π‘Ÿ1

    )

    1/π‘Ÿ1𝐿𝑝1(β‹…)

    Γ—

    (

    ∞

    βˆ‘

    β„Ž=1

    π‘”β„Ž

    π‘Ÿ2

    )

    1/π‘Ÿ2𝐿𝑝2(β‹…)

    (16)

    hold, where 1 < π‘Ÿπ‘™< ∞ for 𝑙 = 1, 2 and 1/π‘Ÿ = 1/π‘Ÿ

    1+ 1/π‘Ÿ2.

    Theorem B. Let 𝑇 be 2-linear Calderón-Zygmund operator,𝑏1, 𝑏2∈ 𝐡𝑀𝑂(R𝑛), and𝑝(β‹…) ∈ P0(R𝑛). If𝑝

    1(β‹…), 𝑝2(β‹…) ∈ B(R𝑛)

    such that 1/𝑝(π‘₯) = 1/𝑝1(π‘₯) + 1/𝑝

    2(π‘₯), then there exists a

    constant 𝐢 independent of the functions 𝑓, π‘“β„Žβˆˆ 𝐿𝑝1(β‹…), 𝑔, 𝑔

    β„Žβˆˆ

    𝐿𝑝2(β‹…) and β„Ž ∈ N such that[𝑏1, 𝑏2, 𝑇](𝑓, 𝑔)

    L𝑝(β‹…) ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    𝑓𝐿𝑝1(β‹…)

    𝑔𝐿𝑝2(β‹…)

    ,

    (

    ∞

    βˆ‘

    β„Ž=1

    [𝑏1, 𝑏2, 𝑇] (π‘“β„Ž, π‘”β„Ž)

    π‘Ÿ

    )

    1/π‘ŸπΏπ‘(β‹…)

    ≀

    (

    ∞

    βˆ‘

    β„Ž=1

    π‘“β„Ž

    π‘Ÿ1

    )

    1/π‘Ÿ1𝐿𝑝1(β‹…)

    (

    ∞

    βˆ‘

    β„Ž=1

    π‘”β„Ž

    π‘Ÿ2

    )

    1/π‘Ÿ2𝐿𝑝2(β‹…)

    Γ— 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    (17)

    hold, where 1 < π‘Ÿπ‘™< ∞ for 𝑙 = 1, 2 and 1/π‘Ÿ = 1/π‘Ÿ

    1+ 1/π‘Ÿ2.

    Motivated by these results, here we give the following twotheorems.

    Theorem 3. Let 𝑇 be 2-linear Calderón-Zygmund operatorand 𝑝(β‹…) ∈ P(R𝑛). Furthermore, let 𝑝

    1(β‹…), 𝑝2(β‹…) ∈ B(R𝑛),

    0 < π‘žπ‘™< ∞, βˆ’π‘›π›Ώ

    𝑝𝑙

    < 𝛼𝑙< 𝑛𝛿𝑝

    𝑙

    , 𝑙 = 1, 2, where 𝛿𝑝𝑙

    , 𝛿𝑝

    𝑙

    > 0

    are constants defined in the next section such that 1/𝑝(π‘₯) =1/𝑝1(π‘₯) + 1/𝑝

    2(π‘₯), 1/π‘ž = 1/π‘ž

    1+ 1/π‘ž2, and 𝛼 = 𝛼

    1+ 𝛼2. If 𝑇 is

    bounded from 𝐿𝑝1(β‹…) Γ— 𝐿𝑝2(β‹…) to 𝐿𝑝(β‹…), then𝑇(𝑓, 𝑔)

    �̇�𝛼,π‘ž

    𝑝(β‹…)

    ≀ 𝐢𝑓�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    𝑔�̇�𝛼2,π‘ž2

    𝑝2(β‹…)

    ,

    (

    ∞

    βˆ‘

    β„Ž=1

    𝑇 (π‘“β„Ž, π‘”β„Ž)

    π‘Ÿ

    )

    1/π‘ŸοΏ½Μ‡οΏ½π›Ό,π‘ž

    𝑝(β‹…)

    ≀ 𝐢

    (

    ∞

    βˆ‘

    β„Ž=1

    π‘“β„Ž

    π‘Ÿ1

    )

    1/π‘Ÿ1�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    Γ—

    (

    ∞

    βˆ‘

    β„Ž=1

    π‘”β„Ž

    π‘Ÿ2

    )

    1/π‘Ÿ2�̇�𝛼2,π‘ž2

    𝑝2(β‹…)

    (18)

    hold for all 𝑓, π‘“β„Žβˆˆ �̇�𝛼1,π‘ž1

    𝑝1(β‹…), 𝑔, π‘”β„Žβˆˆ �̇�𝛼2,π‘ž2

    𝑝2(β‹…), where 1 < π‘Ÿ

    𝑙< ∞ for

    𝑙 = 1,2 and 1/π‘Ÿ = 1/π‘Ÿ1+ 1/π‘Ÿ2.

    Theorem 4. Let 𝑇 be 2-linear Calderón-Zygmund operator,𝑏1, 𝑏2

    ∈ 𝐡𝑀𝑂(R𝑛), and 𝑝(β‹…) ∈ P(R𝑛). Furthermore, let𝑝1(β‹…), 𝑝2(β‹…) ∈ B(R𝑛), 0 < π‘ž

    𝑙< ∞, βˆ’π‘›π›Ώ

    𝑝𝑙

    < 𝛼𝑙< 𝑛𝛿𝑝

    𝑙

    , 𝑙 = 1, 2,where 𝛿

    𝑝𝑙

    , 𝛿𝑝

    𝑙

    > 0 are constants defined in the next section,such that 1/𝑝(π‘₯) = 1/𝑝

    1(π‘₯) + 1/𝑝

    2(π‘₯), 1/π‘ž = 1/π‘ž

    1+ 1/π‘ž

    2,

    𝛼 = 𝛼1+𝛼2. If [𝑏1, 𝑏2, 𝑇] is bounded from 𝐿𝑝1(β‹…) ×𝐿𝑝2(β‹…) to 𝐿𝑝(β‹…),

    then[𝑏1, 𝑏2, 𝑇](𝑓, 𝑔)

    �̇�𝛼,π‘ž

    𝑝(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    𝑓�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    𝑔�̇�𝛼2,π‘ž2

    𝑝2(β‹…)

    ,

    (

    ∞

    βˆ‘

    β„Ž=1

    [𝑏1, 𝑏2, 𝑇] (π‘“β„Ž, π‘”β„Ž)

    π‘Ÿ

    )

    1/π‘ŸοΏ½Μ‡οΏ½π›Ό,π‘ž

    𝑝(β‹…)

    ≀

    (

    ∞

    βˆ‘

    β„Ž=1

    π‘“β„Ž

    π‘Ÿ1

    )

    1/π‘Ÿ1�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    (

    ∞

    βˆ‘

    β„Ž=1

    π‘”β„Ž

    π‘Ÿ2

    )

    1/π‘Ÿ2�̇�𝛼2,π‘ž2

    𝑝2(β‹…)

    Γ— 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    (19)

    hold for all 𝑓, π‘“β„Žβˆˆ �̇�𝛼1,π‘ž1

    𝑝1(β‹…), 𝑔, π‘”β„Žβˆˆ �̇�𝛼2,π‘ž2

    𝑝2(β‹…), where 1 < π‘Ÿ

    𝑙< ∞ for

    𝑙 = 1, 2 and 1/π‘Ÿ = 1/π‘Ÿ1+ 1/π‘Ÿ2.

    3. Proofs of the Main Results

    In this section, we will prove main results stated in the lastsection.The ideas of these proofsmainly come from [5, 7].Weuse the notation 𝑝(π‘₯) to denote the conjugate index of 𝑝(π‘₯).Here we give some lemmas which will be helpful in provingTheorems 3 and 4.

    Lemma 5 (see [10, 18], generalized Hölder’s inequality). Let𝑝, 𝑝1, 𝑝2∈ P(R𝑛).

    (a) If 𝑓 ∈ L𝑝(β‹…), 𝑔 ∈ 𝐿𝑝

    (β‹…), then one has𝑓𝑔

    𝐿1≀ 𝐢𝑝

    𝑓𝐿𝑝(β‹…)

    𝑔𝐿𝑝(β‹…), (20)

    where 𝐢𝑝= 1 + 1/𝑝

    βˆ’βˆ’ 1/𝑝

    +.

  • 4 ISRNMathematical Analysis

    (b) If 𝑓 ∈ 𝐿𝑝1(β‹…), 𝑔 ∈ 𝐿𝑝2(β‹…) and 1/𝑝(π‘₯) = 1/𝑝1(π‘₯) +

    1/𝑝2(π‘₯), then there exists a constant 𝐢

    𝑝,𝑝1

    such that

    𝑓𝑔𝐿𝑝(β‹…)

    ≀ 𝐢𝑝,𝑝1

    𝑓𝐿𝑝1(β‹…)

    𝑔𝐿𝑝2(β‹…) (21)

    holds, where 𝐢𝑝,𝑝1

    = (1 + 1/(𝑝1)βˆ’βˆ’ 1/(𝑝

    1)+)1/π‘βˆ’ .

    Lemma 6 (see [12]). If 𝑝 ∈ B(R𝑛), then there exist a constant𝐢 > 0 such that for all balls 𝐡 in R𝑛,

    πœ’π΅πΏπ‘(β‹…)

    πœ’π΅πΏπ‘(β‹…)≀ 𝐢 |𝐡| . (22)

    Lemma 7 (see [12]). If 𝑝 ∈ B(R𝑛), then there exists constants𝛿, 𝐢 > 0 such that for all balls 𝐡 in R𝑛 and all measurablesubsets 𝑆 βŠ‚ 𝐡,

    πœ’π΅πΏπ‘(β‹…)

    πœ’π‘†πΏπ‘(β‹…)

    ≀ 𝐢|𝐡|

    |𝑆|,

    πœ’π‘†πΏπ‘(β‹…)

    πœ’π΅πΏπ‘(β‹…)

    ≀ 𝐢(|𝑆|

    |𝐡|)

    𝛿

    . (23)

    Lemma 8 (see [19, Remark 1]). If π‘π‘™βˆˆ B(R𝑛), 𝑙 = 1, 2,

    then by Proposition 1 one has π‘π‘™βˆˆ B(R𝑛). Therefore, applying

    Lemma 7, one can take positive constants 𝛿𝑝𝑙

    , 𝛿𝑝

    𝑙

    > 0 such that

    πœ’π‘†πΏπ‘π‘™(β‹…)

    πœ’π΅πΏπ‘l(β‹…)

    ≀ 𝐢(|𝑆|

    |𝐡|)

    𝛿𝑝𝑙

    ,

    πœ’π‘†πΏπ‘

    𝑙(β‹…)

    πœ’π΅πΏπ‘

    𝑙(β‹…)

    ≀ 𝐢(|𝑆|

    |𝐡|)

    𝛿𝑝

    𝑙

    , (24)

    for all balls 𝐡 in R𝑛 and all measurable subsets 𝑆 βŠ‚ 𝐡.

    Recently, Izuki [19] established a relationship betweenLebesgue space with variable exponent and 𝐡𝑀𝑂 spacewhich can be stated in the form of the following lemma.

    Lemma 9. One has that for all 𝑏 ∈ 𝐡𝑀𝑂(R𝑛) and all 𝑖, 𝑗 ∈ Zwith 𝑗 > 𝑖,

    πΆβˆ’1β€–π‘β€–βˆ— ≀ sup

    𝐡:ball

    1

    πœ’π΅πΏπ‘(β‹…)

    (𝑏 βˆ’ 𝑏𝐡)πœ’π΅πΏπ‘(β‹…)

    ≀ πΆβ€–π‘β€–βˆ—

    (𝑏 βˆ’ 𝑏

    𝐡𝑖

    ) πœ’π΅π‘—

    𝐿𝑝(β‹…)≀ 𝐢 (𝑗 βˆ’ 𝑖) β€–π‘β€–βˆ—

    πœ’π΅π‘—

    𝐿𝑝(β‹…).

    (25)

    Thenext lemma is the generalizedMinkowski’s inequalityand is useful in proving vector valued inequalities.

    Lemma 10 (see [19]). If 1 < π‘Ÿ < ∞, then there exists aconstant 𝐢 > 0 such that for all sequences of functions {𝑓

    β„Ž}∞

    β„Ž=1

    satisfying β€–β€–{π‘“β„Ž}β„Žβ€–β„“π‘Ÿβ€–πΏ1R𝑛

    < ∞,

    {

    ∞

    βˆ‘

    β„Ž=1

    (∫R𝑛

    π‘“β„Ž (𝑦) 𝑑𝑦)

    π‘Ÿ

    }

    1/π‘Ÿ

    ≀ 𝐢∫R𝑛{

    ∞

    βˆ‘

    β„Ž=1

    π‘“β„Ž (𝑦)

    π‘Ÿ

    }

    1/π‘Ÿ

    𝑑𝑦.

    (26)

    Proof of Theorem 3. In order to make computations easy, firstwe have to prove the following inequality:

    2π‘˜π›Ό

    𝑇 (π‘“πœ’π‘–, π‘”πœ’π‘—) πœ’π‘˜

    𝐿𝑝(β‹…)≀ 𝐢𝐷

    1(π‘˜, 𝑖) 2

    𝑖𝛼1π‘“πœ’π‘–

    𝐿𝑝1(β‹…)

    Γ— 𝐷2(π‘˜, 𝑗) 2

    𝑗𝛼2

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…),

    (27)

    where for π‘˜, 𝑖 ∈ Z, 𝑙 = 1, 2,

    𝐷𝑙(π‘˜, 𝑖) =

    {{

    {{

    {

    2(π‘˜βˆ’π‘–)(𝛼

    π‘™βˆ’π‘›π›Ώπ‘

    𝑙

    )

    , if 𝑖 ≀ π‘˜ βˆ’ 2,1, if π‘˜ βˆ’ 1 ≀ 𝑖 ≀ π‘˜ + 1,2(π‘˜βˆ’π‘–)(𝛼

    𝑙+𝑛𝛿𝑝𝑙

    ), if 𝑖 β‰₯ π‘˜ + 2.

    (28)

    If π‘˜βˆ’1 ≀ 𝑖 ≀ π‘˜+1, π‘˜βˆ’1 ≀ 𝑗 ≀ π‘˜+1, then we have 2π‘˜ ∼ 2𝑖 ∼ 2𝑗;hence by the 𝐿𝑝(β‹…) boundedness of 𝑇, we obtain

    2π‘˜π›Ό

    𝑇 (π‘“πœ’π‘–, π‘”πœ’π‘—) πœ’π‘˜

    𝐿𝑝(β‹…)≀ 𝐢2𝑖𝛼1π‘“πœ’π‘–

    𝐿𝑝1(β‹…)2𝑗𝛼2

    Γ—π‘”πœ’π‘—

    𝐿𝑝2(β‹…).

    (29)

    In the other cases, we see that |π‘₯βˆ’π‘¦1|+|π‘₯βˆ’π‘¦

    2| ∼ 2

    max(π‘˜,𝑖,𝑗), forπ‘₯ ∈ 𝐴

    π‘˜, 𝑦1∈ 𝐴𝑖, 𝑦2∈ 𝐴𝑗. Thus by the generalized Hölder’s

    inequality,

    𝑇 (π‘“πœ’

    𝑖, π‘”πœ’π‘—) (π‘₯) πœ’

    π‘˜(π‘₯)

    ≀ 𝐢2βˆ’2max(π‘˜,𝑖,𝑗)π‘›π‘“πœ’π‘–

    1

    π‘”πœ’π‘—

    1β‹… πœ’π‘˜(π‘₯)

    ≀ 𝐢2βˆ’2max(π‘˜,𝑖,𝑗)π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π‘–

    𝐿𝑝

    1(β‹…)

    Γ—π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π‘—

    𝐿𝑝

    2(β‹…)β‹… πœ’π‘˜(π‘₯) .

    (30)

    Applying Lemma 5, we have

    𝑇 (π‘“πœ’

    𝑖, π‘”πœ’π‘—) πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 𝐢2βˆ’2max(π‘˜,𝑖,𝑗)π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π‘–

    𝐿𝑝

    1(β‹…)

    Γ—π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π‘—

    𝐿𝑝

    2(β‹…)

    πœ’π‘˜πΏπ‘(β‹…)

    ≀ 𝐢2βˆ’max(π‘˜,𝑖)π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝1(β‹…)

    Γ— 2βˆ’max(π‘˜,𝑗)π‘›π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝2(β‹…).

    (31)

    Now, for 𝑖 ≀ π‘˜ βˆ’ 2, 𝑗 ≀ π‘˜ βˆ’ 2, by Lemmas 6 and 8, it is easy toshow that

    𝑇 (π‘“πœ’

    𝑖, π‘”πœ’π‘—) πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ πΆπ‘“πœ’π‘–

    𝐿𝑝1(β‹…)

    πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝

    1(β‹…)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝

    2(β‹…)

    ≀ πΆπ‘“πœ’π‘–

    𝐿𝑝1(β‹…)2βˆ’(π‘˜βˆ’π‘–)𝑛𝛿

    𝑝

    1

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)2βˆ’(π‘˜βˆ’π‘—)𝑛𝛿

    𝑝

    2 .

    (32)

    By a similar argument for 𝑖 β‰₯ π‘˜ + 2, 𝑗 β‰₯ π‘˜ + 2, we get

    𝑇(π‘“πœ’π‘–, π‘”πœ’π‘—)πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ πΆπ‘“πœ’π‘–

    𝐿𝑝1(β‹…)

    πœ’π΅π‘˜

    L𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝1(β‹…)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝2(β‹…)

    ≀ πΆπ‘“πœ’π‘–

    𝐿𝑝1(β‹…)2(π‘˜βˆ’π‘–)𝑛𝛿

    𝑝1

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)2(π‘˜βˆ’π‘—)𝑛𝛿

    𝑝2 .

    (33)

  • ISRNMathematical Analysis 5

    In view of (29)–(33), (27) is obvious. Now byMinkowski’sinequality and (27), we get

    2π‘˜π›Όπ‘‡(𝑓, 𝑔)πœ’π‘˜

    𝐿𝑝(β‹…)≀ 2π‘˜π›Ό

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    𝑇(π‘“πœ’π‘–, π‘”πœ’π‘—)πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    2π‘˜π›Ό

    𝑇(π‘“πœ’π‘–, π‘”πœ’π‘—)πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 𝐢

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝐷1(π‘˜, 𝑖) 2

    𝑖𝛼1π‘“πœ’π‘–

    𝐿𝑝1(β‹…)

    Γ—

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    𝐷2(π‘˜, 𝑗) 2

    𝑗𝛼2

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…).

    (34)

    Since 1/π‘ž = 1/π‘ž1+ 1/π‘ž2, then by definition

    𝑇 (𝑓, 𝑔)�̇�𝛼,π‘ž

    𝑝(β‹…)

    = {

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    2π‘˜π›Όπ‘žπ‘‡ (𝑓, 𝑔) πœ’π‘˜

    π‘ž

    𝐿𝑝(β‹…)}

    1/π‘ž

    ≀

    {

    {

    {

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝐷1(π‘˜, 𝑖) 2

    𝑖𝛼1π‘“πœ’π‘–

    𝐿𝑝1(β‹…)

    Γ—

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    𝐷2(π‘˜, 𝑗) 2

    𝑗𝛼2

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…))

    π‘ž

    }

    }

    }

    1/π‘ž

    ≀ 𝐢{

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝐷1(π‘˜, 𝑖) 2

    𝑖𝛼1π‘“πœ’π‘–

    𝐿𝑝1(β‹…))

    π‘ž1

    }

    1/π‘ž1

    Γ—

    {

    {

    {

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    𝐷2(π‘˜, 𝑗) 2

    𝑗𝛼2

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…))

    π‘ž2

    }

    }

    }

    1/π‘ž2

    := 𝐼1Γ— 𝐼2.

    (35)

    It remains to show that 𝐼1

    ≀ 𝐢‖𝑓‖�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    and 𝐼2

    ≀

    𝐢‖𝑔‖�̇�𝛼2,π‘ž2

    𝑝2(β‹…)

    . By symmetry, we only approximate 𝐼1. If 0 < π‘ž

    1<

    1, then by the well-known inequality (βˆ‘ |π‘Žπ‘–|)π‘ž1

    ≀ βˆ‘ |π‘Žπ‘–|π‘ž1 and

    the inequality

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝐷1(π‘˜, 𝑖)𝛾+

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    𝐷2(π‘˜, 𝑗)𝛾

    < ∞, for any 𝛾 > 0, (36)

    we have

    𝐼1≀ 𝐢{

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    2𝑖𝛼1π‘ž1π‘“πœ’π‘–

    π‘ž1

    𝐿𝑝1(β‹…)

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    𝐷1(π‘˜, 𝑖)π‘ž1}

    1/π‘ž1

    ≀ 𝐢{

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    2𝑖𝛼1π‘ž1π‘“πœ’π‘–

    π‘ž1

    𝐿𝑝1(β‹…)}

    1/π‘ž1

    = 𝐢𝑓�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    .

    (37)

    If π‘ž1> 1, Hölder’s inequality and inequality (36) yield

    𝐼1≀ 𝐢

    {

    {

    {

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝐷1(π‘˜, 𝑖)π‘ž1/22𝑖𝛼1π‘ž1π‘“πœ’π‘–

    π‘ž1

    𝐿𝑝1(β‹…)

    Γ— {

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝐷1(π‘˜, 𝑖)π‘ž

    1/2}

    π‘ž1/π‘ž

    1

    }

    }

    }

    1/π‘ž1

    ≀ 𝐢{

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    2𝑖𝛼1π‘ž1π‘“πœ’π‘–

    π‘ž1

    𝐿𝑝1(β‹…)

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    𝐷1(π‘˜, 𝑖)π‘ž1/2}

    1/π‘ž1

    ≀ 𝐢{

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    2𝑖𝛼1π‘ž1π‘“πœ’π‘–

    π‘ž1

    𝐿𝑝1(β‹…)}

    1/π‘ž1

    = 𝐢𝑓�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    .

    (38)

    Therefore, for 0 < π‘ž1< ∞

    𝐼1≀ 𝐢

    𝑓�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    . (39)

    By symmetry, for 0 < π‘ž2< ∞ we have

    𝐼2≀ 𝐢

    𝑔�̇�𝛼2,π‘ž2

    𝑝2(β‹…)

    . (40)

    Finally, we obtain𝑇(𝑓, 𝑔)

    �̇�𝛼,π‘ž

    𝑝(β‹…)

    ≀ 𝐢𝑓�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    𝑔�̇�𝛼2,π‘ž2

    𝑝2(β‹…)

    . (41)

    By virtue of Lemma 10 and the fact that 1/π‘Ÿ = 1/π‘Ÿ1+ 1/π‘Ÿ2, it

    is easy to show that

    (

    ∞

    βˆ‘

    β„Ž=1

    𝑇 (π‘“β„Ž, π‘”β„Ž)

    π‘Ÿ

    )

    1/π‘ŸοΏ½Μ‡οΏ½π›Ό,π‘ž

    𝑝(β‹…)

    ≀ 𝐢

    (

    ∞

    βˆ‘

    β„Ž=1

    π‘“β„Ž

    π‘Ÿ1

    )

    1/π‘Ÿ1�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    Γ—

    (

    ∞

    βˆ‘

    β„Ž=1

    π‘”β„Ž

    π‘Ÿ2

    )

    1/π‘Ÿ2�̇�𝛼2,π‘ž2

    𝑝2(β‹…)

    (42)

    holds for all π‘“β„Žβˆˆ �̇�𝛼1,π‘ž1

    𝑝1(β‹…), π‘”β„Žβˆˆ �̇�𝛼2,π‘ž2

    𝑝2(β‹…), where 1 < π‘Ÿ

    𝑙< ∞ for

    𝑙 = 1, 2.Thus the proof of Theorem 3 is complete.

    Proof of Theorem 4. Similar to the proof ofTheorem 3, for thecase π‘˜βˆ’1 ≀ 𝑖 ≀ π‘˜+1, π‘˜βˆ’1 ≀ 𝑗 ≀ π‘˜+1, we use𝐿𝑝(β‹…) boundednessof [𝑏1, 𝑏2, 𝑇] to obtain

    2π‘˜π›Ό

    [𝑏1, 𝑏2, 𝑇](π‘“πœ’

    𝑖, π‘”πœ’π‘—)πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—2𝑖𝛼1π‘“πœ’π‘–

    𝐿𝑝1(β‹…)2𝑗𝛼2

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…).

    (43)

    For other possibilities we have |π‘₯βˆ’π‘¦1|+|π‘₯βˆ’π‘¦

    2| ∼ 2

    max(π‘˜,𝑖,𝑗)

    for π‘₯ ∈ π΄π‘˜, 𝑦1∈ 𝐴𝑖, 𝑦2∈ 𝐴𝑗.Thus, we consider the following

    two cases.Case I (𝑖 ≀ π‘˜ βˆ’ 2, 𝑗 ≀ π‘˜ βˆ’ 2). We denote (𝑏

    𝑙)𝐡𝑖

    by 𝑏𝑙𝑖, where

    (𝑏𝑙)𝐡𝑖

    =1

    𝐡𝑖

    βˆ«π΅π‘–

    𝑏𝑙(π‘₯) 𝑑π‘₯, 𝑙 = 1, 2 (44)

  • 6 ISRNMathematical Analysis

    and consider the following decomposition:

    [𝑏1, 𝑏2, 𝑇] (π‘“πœ’

    𝑖, π‘”πœ’π‘—) (π‘₯)

    = (𝑏1(π‘₯) βˆ’ 𝑏

    1𝑖) (𝑏2(π‘₯) βˆ’ 𝑏

    2𝑗) 𝑇 (π‘“πœ’

    𝑖, π‘”πœ’π‘—) (π‘₯)

    βˆ’ (𝑏1(π‘₯) βˆ’ 𝑏

    1𝑖) 𝑇 (π‘“πœ’

    𝑖, (𝑏2(β‹…) βˆ’ 𝑏

    2𝑗) π‘”πœ’π‘—) (π‘₯)

    βˆ’ (𝑏2(π‘₯) βˆ’ 𝑏

    2𝑗) 𝑇 ((𝑏

    1(β‹…) βˆ’ 𝑏

    1𝑖) π‘“πœ’π‘–, π‘”πœ’π‘—) (π‘₯)

    + 𝑇 ((𝑏1(β‹…) βˆ’ 𝑏

    1𝑖) π‘“πœ’π‘–, (𝑏2(β‹…) βˆ’ 𝑏

    2𝑗) π‘”πœ’π‘—) (π‘₯)

    = 𝐿1(π‘₯) + 𝐿

    2(π‘₯) + 𝐿

    3(π‘₯) + 𝐿

    4(π‘₯) .

    (45)

    Thus,

    [𝑏1, 𝑏2, 𝑇] (π‘“πœ’

    𝑖, π‘”πœ’π‘—) πœ’π‘˜

    𝐿𝑝(β‹…)≀

    4

    βˆ‘

    π‘š=1

    (πΏπ‘š) πœ’π‘˜πΏπ‘(β‹…)

    =

    4

    βˆ‘

    π‘š=1

    π½π‘š.

    (46)

    Now, we will estimate each π½π‘š(π‘š = 1, . . . , 4), separately.

    Applying Lemma 5, we have𝐿1 (π‘₯)

    ≀ 𝐢2βˆ’2π‘˜π‘› 𝑏1 (π‘₯) βˆ’ 𝑏1𝑖

    𝑏2(π‘₯) βˆ’ 𝑏

    2𝑗

    Γ—π‘“πœ’π‘–

    𝐿1π‘”πœ’π‘—

    𝐿1

    ≀ 𝐢2βˆ’2π‘˜π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π‘–

    𝐿𝑝

    1(β‹…)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π‘—

    𝐿𝑝

    2(β‹…)

    ×𝑏1 (π‘₯) βˆ’ 𝑏1𝑖

    𝑏2(π‘₯) βˆ’ 𝑏

    2𝑗

    .

    (47)

    Therefore, by virtue of generalized Hölder’s inequality andLemmas 6, 8, and 9, we get

    𝐽1=(𝐿1) πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 𝐢2βˆ’2π‘˜π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π‘–

    𝐿𝑝

    1(β‹…)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π‘—

    𝐿𝑝

    2(β‹…)

    Γ—(𝑏1(π‘₯) βˆ’ 𝑏

    1𝑖) (𝑏2(π‘₯) βˆ’ 𝑏

    2𝑗) πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 𝐢2βˆ’2π‘˜π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    Γ—(𝑏1(π‘₯) βˆ’ 𝑏

    1𝑖) πœ’π΅π‘˜

    𝐿𝑝1(β‹…)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    Γ—(𝑏2(π‘₯) βˆ’ 𝑏

    2𝑗) πœ’π΅π‘˜

    𝐿𝑝2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—2βˆ’2π‘˜π‘›

    (π‘˜ βˆ’ 𝑖)π‘“πœ’π‘–

    𝐿𝑝1(β‹…)

    Γ—πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝1(β‹…)

    Γ— (π‘˜ βˆ’ 𝑗)π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ— (

    π‘˜ βˆ’ 𝑖)π‘“πœ’π‘–

    𝐿𝑝1(β‹…)

    Γ—

    πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝

    1(β‹…)

    (π‘˜ βˆ’ 𝑗)π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝

    2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    π‘“πœ’π‘–πΏπ‘1(β‹…) (

    π‘˜ βˆ’ 𝑖) 2βˆ’(π‘˜βˆ’π‘–)𝑛𝛿

    𝑝

    1

    Γ—π‘”πœ’π‘—

    𝐿𝑝2(β‹…)(π‘˜ βˆ’ 𝑗) 2

    βˆ’(π‘˜βˆ’π‘—)𝑛𝛿𝑝

    2 .

    (48)

    Similarly, using Lemma 9, we approximate 𝐿2as

    𝐿2 ≀ 𝐢2

    βˆ’2π‘˜π‘› 𝑏1 (π‘₯) βˆ’ 𝑏1𝑖

    π‘“πœ’π‘–πΏ1

    (𝑏2(β‹…) βˆ’ 𝑏

    2𝑗) π‘”πœ’π‘—

    𝐿1

    ≀ 𝐢2βˆ’2π‘˜π‘› 𝑏1 (π‘₯) βˆ’ 𝑏1𝑖

    π‘“πœ’π‘–πΏπ‘1(β‹…)

    πœ’π‘–πΏπ‘

    1(β‹…)

    Γ—π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    (𝑏2(β‹…) βˆ’ 𝑏

    2𝑗)πœ’π‘—

    𝐿𝑝

    2(β‹…)

    ≀ 𝐢𝑏2

    βˆ—2βˆ’2π‘˜π‘› 𝑏1 (π‘₯) βˆ’ 𝑏1𝑖

    π‘“πœ’π‘–πΏπ‘1(β‹…)

    Γ—πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    .

    (49)

    Therefore, in view of Lemmas 6, 9, and 8, we have

    𝐽2=(𝐿2)πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 𝐢𝑏2

    βˆ—2βˆ’2π‘˜π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    Γ—(𝑏1(π‘₯) βˆ’ 𝑏1𝑖)πœ’π‘˜

    𝐿𝑝(β‹…)π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—2βˆ’2π‘˜π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    Γ— (π‘˜ βˆ’ 𝑖)πœ’π΅π‘˜

    𝐿𝑝(β‹…)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ— (

    π‘˜ βˆ’ 𝑖)π‘“πœ’π‘–

    𝐿𝑝1(β‹…)

    Γ—

    πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝

    1(β‹…)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝

    2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    π‘“πœ’i𝐿𝑝1(β‹…) (

    π‘˜ βˆ’ 𝑖) 2βˆ’(π‘˜βˆ’π‘–)𝑛𝛿

    𝑝

    1

    Γ—π‘”πœ’π‘—

    𝐿𝑝2(β‹…)2βˆ’(π‘˜βˆ’π‘—)𝑛𝛿

    𝑝

    2 .

    (50)

    By symmetry, the estimate for 𝐽3is similar to that for 𝐽

    2;

    therefore,

    𝐽3≀ 𝐢

    𝑏1βˆ—

    𝑏2βˆ—

    π‘“πœ’π‘–πΏπ‘1(β‹…)

    2βˆ’(π‘˜βˆ’π‘–)𝑛𝛿

    𝑝

    1

    Γ—π‘”πœ’π‘—

    𝐿𝑝2(β‹…)(π‘˜ βˆ’ 𝑗) 2

    βˆ’(π‘˜βˆ’π‘—)𝑛𝛿𝑝

    2 .

    (51)

    Finally, it remains to estimate 𝐽4. For that, we use Lemma 9 to

    write

    𝐿4

    =𝑇 ((𝑏1(β‹…) βˆ’ 𝑏

    1𝑖) π‘“πœ’π‘–, (𝑏2(β‹…) βˆ’ 𝑏

    2𝑗) π‘”πœ’π‘—) (π‘₯)

    ≀ 𝐢2βˆ’2π‘˜π‘›(𝑏1 (β‹…) βˆ’ 𝑏1𝑖) π‘“πœ’π‘–

    𝐿1(𝑏2(β‹…) βˆ’ 𝑏

    2𝑗) π‘”πœ’π‘—

    𝐿1

    ≀ 𝐢2βˆ’2π‘˜π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)(𝑏1(β‹…) βˆ’ 𝑏1𝑖)πœ’π‘–

    𝐿𝑝

    1(β‹…)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    Γ—(𝑏2(β‹…) βˆ’ 𝑏

    2𝑗)πœ’π‘—

    𝐿𝑝

    2(β‹…)

    ≀ 𝐢2βˆ’2π‘˜π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)(𝑏1(β‹…) βˆ’ 𝑏

    1𝑖)πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    Γ—(𝑏2(β‹…) βˆ’ 𝑏

    2𝑗)πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

  • ISRNMathematical Analysis 7

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—2βˆ’2π‘˜π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    Γ—πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    .

    (52)

    Thus, by Hölder’s inequality and Lemmas 6 and 8, we obtain

    𝐽4=(𝐿4)πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—2βˆ’2π‘˜π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝1(β‹…)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    Γ—πœ’π΅π‘—

    𝐿𝑝2(β‹…)

    πœ’π‘˜πΏπ‘(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—2βˆ’2π‘˜π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝1(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝1(β‹…)

    Γ—π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ— (

    π‘˜ βˆ’ 𝑖)π‘“πœ’π‘–

    𝐿𝑝1(β‹…)

    πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝

    1(β‹…)

    Γ—π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝

    2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    π‘“πœ’π‘–πΏπ‘1(β‹…)

    2βˆ’(π‘˜βˆ’π‘–)𝑛𝛿

    𝑝

    1

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)2βˆ’(π‘˜βˆ’π‘—)𝑛𝛿

    𝑝

    2 .

    (53)

    Combining the estimates for 𝐽1, 𝐽2, 𝐽3, and 𝐽

    4, we have

    [𝑏1, 𝑏2, 𝑇](π‘“πœ’

    𝑖, π‘”πœ’π‘—)πœ’π‘˜

    𝐿𝑝(β‹…)≀ 𝐢

    𝑏1βˆ—

    𝑏2βˆ—

    π‘“πœ’π‘–πΏπ‘1(β‹…)

    Γ— (π‘˜ βˆ’ 𝑖) 2βˆ’(π‘˜βˆ’π‘–)𝑛𝛿

    𝑝

    1

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    Γ— (π‘˜ βˆ’ 𝑗) 2βˆ’(π‘˜βˆ’π‘—)𝑛𝛿

    𝑝

    2 .

    (54)

    Case II (𝑖 β‰₯ π‘˜ + 2, 𝑗 β‰₯ π‘˜ + 2). We denote (𝑏𝑙)π΅π‘˜

    by π‘π‘™π‘˜, where

    (𝑏𝑙)π΅π‘˜

    = (1/|π΅π‘˜|) βˆ«π΅π‘˜

    𝑏𝑙(π‘₯)𝑑π‘₯, 𝑙 = 1, 2. In this case, we consider

    the following decomposition:

    [𝑏1, 𝑏2, 𝑇] (π‘“πœ’

    𝑖, π‘”πœ’π‘—) (π‘₯)

    = (𝑏1(π‘₯) βˆ’ 𝑏

    1π‘˜) (𝑏2(π‘₯) βˆ’ 𝑏

    2π‘˜) 𝑇 (π‘“πœ’

    𝑖, π‘”πœ’π‘—) (π‘₯)

    βˆ’ (𝑏1(π‘₯) βˆ’ 𝑏

    1π‘˜) 𝑇 (π‘“πœ’

    𝑖, (𝑏2(β‹…) βˆ’ 𝑏

    2π‘˜) π‘”πœ’π‘—) (π‘₯)

    βˆ’ (𝑏2(π‘₯) βˆ’ 𝑏

    2π‘˜) 𝑇 ((𝑏

    1(β‹…) βˆ’ 𝑏

    1π‘˜) π‘“πœ’π‘–, π‘”πœ’π‘—) (π‘₯)

    + 𝑇 ((𝑏1(β‹…) βˆ’ 𝑏

    1π‘˜) π‘“πœ’π‘–, (𝑏2(β‹…) βˆ’ 𝑏

    2π‘˜) π‘”πœ’π‘—) (π‘₯)

    = οΏ½ΜƒοΏ½1(π‘₯) + οΏ½ΜƒοΏ½

    2(π‘₯) + οΏ½ΜƒοΏ½

    3(π‘₯) + οΏ½ΜƒοΏ½

    4(π‘₯) .

    (55)

    Thus,

    [𝑏1, 𝑏2, 𝑇] (π‘“πœ’

    𝑖, π‘”πœ’π‘—) πœ’π‘˜

    𝐿𝑝(β‹…)≀

    4

    βˆ‘

    π‘š=1

    (οΏ½ΜƒοΏ½π‘š) πœ’π‘˜

    𝐿𝑝(β‹…)

    =

    4

    βˆ‘

    π‘š=1

    π½π‘š.

    (56)

    Let us first compute 𝐽1. As in the proof of Theorem 3, in this

    case we estimate οΏ½ΜƒοΏ½1as

    οΏ½ΜƒοΏ½1

    ≀ 𝐢

    𝑏1 (π‘₯) βˆ’ 𝑏1π‘˜

    𝑏2 (π‘₯) βˆ’ 𝑏2π‘˜ 2βˆ’π‘–π‘›π‘“πœ’π‘–

    𝐿12βˆ’π‘—π‘›

    Γ—π‘”πœ’π‘—

    𝐿1

    ≀ 𝐢𝑏1 (π‘₯) βˆ’ 𝑏1π‘˜

    𝑏2 (π‘₯) βˆ’ 𝑏2π‘˜ 2βˆ’π‘–π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)

    Γ—πœ’π‘–

    𝐿𝑝

    1(β‹…)2βˆ’π‘—π‘›

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π‘—

    𝐿𝑝

    2(β‹…).

    (57)

    By virtue of generalizedHölder’s inequality and Lemmas 6–9,we obtain

    𝐽1=(οΏ½ΜƒοΏ½1) πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 𝐢2βˆ’π‘–π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)2βˆ’π‘—π‘›

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    Γ—(𝑏1(π‘₯) βˆ’ 𝑏1π‘˜)(𝑏2(π‘₯) βˆ’ b2π‘˜)πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 𝐢2βˆ’π‘–π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    (𝑏1(π‘₯) βˆ’ 𝑏1π‘˜)πœ’π‘˜πΏπ‘1(β‹…)

    Γ— 2βˆ’π‘—π‘›

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    (𝑏2 (π‘₯) βˆ’ 𝑏2π‘˜) πœ’π‘˜πΏπ‘2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—2βˆ’π‘–π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝1(β‹…)

    Γ— 2βˆ’π‘—π‘›

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    π‘“πœ’π‘–πΏπ‘1(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝1(β‹…)

    πœ’π΅π‘–

    𝐿𝑝1(β‹…)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    π‘“πœ’π‘–πΏπ‘1(β‹…)

    2(π‘˜βˆ’π‘–)𝑛𝛿

    𝑝1

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)2(π‘˜βˆ’π‘—)𝑛𝛿

    𝑝2 .

    (58)

    Next, we approximate 𝐽2. Using Lemma 9, it is easy to see that

    οΏ½ΜƒοΏ½2

    ≀ 𝐢2βˆ’2𝑖𝑛 𝑏1 (π‘₯) βˆ’ 𝑏1π‘˜

    π‘“πœ’π‘–πΏ1

    (𝑏2(β‹…) βˆ’ 𝑏

    2π‘˜) π‘”πœ’π‘—

    𝐿1

    ≀ 𝐢2βˆ’π‘–π‘› 𝑏1 (π‘₯) βˆ’ 𝑏1π‘˜

    π‘“πœ’π‘–πΏπ‘1(β‹…)

    πœ’π‘–πΏπ‘

    1(β‹…)

    Γ— 2βˆ’π‘—π‘›

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    (𝑏2(β‹…) βˆ’ 𝑏

    2π‘˜)πœ’π‘—

    𝐿𝑝

    2(β‹…)

    ≀ 𝐢𝑏2

    βˆ—2βˆ’π‘–π‘› 𝑏1 (π‘₯) βˆ’ 𝑏1π‘˜

    π‘“πœ’π‘–πΏπ‘1(β‹…)

    πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    Γ— (𝑗 βˆ’ π‘˜) 2βˆ’π‘—π‘›

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    .

    (59)

    Thus, in view of Lemmas 6, 9, and 8, we get

    𝐽2=(οΏ½ΜƒοΏ½2) πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 𝐢𝑏2

    βˆ—2βˆ’π‘–π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    (𝑏1(π‘₯) βˆ’ 𝑏1π‘˜)πœ’π‘˜πΏπ‘(β‹…)

    Γ— (𝑗 βˆ’ π‘˜) 2βˆ’π‘—π‘›

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

  • 8 ISRNMathematical Analysis

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—2βˆ’π‘–π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝(β‹…)

    Γ— (𝑗 βˆ’ π‘˜) 2βˆ’π‘—π‘›

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    π‘“πœ’π‘–πΏπ‘1(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝1(β‹…)

    πœ’π΅π‘–

    𝐿𝑝1(β‹…)

    (𝑗 βˆ’ π‘˜)

    Γ—π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    π‘“πœ’π‘–πΏπ‘1(β‹…)

    2(π‘˜βˆ’π‘–)𝑛𝛿

    𝑝1

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    Γ— (𝑗 βˆ’ π‘˜) 2(π‘˜βˆ’π‘—)𝑛𝛿

    𝑝2 .

    (60)

    By symmetry, the estimate for 𝐽3is similar to that for 𝐽

    2; thus

    𝐽3≀ 𝐢

    𝑏1βˆ—

    𝑏2βˆ—

    π‘“πœ’π‘–πΏπ‘1(β‹…) (

    𝑖 βˆ’ π‘˜) 2(π‘˜βˆ’π‘–)𝑛𝛿

    𝑝1

    Γ—π‘”πœ’π‘—

    𝐿𝑝2(β‹…)2(π‘˜βˆ’π‘—)𝑛𝛿

    𝑝2 .

    (61)

    Lastly, it remains to compute 𝐽4. For this purpose we use

    generalized Höder’s inequality and lemmas 6 and 9 to obtainοΏ½ΜƒοΏ½4

    =𝑇 ((𝑏1(β‹…) βˆ’ 𝑏

    1π‘˜) π‘“πœ’π‘–, (𝑏2(β‹…) βˆ’ 𝑏

    2π‘˜) π‘”πœ’π‘—) (π‘₯)

    ≀ 𝐢2βˆ’π‘–π‘›(𝑏1 (β‹…) βˆ’ 𝑏1π‘˜) π‘“πœ’π‘–

    𝐿12βˆ’π‘—π‘›

    Γ—(𝑏2(β‹…) βˆ’ 𝑏

    2π‘˜)π‘”πœ’π‘—

    𝐿1

    ≀ 𝐢2βˆ’π‘–π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)(𝑏1(β‹…) βˆ’ 𝑏1π‘˜)πœ’π‘–

    𝐿𝑝

    1(β‹…)

    Γ— 2βˆ’π‘—π‘›

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    (𝑏2(β‹…) βˆ’ 𝑏

    2π‘˜)πœ’π‘—

    𝐿𝑝

    2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ— (

    𝑖 βˆ’ π‘˜) 2βˆ’π‘–π‘›π‘“πœ’π‘–

    𝐿𝑝1(β‹…)πœ’π΅π‘–

    𝐿𝑝

    1(β‹…)

    Γ— (𝑗 βˆ’ π‘˜) 2βˆ’π‘—π‘›

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ— (

    𝑖 βˆ’ π‘˜)

    π‘“πœ’π‘–πΏπ‘1(β‹…)

    πœ’π΅π‘–

    𝐿𝑝1(β‹…)

    (𝑗 βˆ’ π‘˜)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝2(β‹…)

    .

    (62)

    Thus, an application of Lemma 8 yields

    𝐽4=(οΏ½ΜƒοΏ½4)πœ’π‘˜

    𝐿𝑝(β‹…)≀ 𝐢

    𝑏1βˆ—

    𝑏2βˆ— (

    𝑖 βˆ’ π‘˜)

    π‘“πœ’π‘–πΏπ‘1(β‹…)

    πœ’π‘–πΏπ‘1(β‹…)

    Γ— (𝑗 βˆ’ π‘˜)

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π‘˜πΏπ‘(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ— (

    𝑖 βˆ’ π‘˜)π‘“πœ’π‘–

    𝐿𝑝1(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝1(β‹…)

    πœ’π΅π‘–

    𝐿𝑝1(β‹…)

    (𝑗 βˆ’ π‘˜)

    Γ—π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    πœ’π΅π‘˜

    𝐿𝑝2(β‹…)

    πœ’π΅π‘—

    𝐿𝑝2(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ— (

    𝑖 βˆ’ π‘˜)π‘“πœ’π‘–

    𝐿𝑝1(β‹…)2(π‘˜βˆ’π‘–)𝑛𝛿

    𝑝1

    Γ— (𝑗 βˆ’ π‘˜)π‘”πœ’π‘—

    𝐿𝑝2(β‹…)2(π‘˜βˆ’π‘—)𝑛𝛿

    𝑝2 .

    (63)

    Combining the estimates for 𝐽1, 𝐽2, 𝐽3, and 𝐽

    4, we have

    [𝑏1, 𝑏2, 𝑇](π‘“πœ’

    𝑖, π‘”πœ’π‘—)πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    π‘“πœ’π‘–πΏπ‘1(β‹…) (

    𝑖 βˆ’ π‘˜) 2(π‘˜βˆ’π‘–)𝑛𝛿

    𝑝1

    Γ—π‘”πœ’π‘—

    𝐿𝑝2(β‹…)(𝑗 βˆ’ π‘˜) 2

    (π‘˜βˆ’π‘—)𝑛𝛿𝑝2 .

    (64)

    In view of (43), (54), and (64), we arrive at

    2π‘˜π›Ό

    [𝑏1, 𝑏2, 𝑇](π‘“πœ’

    𝑖, π‘”πœ’π‘—)πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—πΈ1(π‘˜, 𝑖) 2

    𝑖𝛼1π‘“πœ’π‘–

    𝐿𝑝1(β‹…)

    Γ— 𝐸2(π‘˜, 𝑗) 2

    𝑗𝛼2

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…),

    (65)

    where for π‘˜, 𝑖 ∈ Z, 𝑙 = 1, 2,

    𝐸𝑙(π‘˜, 𝑖) =

    {{

    {{

    {

    (π‘˜ βˆ’ 𝑖) 2(π‘˜βˆ’π‘–)(𝛼

    π‘™βˆ’π‘›π›Ώπ‘

    𝑙

    )

    , if 𝑖 ≀ π‘˜ βˆ’ 2,1, if π‘˜ βˆ’ 1 ≀ 𝑖 ≀ π‘˜ + 1,(𝑖 βˆ’ π‘˜) 2

    (π‘˜βˆ’π‘–)(𝛼𝑙+𝑛𝛿𝑝𝑙

    ), if 𝑖 β‰₯ π‘˜ + 2.

    (66)

    Under the assumption βˆ’π‘›π›Ώπ‘π‘™

    < 𝛼𝑙< 𝑛𝛿𝑝

    𝑙

    , it is easy to see that

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝐸1(π‘˜, 𝑖)𝛾+

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    𝐸2(π‘˜, 𝑗)𝛾

    < ∞, for any 𝛾 > 0. (67)

    Now by the Minkowski’s inequality and (65), we get

    2π‘˜π›Ό[𝑏1, 𝑏2, 𝑇](𝑓, 𝑔)πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 2π‘˜π›Ό

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    [𝑏1, 𝑏2, 𝑇](π‘“πœ’

    𝑖, π‘”πœ’π‘—)πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    2π‘˜π›Ό

    [𝑏1, 𝑏2, 𝑇](π‘“πœ’

    𝑖, π‘”πœ’π‘—)πœ’π‘˜

    𝐿𝑝(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝐸1(π‘˜, 𝑖) 2

    𝑖𝛼1π‘“πœ’π‘–

    𝐿𝑝1(β‹…)

    Γ—

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    𝐸2(π‘˜, 𝑗) 2

    𝑗𝛼2

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…).

    (68)

    Finally, by definition and the fact that 1/π‘ž = 1/π‘ž1+ 1/π‘ž2, we

    obtain[𝑏1, 𝑏2, 𝑇](𝑓, 𝑔)

    �̇�𝛼,π‘ž

    𝑝(β‹…)

    = {

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    2π‘˜π›Όπ‘ž[𝑏1, 𝑏2, 𝑇] (𝑓, 𝑔) πœ’π‘˜

    π‘ž

    𝐿𝑝(β‹…)}

    1/π‘ž

  • ISRNMathematical Analysis 9

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    Γ— {

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    {

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝐸1(π‘˜, 𝑖)2

    𝑖𝛼1π‘“πœ’π‘–

    𝐿𝑝1(β‹…)}

    π‘ž1

    }

    1/π‘ž1

    Γ—

    {

    {

    {

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    {

    {

    {

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    𝐸2(π‘˜, 𝑗) 2

    𝑗𝛼2

    π‘”πœ’π‘—

    𝐿𝑝2(β‹…)

    }

    }

    }

    π‘ž2

    }

    }

    }

    1/π‘ž2

    :=𝑏1

    βˆ—

    𝑏2βˆ—(𝐼1Γ— 𝐼2) .

    (69)

    It is enough to show that 𝐼1≀ 𝐢‖𝑓‖

    �̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    and 𝐼2≀ 𝐢‖𝑔‖

    �̇�𝛼2,π‘ž2

    𝑝2(β‹…)

    .

    By symmetry, we only give estimates for 𝐼1. For 0 < π‘ž

    1< ∞,

    by inequality (βˆ‘ |π‘Žπ‘–|)π‘ž1

    ≀ βˆ‘ |π‘Žπ‘–|π‘ž1 and inequality (67), we have

    𝐼1≀ 𝐢{

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    2𝑖𝛼1π‘ž1π‘“πœ’π‘–

    π‘ž1

    𝐿𝑝1(β‹…)

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    𝐸1(π‘˜, 𝑖)π‘ž1}

    1/π‘ž1

    ≀ 𝐢{

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    2𝑖𝛼1π‘ž1π‘“πœ’π‘–

    π‘ž1

    𝐿𝑝1(β‹…)}

    1/π‘ž1

    = 𝐢𝑓�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    .

    (70)

    For π‘ž1> 1, by Hölder’s inequality and inequality (67), we

    obtain

    𝐼1≀ 𝐢

    {

    {

    {

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝐸1(π‘˜, 𝑖)π‘ž1/22𝑖𝛼1π‘ž1π‘“πœ’π‘–

    π‘ž1

    𝐿𝑝1(β‹…)

    Γ— {

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    𝐸1(π‘˜, 𝑖)π‘ž

    1/2}

    π‘ž1/π‘ž

    1

    }

    }

    }

    1/π‘ž1

    ≀ 𝐢{

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    2𝑖𝛼1π‘ž1π‘“πœ’π‘–

    π‘ž1

    𝐿𝑝1(β‹…)

    ∞

    βˆ‘

    k=βˆ’βˆžπΈ1(π‘˜, 𝑖)π‘ž1/2}

    1/π‘ž1

    ≀ 𝐢{

    ∞

    βˆ‘

    𝑖=βˆ’βˆž

    2𝑖𝛼1π‘ž1π‘“πœ’π‘–

    π‘ž1

    𝐿𝑝1(β‹…)}

    1/π‘ž1

    = 𝐢𝑓�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    .

    (71)

    Hence, for 0 < π‘ž1< ∞

    𝐼1≀ 𝐢

    𝑓�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    . (72)

    By symmetry, for 0 < π‘ž2< ∞, we have

    𝐼2≀ 𝐢

    𝑔�̇�𝛼2,π‘ž2

    𝑝2(β‹…)

    . (73)

    Therefore,

    [𝑏1, 𝑏2, 𝑇] (𝑓, 𝑔)�̇�𝛼,π‘ž

    𝑝(β‹…)

    ≀ 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    𝑓�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    𝑔�̇�𝛼2,π‘ž2

    𝑝2(β‹…)

    . (74)

    By a similar procedure one can prove that

    (

    ∞

    βˆ‘

    β„Ž=1

    [𝑏1, 𝑏2, 𝑇] (π‘“β„Ž, π‘”β„Ž)

    π‘Ÿ

    )

    1/π‘ŸοΏ½Μ‡οΏ½π›Ό,π‘ž

    𝑝(β‹…)

    ≀

    (

    ∞

    βˆ‘

    β„Ž=1

    π‘“β„Ž

    π‘Ÿ1

    )

    1/π‘Ÿ1�̇�𝛼1,π‘ž1

    𝑝1(β‹…)

    (

    ∞

    βˆ‘

    β„Ž=1

    π‘”β„Ž

    π‘Ÿ2

    )

    1/π‘Ÿ2�̇�𝛼2,π‘ž2

    𝑝2(β‹…)

    Γ— 𝐢𝑏1

    βˆ—

    𝑏2βˆ—

    (75)

    holds for all π‘“β„Žβˆˆ �̇�𝛼1,π‘ž1

    𝑝1(β‹…), π‘”β„Žβˆˆ �̇�𝛼2,π‘ž2

    𝑝2(β‹…), where 1 < π‘Ÿ

    𝑙< ∞ for

    𝑙 = 1, 2 and 1/π‘Ÿ = 1/π‘Ÿ1+ 1/π‘Ÿ2. Thus, we finish the proof of

    Theorem 4.

    Remark 11. Note that when 𝛼𝑙β‰₯ 𝑛𝛿𝑝

    𝑙

    , then the results ofTheorems 3 and 4 are no longer true. It needs to replacethe variable exponent Herz space �̇�𝛼,π‘ž

    𝑝(β‹…)(R𝑛) with 𝐻�̇�𝛼,π‘ž

    𝑝(β‹…)(R𝑛)

    and the Herz-type Hardy spaces with the variable exponentrecently introduced in [20]. The boundedness of multilinearsingular integral operators from 𝐻�̇�𝛼,π‘ž

    𝑝(β‹…)(R𝑛) to �̇�𝛼,π‘ž

    𝑝(β‹…)(R𝑛) is

    still an interesting question that needs to be answered.

    Remark 12. Although we considered the 2-linear case, themethod can be extended for any π‘š-linear case without anyessential difficulty.

    Conflict of Interests

    The authors declare that there is no conflict of interestsregarding the publication of this paper.

    References

    [1] R. Coifman and Y. Meyer, β€œOn commutators of singular in-tegrals and bilinear singular integrals,” Transactions of theAmerican Mathematical Society, vol. 212, pp. 315–331, 1975.

    [2] M. Christ and J. Journé, β€œPolynomial growth estimates formultilinear singular integral operators,” Acta Mathematica, vol.159, no. 1, pp. 51–80, 1987.

    [3] C. Kenig and E. Stein, β€œMultilinear estimates and fractionalintegration,” Mathematical Research Letters, vol. 6, no. 1, pp. 1–15, 1999.

    [4] L. Grafakos and R. H. Torres, β€œMultilinear Calderón-Zygmundtheory,” Advances in Mathematics, vol. 165, no. 1, pp. 124–164,2002.

    [5] X. Tao and H. Zhang, β€œOn the boundedness of multilinearoperators on weighted herz-Morrey spaces,” Taiwanese Journalof Mathematics, vol. 15, no. 4, pp. 1527–1543, 2011.

    [6] Q.Wu, β€œWeighted estimates formultilinearCalderon-Zygmundoperators,”Advances inMathematics, vol. 33, pp. 333–342, 2004.

    [7] J. Zhou, Y. Cao, and L. Li, β€œEstimates of commutators for mul-tilinear operators on Herz-type spaces,” Applied Mathematics,vol. 25, no. 2, pp. 177–184, 2010.

    [8] L. Diening, P. Harjulehto, P. Hästö, and M. Ružička, Lebesgueand Sobolev Spaces with Variable Exponents, vol. 2017 of LectureNotes in Mathematics, Springer, Heidelberg, Germany, 2011.

    [9] S. Samko, β€œOn a progress in the theory of Lebesgue spaces withvariable exponent: maximal and singular operators,” Integral

  • 10 ISRNMathematical Analysis

    Transforms and Special Functions, vol. 16, no. 5-6, pp. 461–482,2005.

    [10] A. Huang and J. Xu, β€œMultilinear singular integrals and com-mutators in variable exponent Lebesgue spaces,” Applied Math-ematics, vol. 25, no. 1, pp. 69–77, 2010.

    [11] M. Izuki, β€œHerz and amalgam spaces with variable exponent,the Haar wavelets and greediness of the wavelet system,” EastJournal on Approximations, vol. 15, pp. 87–109, 2009.

    [12] M. Izuki, β€œBoundedness of sublinear operators on Herz spaceswith variable exponent and application to wavelet characteriza-tion,” Analysis Mathematica, vol. 36, no. 1, pp. 33–50, 2010.

    [13] A. Almeida and D. Drihem, β€œMaximal, potential and singulartype operators on Herz spaces with variable exponents,” Journalof Mathematical Analysis and Applications, vol. 394, no. 2, pp.781–795, 2012.

    [14] S. Samko, β€œVariable exponent Herz spaces,” MediterraneanJournal of Mathematics, vol. 10, no. 4, pp. 2007–2025, 2013.

    [15] D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, β€œThe max-imal function on variable 𝐿𝑝 spaces,” Annales Academiae Scien-tiarum Fennicae Mathematica, vol. 28, no. 1, pp. 223–238, 2003.

    [16] A. Nekvinda, β€œHardy-littlewood maxell operator on 𝐿𝑝(π‘₯)(R𝑛),”Mathematical Inequalities andApplications, vol. 7, no. 2, pp. 255–265, 2004.

    [17] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, β€œTheboundedness of classical operators on variable 𝐿𝑝 spaces,”Annales Academiae Scientiarum Fennicae Mathematica, vol. 31,no. 1, pp. 239–264, 2006.

    [18] O. Kovóčik and J. Rakosnk, β€œOn spaces 𝐿𝑝(π‘₯) and π‘Šπ‘˜,𝑝(π‘₯),”Czechoslovak Mathematical Journal, vol. 41, pp. 592–618, 1991.

    [19] M. Izuki, β€œBoundedness of commutators on Herz spaceswith variable exponent,” Rendiconti del Circolo Matematico diPalermo, vol. 59, no. 2, pp. 199–213, 2010.

    [20] H. Wang and Z. Liu, β€œThe Herz-type Hardy spaces withvariable exponent and their Applications,” Taiwanese Journal ofMathematics, vol. 16, no. 4, pp. 1363–1389, 2012.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of