research article boundedness of oscillatory hyper-hilbert

6
Research Article Boundedness of Oscillatory Hyper-Hilbert Transform along Curves on Sobolev Spaces Jun Li 1 and Guilian Gao 2 1 Department of Mathematics, Zhejiang University, Hangzhou 310027, China 2 School of Science, Hangzhou Dianzi University, Hangzhou 310018, China Correspondence should be addressed to Guilian Gao; [email protected] Received 1 March 2014; Accepted 6 May 2014; Published 19 May 2014 Academic Editor: Yongsheng S. Han Copyright © 2014 J. Li and G. Gao. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e oscillatory hyper-Hilbert transform along curves is of the following form: ,, () = ∫ 1 0 ( − Γ()) −1− d, where ≥0, ≥0, and Γ() = ( 1 , 2 ,..., ). e study on this operator is motivated by the hyper-Hilbert transform and the strongly singular integrals. e bounds for ,, have been given by Chen et al. (2008 and 2010). In this paper, for some , , and , the boundedness of ,, on Sobolev spaces (R ) and the boundedness of this operator from 2 (R ) to 2 (R ) are obtained. 1. Introduction In the paper, we mainly discuss singular integrals in the following form: ,, () = ∫ 1 0 ( − Γ ()) −1− d, (1) where ≥0, ≥0, and Γ() = ( 1 , 2 ,..., ) denotes a curve in the n-dimensional spaces. Operators of this kind originate from the significant Hilbert transform: () = .V.∫ R ( − ) d. (2) In [1], Calder´ on and Zygmund brought in the rotation method, shiſting the study of the homogeneous singular integral operators to that of directional Hilbert transforms: Ω () () = .V.∫ R ( − ) Ω (/ ) d = 1 2 −1 Ω ( ) () () d ( ), (3) where Ω is odd, and the directional Hilbert transform is () () = .V.∫ R ( − ) d . (4) In order to generalize the rotation method, Fabes and Rivi` ere [2] introduced the Hilbert transform along curves: Γ () = .V.∫ +∞ −∞ ( − Γ ()) d . (5) Aſterwards, the research of Γ () attracted many schol- ars, among which Wainger and his fellows contributed to it quite remarkably. Another development derived from Hilbert transform is hypersingular Hilbert transforms: () = .V.∫ 1 −1 ( − ) d || , 0 < < 1. (6) As such operator has more singularity, is required to have some smoothness. It can be proved that is bounded from (R ) to (R ), where 1<<∞. A natural question is how to balance the more singularity due to || , without extra smoothness of . Since Hilbert transform is essentially “oscillatory,” we can bring in an oscil- latory factor in . So is the oscillatory hypersingular integral along curves in the following form: ,, () = ∫ 1 −1 ( − Γ ()) || d || , (7) Hindawi Publishing Corporation Journal of Function Spaces Volume 2014, Article ID 489068, 5 pages http://dx.doi.org/10.1155/2014/489068

Upload: others

Post on 24-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article Boundedness of Oscillatory Hyper-Hilbert

Research ArticleBoundedness of Oscillatory Hyper-HilbertTransform along Curves on Sobolev Spaces

Jun Li1 and Guilian Gao2

1 Department of Mathematics Zhejiang University Hangzhou 310027 China2 School of Science Hangzhou Dianzi University Hangzhou 310018 China

Correspondence should be addressed to Guilian Gao gaoguilian305163com

Received 1 March 2014 Accepted 6 May 2014 Published 19 May 2014

Academic Editor Yongsheng S Han

Copyright copy 2014 J Li and G Gao This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

The oscillatory hyper-Hilbert transform along curves is of the following form119867119899120572120573

119891(119909) = int1

0

119891(119909minusΓ(119905))119890119894119905minus120573

119905minus1minus120572d119905 where 120572 ge 0

120573 ge 0 and Γ(119905) = (1199051199011 1199051199012 119905

119901119899 ) The study on this operator is motivated by the hyper-Hilbert transform and the strongly

singular integrals The 119871119901 bounds for119867

119899120572120573have been given by Chen et al (2008 and 2010) In this paper for some 120572 120573 and 119901 the

boundedness of119867119899120572120573

on Sobolev spaces 119871119901119904(R119899) and the boundedness of this operator from 119871

2

119904(R119899) to 119871

2

(R119899) are obtained

1 Introduction

In the paper we mainly discuss singular integrals in thefollowing form

119867119899120572120573

119891 (119909) = int

1

0

119891 (119909 minus Γ (119905)) 119890119894119905minus120573

119905minus1minus120572d119905 (1)

where 120572 ge 0 120573 ge 0 and Γ(119905) = (1199051199011 1199051199012 119905

119901119899) denotes a

curve in the n-dimensional spacesOperators of this kind originate from the significant

Hilbert transform

119867119891 (119909) = 119901V intR

119891 (119909 minus 119905)

119905d119905 (2)

In [1] Calderon and Zygmund brought in the rotationmethod shifting the study of the homogeneous singularintegral operators to that of directional Hilbert transforms

119879Ω(119891) (119909) = 119901V int

R119899119891 (119909 minus 119910)

Ω (1199101003816100381610038161003816119910

1003816100381610038161003816)

10038161003816100381610038161199101003816100381610038161003816

119899d119910

=1

2int119878119899minus1

Ω(1199101015840

)1198671199101015840 (119891) (119909) d120590 (119910

1015840

)

(3)

whereΩ is odd and the directional Hilbert transform is

1198671199101015840 (119891) (119909) = 119901V int

R

119891 (119909 minus 1199051199101015840

)d119905119905 (4)

In order to generalize the rotation method Fabes andRiviere [2] introduced the Hilbert transform along curves

119867Γ119891 (119909) = 119901V int

+infin

minusinfin

119891 (119909 minus Γ (119905))d119905119905 (5)

Afterwards the research of119867Γ119891(119909) attractedmany schol-

ars among which Wainger and his fellows contributed to itquite remarkably

Another development derived from Hilbert transform ishypersingular Hilbert transforms

119867120572119891 (119909) = 119901V int

1

minus1

119891 (119909 minus 119905)d119905119905|119905|120572 0 lt 120572 lt 1 (6)

As such operator has more singularity 119891 is required to havesome smoothness It can be proved that 119867

120572is bounded from

119871119901

120572(R119899) to 119871

119901

(R119899) where 1 lt 119901 lt infinA natural question is how to balance the more singularity

due to |119905|120572 without extra smoothness of 119891 Since Hilbert

transform is essentially ldquooscillatoryrdquo we can bring in an oscil-latory factor 119890

119894119905minus120573

in 119867120572 So is the oscillatory hypersingular

integral along curves in the following form

119867119899120572120573

119891 (119909) = int

1

minus1

119891 (119909 minus Γ (119905)) 119890119894|119905|minus120573 d119905

119905|119905|120572 (7)

Hindawi Publishing CorporationJournal of Function SpacesVolume 2014 Article ID 489068 5 pageshttpdxdoiorg1011552014489068

2 Journal of Function Spaces

where 120572 ge 0 120573 ge 0 and Γ(119905) = (1199051199011 1199051199012 119905

119901119899) denotes a

curve in the n-dimensional spacesIn this direction the thesis of Zielinski [3]was pioneering

In the case 119899 = 2 Γ(119905) = (119905 1199052

) he proved100381710038171003817100381710038171198672120572120573

119891100381710038171003817100381710038171198712(R2)

⪯1003817100381710038171003817119891

10038171003817100381710038171198712(R2)lArrrArr 120573 ge 3120572 (8)

Later on Chandarana [4] generalized the result of Zielin-ski into more common curves showing the correspondingboundedness on 119871

2

(R3) and 119871119901

(R3) However as the com-plexity of his method with the dimension increases he didnot reach a general result

After yearsrsquo exploration the authors in [5] solved thequestion completely

TheoremC (see [5]) Let 120579 = (1205791 1205792 120579

119899) isin R119899 and Γ

120579(119905) =

(1205791|119905|1199011 1205792|119905|1199012 120579

119899|119905|119901119899) Define 119867

119899120572120573as

119867119899120572120573

119891 (119909) = int

1

minus1

119891 (119909 minus Γ120579(119905)) 119890119894|119905|minus120573

|119905|minus1minus120572d119905 120573 gt 120572 (9)

If 1199011 1199012 119901

119899 120572 120573 are all positive

(1) 119867119899120572120573

119891119871119901

(R119899)⪯ 119891

119871119901

(R119899) as long as 120573 gt (119899 +

1)120572 and 2120573(2120573 minus (119899 + 1)120572) lt 119901 lt 2120573(119899 + 1)120572(2) 119867

1198991205721205731198911198712

(R119899)⪯ 119891

1198712

(R119899) 119894119891 120573 = (119899 + 1)120572

Further on the authors [6] proved that if 119901119894are mutually

different then10038171003817100381710038171003817119867119899120572120573

119891100381710038171003817100381710038171198712(R119899)

⪯1003817100381710038171003817119891

10038171003817100381710038171198712(R119899)lArrrArr 120573 ge (119899 + 1) 120572 (10)

In [5] it is showed that we only need to consider the partof 119905 ge 0 and Γ

120579(119905) could be reduced to Γ(119905) = (119905

1199011 1199051199012 119905

119901119899)

That is the operator which is given at the very start

119867119899120572120573

119891 (119909) = int

1

0

119891 (119909 minus Γ (119905)) 119890119894119905minus120573

119905minus1minus120572d119905 (11)

and so is what we will discuss in the next section Just underthe bases of [5 6] we probe into the boundedness of 119867

119899120572120573

on Sobolev spaces

2 Preliminary and Main Results

As we know smoothness is a crucial property of functionsand it is common to use high-ordered continuity to describeit Yet an arbitrary function is not always differentiableDue to this Sobolev spaces are introduced to measure thedifferentiability of some more common functions Thesespaces are widely used in both harmonic analysis and PDE

There are several equivalent definitions of such spaces Letus start with the classical definition Firstly we need to recallthe concept of generalized derivatives

Definition 1 Let 119906 isin S1015840 and let 120572 be multiple index Define

⟨120597120572

119906 119891⟩ = (minus1)|120572|

⟨119906 120597|120572|

119891⟩ (12)

If 119906 is a function then 120597120572

119906 the derivative of 119906 in themeaningof distribution is called weak derivative

Definition 2 (see [7]) Let 119896 be a nonnegative integer and 1 lt

119901 lt infin We can define the Sobolev spaces 119871119901119896(R119899) as follows

119871119901

119896(R119899

) = 119891 isin 119871119901

(R119899

) | 120597120572

119891 isin 119871119901

(R119899

) forall120572 |120572| le 119896

(13)

And the norm is given as

119891119871119901

119896

(R119899) = sum

|120572|le119896

1003817100381710038171003817120597120572

1198911003817100381710038171003817119871119901(R119899)

(14)

where 120597(00)

119891 = 119891

It is easy to see that119871119901119896(R119899) is a proper subspace of119871119901(R119899)

The indice 119896 characterizes the smoothness of the functionspaces and we have the following inclusion relations

119871119901

(R119899

) sup 119871119901

1(R119899

) sup 119871119901

2(R119899

) sup 119871119901

3(R119899

) sup sdot sdot sdot (15)

In the above definition 119896 should be an integer Furtheron we can extend the definitions without assuming 119896 to bean integer

Definition 3 (see [7]) Let 119904 be real and 1 lt 119901 lt infin Theinhomogeneous Sobolev spaces 119871

119901

119904(R119899) consisted of all the

elements 119906 of S1015840 which satisfies the following property

((1 +10038161003816100381610038161205851003816100381610038161003816

2

)1199042

) isin 119871119901

(R119899

) (16)

And the corresponding norm is given below

119906 119871119901

119904

(R119899) =

1003817100381710038171003817100381710038171003817((1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

)

1003817100381710038171003817100381710038171003817119871119901(R119899) (17)

For the definition there are some observations

(1) if 119904 = 0 119871119901119904(R119899) = 119871

119901

(R119899)(2) for every 119904 119871119901

119904(R119899) is subset of 119871119901(R119899)

(3) if 119904 = 119896 is a nonnegative integer the two definitionscoincide

Along with inhomogeneous Sobolev spaces we can givethe definition of the homogeneous Sobolev spaces

Definition 4 (see [7]) Let 119904 be a real number and 1 lt 119901 lt infinWe define homogeneous Sobolev spaces 119901

119904(R119899) as follows

119901

119904(R119899

) = 119906 | 119906 isinS1015840 (R119899)

P (

10038161003816100381610038161205851003816100381610038161003816

119904

) isin 119871119901

(R119899

) (18)

and for the distributions in 119901

119904(R119899) we can define

119906119901

119904

(R119899) =1003817100381710038171003817(|sdot|119904

) 1003817100381710038171003817119871119901(R119899)

(19)

What should be noticed is that the elements of homo-geneous Sobolev spaces

119901

119904(R119899) may not belong to 119871

119901

(R119899)Actually these elements are equivalent classes of the temperdistributions Formore details please refer to chapter 6 of [7]

Journal of Function Spaces 3

We also need the following Van der Corput Lemmawhich is themost important lemma to estimate the oscillatingintegrals

Van der Corput Lemma Let120595 and 120601 be smooth real functionsin (119886 119887) and 119896 isin N If |120595(119896)(119905)| ge 1 for all 119905 isin (119886 119887) and oneof the two below conditions are satisfied (1) 119896 = 1 1205951015840(119905) ismonotone in (119886 119887) (2) 119896 ge 2 then

100381610038161003816100381610038161003816100381610038161003816

int

119887

119886

119890119894120582120595(119905)

120601 (119905) d119905100381610038161003816100381610038161003816100381610038161003816

le 119862119896120582minus1119896

(1003816100381610038161003816120601 (119887)

1003816100381610038161003816 + int

119887

119886

100381610038161003816100381610038161206011015840

(119905)10038161003816100381610038161003816d119905)

(20)

The main results of the paper are as follows

Theorem 5 For the operator 119867119899120572120573

in the definition of Γ120579(119905)

1199011 1199012 119901

119899 120572 120573 are all positive If 120573 gt (119899+1)120572 and 2120573(2120573minus

(119899 + 1)120572) lt 119901 lt 2120573(119899 + 1)120572 then10038171003817100381710038171003817119867119899120572120573

11989110038171003817100381710038171003817119871119901

119904

(R119899)⪯

10038171003817100381710038171198911003817100381710038171003817119871119901

119904

(R119899) (21)

Theorem 6 For the operator 119867119899120572120573

in the definition of Γ120579(119905)

1199011 1199012 119901

119899 120572 120573 are all positive If 120572 lt 120573(119873+1(119899 + 1)) and

119873 is the biggest integer not more than 119904 then10038171003817100381710038171003817119867119899120572120573

119891100381710038171003817100381710038171198712(R119899)

⪯1003817100381710038171003817119891

10038171003817100381710038171198712119904

(R119899) (22)

3 Proof of the Main Results

Proof of Theorem 5 To deal with the singularity on thedenominator of the operator 119867

119899120572120573 a dyadic decomposition

is introducedSuppose Φ is a 119862

infin function supported on [12 2] Bynormalization it can be assumed that

+infin

sum

119895=minusinfin

Φ(2119895

119905) equiv 1 (23)

is true for all 119905 gt 0 So we can decomposite119867119899120572120573

as follows

119867119899120572120573

119891 (119909) =

infin

sum

119895=0

int

1

0

Φ(2119895

119905) 119891 (119909 minus Γ (119905)) 119890119894119905minus120573

119905minus1minus120572d119905

=

infin

sum

119895=0

119867119895119891 (119909)

(24)

On account of the support ofΦ we only need to consider thecase where 119895 ge 0

By Minkowskirsquos inequality it is easy to obtain the bound-edness of119867

119895on 1198711

(R119899)

1198671198951198911198711

(R119899) ⪯ 2119895120572

1198911198711

(R119899) (25)

Taking Fourier transform we get the multiple form of119867119895119891

119867119895119891 (120585) = 119898

119895(120585) 119891 (120585) (26)

where

119898119895(120585) = 119898

119895(1205851 1205852 120585

119899)

= int

1

0

Φ(2119895

119905) 119905minus1minus120572

119890119894(119905minus120573

minussum119899

119896=1

120585119896

119905119901

119896 )d119905(27)

In [5] the authors proved

119898119895119871infin

(R119899) ⪯ 2119895(120572minus120573(119899+1))

(28)

Thus by Plancherelrsquos theorem we have

1198671198951198911198712

119904

(R119899) =

1003817100381710038171003817100381710038171003817((1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

119867119895119891 (120585))

10038171003817100381710038171003817100381710038171198712(R119899)

=

1003817100381710038171003817100381710038171003817(1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

119867119895119891(120585)

10038171003817100381710038171003817100381710038171198712(R119899)

=

1003817100381710038171003817100381710038171003817(1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

119891(120585)119898119895(120585)

10038171003817100381710038171003817100381710038171198712(R119899)

⪯ 2119895(120572minus120573(119899+1))

1003817100381710038171003817100381710038171003817(1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

119891

10038171003817100381710038171003817100381710038171198712(R119899)

= 2119895(120572minus120573(119899+1))1003817100381710038171003817119891

10038171003817100381710038171198712119904

(R119899)

(29)

So

10038171003817100381710038171003817119867119899120572120573

119891100381710038171003817100381710038171198712119904

(R119899)⪯

infin

sum

119895=0

2119895(120572minus120573(119899+1))1003817100381710038171003817119891

10038171003817100381710038171198712119904

(R119899) (30)

To make sure 119867119899120572120573

is bounded on 1198712

119904(R119899) (for all 119904) it

is only needed that 120573 gt (119899 + 1)120572 which is the same asthe requirement of the boundedness on 119871

2

(R119899) Roughlyspeaking the operators preserve the smoothness of thefunctions

To get the boundedness on 119871119901

119904(R119899)(119901 gt 1) we will use the

interpolation between (25) and (29) It can be shown that

10038171003817100381710038171003817119867119895

10038171003817100381710038171003817119871119901

2119904(1minus1119901)

(R119899)rarr119871119901

2119904(1minus1119901)

⪯ 2119895(120572minus2120573(1minus1119901)(119899+1))

(31)

As 119904 is arbitrary it suffices to show that120572minus2120573(1minus1119901)(119899+1) lt

0 that is

2120573

2120573 minus (119899 + 1) 120572lt 119901 le 2 (32)

So119867119899120572120573

is bounded on 119871119901

119904(R119899)

By duality argument it is finally proved that if 120573 gt (119899 +

1)120572 then 119867119899120572120573

is bounded on 119871119901

119904(R119899) where 2120573(2120573 minus (119899 +

1)120572) lt 119901 lt 2120573(119899 + 1)120572 and 119904 is arbitrary

Theorem 5 indicates that the operator 119867119899120572120573

can sustainthe ldquosmoothnessrdquo of functions If what we care about is notthe boundedness from Sobolev spaces to Sobolev spaces butthe boundedness from Sobolev spaces to 119871

119901 spaces then thelifting of the smoothness of 119891 can reduce the restriction of 120572120573 which would be explained in the next theorem

4 Journal of Function Spaces

Proof of Theorem 6 Here we will follow the notations andcalculations inTheorem 5 that is

119867119899120572120573

119891 (119909) =

infin

sum

119895=0

119867119895119891 (119909) 119867

119895119891 (120585) = 119898

119895(120585) 119891 (120585)

119898119895(120585) = int

1

0

Φ(2119895

119905) 119905minus1minus120572

119890119894(119905minus120573

minussum119899

119896=1

120585119896

119905119901

119896 )d119905

(33)

Let119873 be the largest integer not exceeding 119904 For Sobolevspaces 1198712

119904(R119899) by Plancherelrsquos theorem when 119904

1gt 1199042

1198712

1199041

(R119899

) sub 1198712

1199042

(R119899

) (34)

and for an element 119891 of 11987121199041

1003817100381710038171003817119891

10038171003817100381710038171198712119904

2

(R119899)lt

100381710038171003817100381711989110038171003817100381710038171198712119904

1

(R119899) (35)

The case 1199041= 119904 1199042= 119873 will be used later

We will make a more accurate estimation of 119898119895 Notice

thatΦ is a119862infin function supported on [12 2] By substitutionof variables 2119895119905 rarr 119905 it is shown that

119898119895(120585) = 2

119895120572

int

infin

0

Φ (119905)

1199051+120572119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )d119905 = 2119895120572

119898120572120573

(36)

where we extend the upper limit of the integral into infinityConsidering the support of Φ and 119895 ge 0 this extension willnot make essential difference to the result

In [5] the authors use Van der Corput Lemma and anelementary statement to prove

119898120572120573

119871infin

(R119899) ⪯ 2minus119895120573(119899+1)

(37)

After thoughtful investigation of the proof in [5] it isunearthed that the part Φ(119905)119905

1+120572 will only contribute to thecontrol constant in the inequality above without any effect onthe order of the index

In the subsequent calculation we will substitute the partΦ(119905)119905

1+120572 with notationΨ(119905) AfterwardsΨ(119905) always meansa 119862infin function supported on [12 2] With the process Ψ(119905)

will represent different functions which will not do harm tothe final result That is ifΨ(119905) is a 119862

infin function supported on[12 2] then

10038171003817100381710038171003817100381710038171003817

int

infin

0

Ψ (119905) 119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )d11990510038171003817100381710038171003817100381710038171003817119871infin(R119899)

⪯ 2minus119895120573119899+1

(38)

119898120572120573

(120585) =119894

2119895120573int

infin

0

119890minus119894(sum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )

Ψ (119905) d1198901198942119895120573

119905minus120573

(39)

using integration by parts

119898120572120573

(120585)

=minus119894

2119895120573int

infin

0

119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )

Ψ (119905) d119905

+

119899

sum

119896=1

1205851198961199011198962minus119895119901119896

2119895120573int

infin

0

119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )

Ψ (119905) d119905

(40)

Notice thatΨ indicates different functions in different placesstill they are all 119862infin functions supported on [12 2]

By (38) the absolute value of every integral above can bedominated by 2

minus119895120573(119899+1) Along with Cauchyrsquos inequality wehave

10038161003816100381610038161003816119898120572120573

(120585)10038161003816100381610038161003816⪯ 2minus119895120573(119899+1)

2minus119895120573

(1 +10038161003816100381610038161205851003816100381610038161003816

2

)12

(41)

Repeating integration by parts it is suggested for any119872 that

10038161003816100381610038161003816119898120572120573

(120585)10038161003816100381610038161003816⪯ 2minus119895120573(119899+1)

2minus119895119872120573

(1 + |120585|2

)1198722

(42)

So an estimation to the 1198712 norm of 119867

119895119891 could be made

Recall that119873 represents the largest integer not exceeding 119904

1198671198951198911198712

(R119899) =10038171003817100381710038171003817119867119895119891100381710038171003817100381710038171198712(R119899)

=10038171003817100381710038171003817119898119895119891100381710038171003817100381710038171198712(R119899)

⪯ 2119895120572minus119895119873120573minus119895120573(119899+1)

1003817100381710038171003817100381710038171003817(1 + |120585|

2

)1198732

119891

10038171003817100381710038171003817100381710038171198712(R119899)

= 2119895120572minus119895119873120573minus119895120573(119899+1)1003817100381710038171003817119891

10038171003817100381710038171198712119873

(R119899)

le 2119895120572minus119895119873120573minus119895120573(119899+1)1003817100381710038171003817119891

10038171003817100381710038171198712119904

(R119899)

(43)

Further on to guarantee 119867119899120572120573

is bounded from 1198712

119904(R119899) to

1198712

(R119899) it is only needed that

120572 minus 119873120573 minus120573

119899 + 1lt 0 (44)

that is 120572 lt 120573(119873 + 1(119899 + 1))When 119904 = 0 119873 = 0 that is 120573 gt (119899 + 1)120572 which is the

result in [5]

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This research was supported by PSF of Zhejiang province(BSH1302046)

References

[1] A P Calderon and A Zygmund ldquoOn singular integralsrdquo Amer-ican Journal of Mathematics vol 78 no 2 pp 289ndash309 1956

[2] E B Fabes and N M Riviere ldquoSingular integrals with mixedhomogeneityrdquo Studia Mathematica vol 27 no 1 pp 19ndash381966

[3] M Zielinski Highly oscillatory singular integrals along curves[PhD dissertation] University of Wisconsin-Madison Madi-son Wis USA 1985

[4] S Chandarana ldquo119871119901-bounds for hypersingular integral opera-tors along curvesrdquo Pacific Journal of Mathematics vol 175 no2 pp 389ndash416 1996

Journal of Function Spaces 5

[5] J ChenD S FanMWang andX R Zhu ldquo119871119901 bounds for oscil-latory hyper-hilbert transform along curvesrdquo Proceedings of theAmerican Mathematical Society vol 136 no 9 pp 3145ndash31532008

[6] J C Chen D S Fan and X R Zhu ldquoSharp 1198712 boundedness

of the oscillatory hyper-Hilbert transform along curvesrdquo ActaMathematica Sinica English Series vol 26 no 4 pp 653ndash6582010

[7] L Grafakos Classical and Modern Fourier Analysis ChinaMachine Press Beijing China 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Boundedness of Oscillatory Hyper-Hilbert

2 Journal of Function Spaces

where 120572 ge 0 120573 ge 0 and Γ(119905) = (1199051199011 1199051199012 119905

119901119899) denotes a

curve in the n-dimensional spacesIn this direction the thesis of Zielinski [3]was pioneering

In the case 119899 = 2 Γ(119905) = (119905 1199052

) he proved100381710038171003817100381710038171198672120572120573

119891100381710038171003817100381710038171198712(R2)

⪯1003817100381710038171003817119891

10038171003817100381710038171198712(R2)lArrrArr 120573 ge 3120572 (8)

Later on Chandarana [4] generalized the result of Zielin-ski into more common curves showing the correspondingboundedness on 119871

2

(R3) and 119871119901

(R3) However as the com-plexity of his method with the dimension increases he didnot reach a general result

After yearsrsquo exploration the authors in [5] solved thequestion completely

TheoremC (see [5]) Let 120579 = (1205791 1205792 120579

119899) isin R119899 and Γ

120579(119905) =

(1205791|119905|1199011 1205792|119905|1199012 120579

119899|119905|119901119899) Define 119867

119899120572120573as

119867119899120572120573

119891 (119909) = int

1

minus1

119891 (119909 minus Γ120579(119905)) 119890119894|119905|minus120573

|119905|minus1minus120572d119905 120573 gt 120572 (9)

If 1199011 1199012 119901

119899 120572 120573 are all positive

(1) 119867119899120572120573

119891119871119901

(R119899)⪯ 119891

119871119901

(R119899) as long as 120573 gt (119899 +

1)120572 and 2120573(2120573 minus (119899 + 1)120572) lt 119901 lt 2120573(119899 + 1)120572(2) 119867

1198991205721205731198911198712

(R119899)⪯ 119891

1198712

(R119899) 119894119891 120573 = (119899 + 1)120572

Further on the authors [6] proved that if 119901119894are mutually

different then10038171003817100381710038171003817119867119899120572120573

119891100381710038171003817100381710038171198712(R119899)

⪯1003817100381710038171003817119891

10038171003817100381710038171198712(R119899)lArrrArr 120573 ge (119899 + 1) 120572 (10)

In [5] it is showed that we only need to consider the partof 119905 ge 0 and Γ

120579(119905) could be reduced to Γ(119905) = (119905

1199011 1199051199012 119905

119901119899)

That is the operator which is given at the very start

119867119899120572120573

119891 (119909) = int

1

0

119891 (119909 minus Γ (119905)) 119890119894119905minus120573

119905minus1minus120572d119905 (11)

and so is what we will discuss in the next section Just underthe bases of [5 6] we probe into the boundedness of 119867

119899120572120573

on Sobolev spaces

2 Preliminary and Main Results

As we know smoothness is a crucial property of functionsand it is common to use high-ordered continuity to describeit Yet an arbitrary function is not always differentiableDue to this Sobolev spaces are introduced to measure thedifferentiability of some more common functions Thesespaces are widely used in both harmonic analysis and PDE

There are several equivalent definitions of such spaces Letus start with the classical definition Firstly we need to recallthe concept of generalized derivatives

Definition 1 Let 119906 isin S1015840 and let 120572 be multiple index Define

⟨120597120572

119906 119891⟩ = (minus1)|120572|

⟨119906 120597|120572|

119891⟩ (12)

If 119906 is a function then 120597120572

119906 the derivative of 119906 in themeaningof distribution is called weak derivative

Definition 2 (see [7]) Let 119896 be a nonnegative integer and 1 lt

119901 lt infin We can define the Sobolev spaces 119871119901119896(R119899) as follows

119871119901

119896(R119899

) = 119891 isin 119871119901

(R119899

) | 120597120572

119891 isin 119871119901

(R119899

) forall120572 |120572| le 119896

(13)

And the norm is given as

119891119871119901

119896

(R119899) = sum

|120572|le119896

1003817100381710038171003817120597120572

1198911003817100381710038171003817119871119901(R119899)

(14)

where 120597(00)

119891 = 119891

It is easy to see that119871119901119896(R119899) is a proper subspace of119871119901(R119899)

The indice 119896 characterizes the smoothness of the functionspaces and we have the following inclusion relations

119871119901

(R119899

) sup 119871119901

1(R119899

) sup 119871119901

2(R119899

) sup 119871119901

3(R119899

) sup sdot sdot sdot (15)

In the above definition 119896 should be an integer Furtheron we can extend the definitions without assuming 119896 to bean integer

Definition 3 (see [7]) Let 119904 be real and 1 lt 119901 lt infin Theinhomogeneous Sobolev spaces 119871

119901

119904(R119899) consisted of all the

elements 119906 of S1015840 which satisfies the following property

((1 +10038161003816100381610038161205851003816100381610038161003816

2

)1199042

) isin 119871119901

(R119899

) (16)

And the corresponding norm is given below

119906 119871119901

119904

(R119899) =

1003817100381710038171003817100381710038171003817((1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

)

1003817100381710038171003817100381710038171003817119871119901(R119899) (17)

For the definition there are some observations

(1) if 119904 = 0 119871119901119904(R119899) = 119871

119901

(R119899)(2) for every 119904 119871119901

119904(R119899) is subset of 119871119901(R119899)

(3) if 119904 = 119896 is a nonnegative integer the two definitionscoincide

Along with inhomogeneous Sobolev spaces we can givethe definition of the homogeneous Sobolev spaces

Definition 4 (see [7]) Let 119904 be a real number and 1 lt 119901 lt infinWe define homogeneous Sobolev spaces 119901

119904(R119899) as follows

119901

119904(R119899

) = 119906 | 119906 isinS1015840 (R119899)

P (

10038161003816100381610038161205851003816100381610038161003816

119904

) isin 119871119901

(R119899

) (18)

and for the distributions in 119901

119904(R119899) we can define

119906119901

119904

(R119899) =1003817100381710038171003817(|sdot|119904

) 1003817100381710038171003817119871119901(R119899)

(19)

What should be noticed is that the elements of homo-geneous Sobolev spaces

119901

119904(R119899) may not belong to 119871

119901

(R119899)Actually these elements are equivalent classes of the temperdistributions Formore details please refer to chapter 6 of [7]

Journal of Function Spaces 3

We also need the following Van der Corput Lemmawhich is themost important lemma to estimate the oscillatingintegrals

Van der Corput Lemma Let120595 and 120601 be smooth real functionsin (119886 119887) and 119896 isin N If |120595(119896)(119905)| ge 1 for all 119905 isin (119886 119887) and oneof the two below conditions are satisfied (1) 119896 = 1 1205951015840(119905) ismonotone in (119886 119887) (2) 119896 ge 2 then

100381610038161003816100381610038161003816100381610038161003816

int

119887

119886

119890119894120582120595(119905)

120601 (119905) d119905100381610038161003816100381610038161003816100381610038161003816

le 119862119896120582minus1119896

(1003816100381610038161003816120601 (119887)

1003816100381610038161003816 + int

119887

119886

100381610038161003816100381610038161206011015840

(119905)10038161003816100381610038161003816d119905)

(20)

The main results of the paper are as follows

Theorem 5 For the operator 119867119899120572120573

in the definition of Γ120579(119905)

1199011 1199012 119901

119899 120572 120573 are all positive If 120573 gt (119899+1)120572 and 2120573(2120573minus

(119899 + 1)120572) lt 119901 lt 2120573(119899 + 1)120572 then10038171003817100381710038171003817119867119899120572120573

11989110038171003817100381710038171003817119871119901

119904

(R119899)⪯

10038171003817100381710038171198911003817100381710038171003817119871119901

119904

(R119899) (21)

Theorem 6 For the operator 119867119899120572120573

in the definition of Γ120579(119905)

1199011 1199012 119901

119899 120572 120573 are all positive If 120572 lt 120573(119873+1(119899 + 1)) and

119873 is the biggest integer not more than 119904 then10038171003817100381710038171003817119867119899120572120573

119891100381710038171003817100381710038171198712(R119899)

⪯1003817100381710038171003817119891

10038171003817100381710038171198712119904

(R119899) (22)

3 Proof of the Main Results

Proof of Theorem 5 To deal with the singularity on thedenominator of the operator 119867

119899120572120573 a dyadic decomposition

is introducedSuppose Φ is a 119862

infin function supported on [12 2] Bynormalization it can be assumed that

+infin

sum

119895=minusinfin

Φ(2119895

119905) equiv 1 (23)

is true for all 119905 gt 0 So we can decomposite119867119899120572120573

as follows

119867119899120572120573

119891 (119909) =

infin

sum

119895=0

int

1

0

Φ(2119895

119905) 119891 (119909 minus Γ (119905)) 119890119894119905minus120573

119905minus1minus120572d119905

=

infin

sum

119895=0

119867119895119891 (119909)

(24)

On account of the support ofΦ we only need to consider thecase where 119895 ge 0

By Minkowskirsquos inequality it is easy to obtain the bound-edness of119867

119895on 1198711

(R119899)

1198671198951198911198711

(R119899) ⪯ 2119895120572

1198911198711

(R119899) (25)

Taking Fourier transform we get the multiple form of119867119895119891

119867119895119891 (120585) = 119898

119895(120585) 119891 (120585) (26)

where

119898119895(120585) = 119898

119895(1205851 1205852 120585

119899)

= int

1

0

Φ(2119895

119905) 119905minus1minus120572

119890119894(119905minus120573

minussum119899

119896=1

120585119896

119905119901

119896 )d119905(27)

In [5] the authors proved

119898119895119871infin

(R119899) ⪯ 2119895(120572minus120573(119899+1))

(28)

Thus by Plancherelrsquos theorem we have

1198671198951198911198712

119904

(R119899) =

1003817100381710038171003817100381710038171003817((1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

119867119895119891 (120585))

10038171003817100381710038171003817100381710038171198712(R119899)

=

1003817100381710038171003817100381710038171003817(1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

119867119895119891(120585)

10038171003817100381710038171003817100381710038171198712(R119899)

=

1003817100381710038171003817100381710038171003817(1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

119891(120585)119898119895(120585)

10038171003817100381710038171003817100381710038171198712(R119899)

⪯ 2119895(120572minus120573(119899+1))

1003817100381710038171003817100381710038171003817(1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

119891

10038171003817100381710038171003817100381710038171198712(R119899)

= 2119895(120572minus120573(119899+1))1003817100381710038171003817119891

10038171003817100381710038171198712119904

(R119899)

(29)

So

10038171003817100381710038171003817119867119899120572120573

119891100381710038171003817100381710038171198712119904

(R119899)⪯

infin

sum

119895=0

2119895(120572minus120573(119899+1))1003817100381710038171003817119891

10038171003817100381710038171198712119904

(R119899) (30)

To make sure 119867119899120572120573

is bounded on 1198712

119904(R119899) (for all 119904) it

is only needed that 120573 gt (119899 + 1)120572 which is the same asthe requirement of the boundedness on 119871

2

(R119899) Roughlyspeaking the operators preserve the smoothness of thefunctions

To get the boundedness on 119871119901

119904(R119899)(119901 gt 1) we will use the

interpolation between (25) and (29) It can be shown that

10038171003817100381710038171003817119867119895

10038171003817100381710038171003817119871119901

2119904(1minus1119901)

(R119899)rarr119871119901

2119904(1minus1119901)

⪯ 2119895(120572minus2120573(1minus1119901)(119899+1))

(31)

As 119904 is arbitrary it suffices to show that120572minus2120573(1minus1119901)(119899+1) lt

0 that is

2120573

2120573 minus (119899 + 1) 120572lt 119901 le 2 (32)

So119867119899120572120573

is bounded on 119871119901

119904(R119899)

By duality argument it is finally proved that if 120573 gt (119899 +

1)120572 then 119867119899120572120573

is bounded on 119871119901

119904(R119899) where 2120573(2120573 minus (119899 +

1)120572) lt 119901 lt 2120573(119899 + 1)120572 and 119904 is arbitrary

Theorem 5 indicates that the operator 119867119899120572120573

can sustainthe ldquosmoothnessrdquo of functions If what we care about is notthe boundedness from Sobolev spaces to Sobolev spaces butthe boundedness from Sobolev spaces to 119871

119901 spaces then thelifting of the smoothness of 119891 can reduce the restriction of 120572120573 which would be explained in the next theorem

4 Journal of Function Spaces

Proof of Theorem 6 Here we will follow the notations andcalculations inTheorem 5 that is

119867119899120572120573

119891 (119909) =

infin

sum

119895=0

119867119895119891 (119909) 119867

119895119891 (120585) = 119898

119895(120585) 119891 (120585)

119898119895(120585) = int

1

0

Φ(2119895

119905) 119905minus1minus120572

119890119894(119905minus120573

minussum119899

119896=1

120585119896

119905119901

119896 )d119905

(33)

Let119873 be the largest integer not exceeding 119904 For Sobolevspaces 1198712

119904(R119899) by Plancherelrsquos theorem when 119904

1gt 1199042

1198712

1199041

(R119899

) sub 1198712

1199042

(R119899

) (34)

and for an element 119891 of 11987121199041

1003817100381710038171003817119891

10038171003817100381710038171198712119904

2

(R119899)lt

100381710038171003817100381711989110038171003817100381710038171198712119904

1

(R119899) (35)

The case 1199041= 119904 1199042= 119873 will be used later

We will make a more accurate estimation of 119898119895 Notice

thatΦ is a119862infin function supported on [12 2] By substitutionof variables 2119895119905 rarr 119905 it is shown that

119898119895(120585) = 2

119895120572

int

infin

0

Φ (119905)

1199051+120572119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )d119905 = 2119895120572

119898120572120573

(36)

where we extend the upper limit of the integral into infinityConsidering the support of Φ and 119895 ge 0 this extension willnot make essential difference to the result

In [5] the authors use Van der Corput Lemma and anelementary statement to prove

119898120572120573

119871infin

(R119899) ⪯ 2minus119895120573(119899+1)

(37)

After thoughtful investigation of the proof in [5] it isunearthed that the part Φ(119905)119905

1+120572 will only contribute to thecontrol constant in the inequality above without any effect onthe order of the index

In the subsequent calculation we will substitute the partΦ(119905)119905

1+120572 with notationΨ(119905) AfterwardsΨ(119905) always meansa 119862infin function supported on [12 2] With the process Ψ(119905)

will represent different functions which will not do harm tothe final result That is ifΨ(119905) is a 119862

infin function supported on[12 2] then

10038171003817100381710038171003817100381710038171003817

int

infin

0

Ψ (119905) 119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )d11990510038171003817100381710038171003817100381710038171003817119871infin(R119899)

⪯ 2minus119895120573119899+1

(38)

119898120572120573

(120585) =119894

2119895120573int

infin

0

119890minus119894(sum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )

Ψ (119905) d1198901198942119895120573

119905minus120573

(39)

using integration by parts

119898120572120573

(120585)

=minus119894

2119895120573int

infin

0

119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )

Ψ (119905) d119905

+

119899

sum

119896=1

1205851198961199011198962minus119895119901119896

2119895120573int

infin

0

119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )

Ψ (119905) d119905

(40)

Notice thatΨ indicates different functions in different placesstill they are all 119862infin functions supported on [12 2]

By (38) the absolute value of every integral above can bedominated by 2

minus119895120573(119899+1) Along with Cauchyrsquos inequality wehave

10038161003816100381610038161003816119898120572120573

(120585)10038161003816100381610038161003816⪯ 2minus119895120573(119899+1)

2minus119895120573

(1 +10038161003816100381610038161205851003816100381610038161003816

2

)12

(41)

Repeating integration by parts it is suggested for any119872 that

10038161003816100381610038161003816119898120572120573

(120585)10038161003816100381610038161003816⪯ 2minus119895120573(119899+1)

2minus119895119872120573

(1 + |120585|2

)1198722

(42)

So an estimation to the 1198712 norm of 119867

119895119891 could be made

Recall that119873 represents the largest integer not exceeding 119904

1198671198951198911198712

(R119899) =10038171003817100381710038171003817119867119895119891100381710038171003817100381710038171198712(R119899)

=10038171003817100381710038171003817119898119895119891100381710038171003817100381710038171198712(R119899)

⪯ 2119895120572minus119895119873120573minus119895120573(119899+1)

1003817100381710038171003817100381710038171003817(1 + |120585|

2

)1198732

119891

10038171003817100381710038171003817100381710038171198712(R119899)

= 2119895120572minus119895119873120573minus119895120573(119899+1)1003817100381710038171003817119891

10038171003817100381710038171198712119873

(R119899)

le 2119895120572minus119895119873120573minus119895120573(119899+1)1003817100381710038171003817119891

10038171003817100381710038171198712119904

(R119899)

(43)

Further on to guarantee 119867119899120572120573

is bounded from 1198712

119904(R119899) to

1198712

(R119899) it is only needed that

120572 minus 119873120573 minus120573

119899 + 1lt 0 (44)

that is 120572 lt 120573(119873 + 1(119899 + 1))When 119904 = 0 119873 = 0 that is 120573 gt (119899 + 1)120572 which is the

result in [5]

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This research was supported by PSF of Zhejiang province(BSH1302046)

References

[1] A P Calderon and A Zygmund ldquoOn singular integralsrdquo Amer-ican Journal of Mathematics vol 78 no 2 pp 289ndash309 1956

[2] E B Fabes and N M Riviere ldquoSingular integrals with mixedhomogeneityrdquo Studia Mathematica vol 27 no 1 pp 19ndash381966

[3] M Zielinski Highly oscillatory singular integrals along curves[PhD dissertation] University of Wisconsin-Madison Madi-son Wis USA 1985

[4] S Chandarana ldquo119871119901-bounds for hypersingular integral opera-tors along curvesrdquo Pacific Journal of Mathematics vol 175 no2 pp 389ndash416 1996

Journal of Function Spaces 5

[5] J ChenD S FanMWang andX R Zhu ldquo119871119901 bounds for oscil-latory hyper-hilbert transform along curvesrdquo Proceedings of theAmerican Mathematical Society vol 136 no 9 pp 3145ndash31532008

[6] J C Chen D S Fan and X R Zhu ldquoSharp 1198712 boundedness

of the oscillatory hyper-Hilbert transform along curvesrdquo ActaMathematica Sinica English Series vol 26 no 4 pp 653ndash6582010

[7] L Grafakos Classical and Modern Fourier Analysis ChinaMachine Press Beijing China 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Boundedness of Oscillatory Hyper-Hilbert

Journal of Function Spaces 3

We also need the following Van der Corput Lemmawhich is themost important lemma to estimate the oscillatingintegrals

Van der Corput Lemma Let120595 and 120601 be smooth real functionsin (119886 119887) and 119896 isin N If |120595(119896)(119905)| ge 1 for all 119905 isin (119886 119887) and oneof the two below conditions are satisfied (1) 119896 = 1 1205951015840(119905) ismonotone in (119886 119887) (2) 119896 ge 2 then

100381610038161003816100381610038161003816100381610038161003816

int

119887

119886

119890119894120582120595(119905)

120601 (119905) d119905100381610038161003816100381610038161003816100381610038161003816

le 119862119896120582minus1119896

(1003816100381610038161003816120601 (119887)

1003816100381610038161003816 + int

119887

119886

100381610038161003816100381610038161206011015840

(119905)10038161003816100381610038161003816d119905)

(20)

The main results of the paper are as follows

Theorem 5 For the operator 119867119899120572120573

in the definition of Γ120579(119905)

1199011 1199012 119901

119899 120572 120573 are all positive If 120573 gt (119899+1)120572 and 2120573(2120573minus

(119899 + 1)120572) lt 119901 lt 2120573(119899 + 1)120572 then10038171003817100381710038171003817119867119899120572120573

11989110038171003817100381710038171003817119871119901

119904

(R119899)⪯

10038171003817100381710038171198911003817100381710038171003817119871119901

119904

(R119899) (21)

Theorem 6 For the operator 119867119899120572120573

in the definition of Γ120579(119905)

1199011 1199012 119901

119899 120572 120573 are all positive If 120572 lt 120573(119873+1(119899 + 1)) and

119873 is the biggest integer not more than 119904 then10038171003817100381710038171003817119867119899120572120573

119891100381710038171003817100381710038171198712(R119899)

⪯1003817100381710038171003817119891

10038171003817100381710038171198712119904

(R119899) (22)

3 Proof of the Main Results

Proof of Theorem 5 To deal with the singularity on thedenominator of the operator 119867

119899120572120573 a dyadic decomposition

is introducedSuppose Φ is a 119862

infin function supported on [12 2] Bynormalization it can be assumed that

+infin

sum

119895=minusinfin

Φ(2119895

119905) equiv 1 (23)

is true for all 119905 gt 0 So we can decomposite119867119899120572120573

as follows

119867119899120572120573

119891 (119909) =

infin

sum

119895=0

int

1

0

Φ(2119895

119905) 119891 (119909 minus Γ (119905)) 119890119894119905minus120573

119905minus1minus120572d119905

=

infin

sum

119895=0

119867119895119891 (119909)

(24)

On account of the support ofΦ we only need to consider thecase where 119895 ge 0

By Minkowskirsquos inequality it is easy to obtain the bound-edness of119867

119895on 1198711

(R119899)

1198671198951198911198711

(R119899) ⪯ 2119895120572

1198911198711

(R119899) (25)

Taking Fourier transform we get the multiple form of119867119895119891

119867119895119891 (120585) = 119898

119895(120585) 119891 (120585) (26)

where

119898119895(120585) = 119898

119895(1205851 1205852 120585

119899)

= int

1

0

Φ(2119895

119905) 119905minus1minus120572

119890119894(119905minus120573

minussum119899

119896=1

120585119896

119905119901

119896 )d119905(27)

In [5] the authors proved

119898119895119871infin

(R119899) ⪯ 2119895(120572minus120573(119899+1))

(28)

Thus by Plancherelrsquos theorem we have

1198671198951198911198712

119904

(R119899) =

1003817100381710038171003817100381710038171003817((1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

119867119895119891 (120585))

10038171003817100381710038171003817100381710038171198712(R119899)

=

1003817100381710038171003817100381710038171003817(1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

119867119895119891(120585)

10038171003817100381710038171003817100381710038171198712(R119899)

=

1003817100381710038171003817100381710038171003817(1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

119891(120585)119898119895(120585)

10038171003817100381710038171003817100381710038171198712(R119899)

⪯ 2119895(120572minus120573(119899+1))

1003817100381710038171003817100381710038171003817(1 +

10038161003816100381610038161205851003816100381610038161003816

2

)1199042

119891

10038171003817100381710038171003817100381710038171198712(R119899)

= 2119895(120572minus120573(119899+1))1003817100381710038171003817119891

10038171003817100381710038171198712119904

(R119899)

(29)

So

10038171003817100381710038171003817119867119899120572120573

119891100381710038171003817100381710038171198712119904

(R119899)⪯

infin

sum

119895=0

2119895(120572minus120573(119899+1))1003817100381710038171003817119891

10038171003817100381710038171198712119904

(R119899) (30)

To make sure 119867119899120572120573

is bounded on 1198712

119904(R119899) (for all 119904) it

is only needed that 120573 gt (119899 + 1)120572 which is the same asthe requirement of the boundedness on 119871

2

(R119899) Roughlyspeaking the operators preserve the smoothness of thefunctions

To get the boundedness on 119871119901

119904(R119899)(119901 gt 1) we will use the

interpolation between (25) and (29) It can be shown that

10038171003817100381710038171003817119867119895

10038171003817100381710038171003817119871119901

2119904(1minus1119901)

(R119899)rarr119871119901

2119904(1minus1119901)

⪯ 2119895(120572minus2120573(1minus1119901)(119899+1))

(31)

As 119904 is arbitrary it suffices to show that120572minus2120573(1minus1119901)(119899+1) lt

0 that is

2120573

2120573 minus (119899 + 1) 120572lt 119901 le 2 (32)

So119867119899120572120573

is bounded on 119871119901

119904(R119899)

By duality argument it is finally proved that if 120573 gt (119899 +

1)120572 then 119867119899120572120573

is bounded on 119871119901

119904(R119899) where 2120573(2120573 minus (119899 +

1)120572) lt 119901 lt 2120573(119899 + 1)120572 and 119904 is arbitrary

Theorem 5 indicates that the operator 119867119899120572120573

can sustainthe ldquosmoothnessrdquo of functions If what we care about is notthe boundedness from Sobolev spaces to Sobolev spaces butthe boundedness from Sobolev spaces to 119871

119901 spaces then thelifting of the smoothness of 119891 can reduce the restriction of 120572120573 which would be explained in the next theorem

4 Journal of Function Spaces

Proof of Theorem 6 Here we will follow the notations andcalculations inTheorem 5 that is

119867119899120572120573

119891 (119909) =

infin

sum

119895=0

119867119895119891 (119909) 119867

119895119891 (120585) = 119898

119895(120585) 119891 (120585)

119898119895(120585) = int

1

0

Φ(2119895

119905) 119905minus1minus120572

119890119894(119905minus120573

minussum119899

119896=1

120585119896

119905119901

119896 )d119905

(33)

Let119873 be the largest integer not exceeding 119904 For Sobolevspaces 1198712

119904(R119899) by Plancherelrsquos theorem when 119904

1gt 1199042

1198712

1199041

(R119899

) sub 1198712

1199042

(R119899

) (34)

and for an element 119891 of 11987121199041

1003817100381710038171003817119891

10038171003817100381710038171198712119904

2

(R119899)lt

100381710038171003817100381711989110038171003817100381710038171198712119904

1

(R119899) (35)

The case 1199041= 119904 1199042= 119873 will be used later

We will make a more accurate estimation of 119898119895 Notice

thatΦ is a119862infin function supported on [12 2] By substitutionof variables 2119895119905 rarr 119905 it is shown that

119898119895(120585) = 2

119895120572

int

infin

0

Φ (119905)

1199051+120572119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )d119905 = 2119895120572

119898120572120573

(36)

where we extend the upper limit of the integral into infinityConsidering the support of Φ and 119895 ge 0 this extension willnot make essential difference to the result

In [5] the authors use Van der Corput Lemma and anelementary statement to prove

119898120572120573

119871infin

(R119899) ⪯ 2minus119895120573(119899+1)

(37)

After thoughtful investigation of the proof in [5] it isunearthed that the part Φ(119905)119905

1+120572 will only contribute to thecontrol constant in the inequality above without any effect onthe order of the index

In the subsequent calculation we will substitute the partΦ(119905)119905

1+120572 with notationΨ(119905) AfterwardsΨ(119905) always meansa 119862infin function supported on [12 2] With the process Ψ(119905)

will represent different functions which will not do harm tothe final result That is ifΨ(119905) is a 119862

infin function supported on[12 2] then

10038171003817100381710038171003817100381710038171003817

int

infin

0

Ψ (119905) 119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )d11990510038171003817100381710038171003817100381710038171003817119871infin(R119899)

⪯ 2minus119895120573119899+1

(38)

119898120572120573

(120585) =119894

2119895120573int

infin

0

119890minus119894(sum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )

Ψ (119905) d1198901198942119895120573

119905minus120573

(39)

using integration by parts

119898120572120573

(120585)

=minus119894

2119895120573int

infin

0

119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )

Ψ (119905) d119905

+

119899

sum

119896=1

1205851198961199011198962minus119895119901119896

2119895120573int

infin

0

119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )

Ψ (119905) d119905

(40)

Notice thatΨ indicates different functions in different placesstill they are all 119862infin functions supported on [12 2]

By (38) the absolute value of every integral above can bedominated by 2

minus119895120573(119899+1) Along with Cauchyrsquos inequality wehave

10038161003816100381610038161003816119898120572120573

(120585)10038161003816100381610038161003816⪯ 2minus119895120573(119899+1)

2minus119895120573

(1 +10038161003816100381610038161205851003816100381610038161003816

2

)12

(41)

Repeating integration by parts it is suggested for any119872 that

10038161003816100381610038161003816119898120572120573

(120585)10038161003816100381610038161003816⪯ 2minus119895120573(119899+1)

2minus119895119872120573

(1 + |120585|2

)1198722

(42)

So an estimation to the 1198712 norm of 119867

119895119891 could be made

Recall that119873 represents the largest integer not exceeding 119904

1198671198951198911198712

(R119899) =10038171003817100381710038171003817119867119895119891100381710038171003817100381710038171198712(R119899)

=10038171003817100381710038171003817119898119895119891100381710038171003817100381710038171198712(R119899)

⪯ 2119895120572minus119895119873120573minus119895120573(119899+1)

1003817100381710038171003817100381710038171003817(1 + |120585|

2

)1198732

119891

10038171003817100381710038171003817100381710038171198712(R119899)

= 2119895120572minus119895119873120573minus119895120573(119899+1)1003817100381710038171003817119891

10038171003817100381710038171198712119873

(R119899)

le 2119895120572minus119895119873120573minus119895120573(119899+1)1003817100381710038171003817119891

10038171003817100381710038171198712119904

(R119899)

(43)

Further on to guarantee 119867119899120572120573

is bounded from 1198712

119904(R119899) to

1198712

(R119899) it is only needed that

120572 minus 119873120573 minus120573

119899 + 1lt 0 (44)

that is 120572 lt 120573(119873 + 1(119899 + 1))When 119904 = 0 119873 = 0 that is 120573 gt (119899 + 1)120572 which is the

result in [5]

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This research was supported by PSF of Zhejiang province(BSH1302046)

References

[1] A P Calderon and A Zygmund ldquoOn singular integralsrdquo Amer-ican Journal of Mathematics vol 78 no 2 pp 289ndash309 1956

[2] E B Fabes and N M Riviere ldquoSingular integrals with mixedhomogeneityrdquo Studia Mathematica vol 27 no 1 pp 19ndash381966

[3] M Zielinski Highly oscillatory singular integrals along curves[PhD dissertation] University of Wisconsin-Madison Madi-son Wis USA 1985

[4] S Chandarana ldquo119871119901-bounds for hypersingular integral opera-tors along curvesrdquo Pacific Journal of Mathematics vol 175 no2 pp 389ndash416 1996

Journal of Function Spaces 5

[5] J ChenD S FanMWang andX R Zhu ldquo119871119901 bounds for oscil-latory hyper-hilbert transform along curvesrdquo Proceedings of theAmerican Mathematical Society vol 136 no 9 pp 3145ndash31532008

[6] J C Chen D S Fan and X R Zhu ldquoSharp 1198712 boundedness

of the oscillatory hyper-Hilbert transform along curvesrdquo ActaMathematica Sinica English Series vol 26 no 4 pp 653ndash6582010

[7] L Grafakos Classical and Modern Fourier Analysis ChinaMachine Press Beijing China 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Boundedness of Oscillatory Hyper-Hilbert

4 Journal of Function Spaces

Proof of Theorem 6 Here we will follow the notations andcalculations inTheorem 5 that is

119867119899120572120573

119891 (119909) =

infin

sum

119895=0

119867119895119891 (119909) 119867

119895119891 (120585) = 119898

119895(120585) 119891 (120585)

119898119895(120585) = int

1

0

Φ(2119895

119905) 119905minus1minus120572

119890119894(119905minus120573

minussum119899

119896=1

120585119896

119905119901

119896 )d119905

(33)

Let119873 be the largest integer not exceeding 119904 For Sobolevspaces 1198712

119904(R119899) by Plancherelrsquos theorem when 119904

1gt 1199042

1198712

1199041

(R119899

) sub 1198712

1199042

(R119899

) (34)

and for an element 119891 of 11987121199041

1003817100381710038171003817119891

10038171003817100381710038171198712119904

2

(R119899)lt

100381710038171003817100381711989110038171003817100381710038171198712119904

1

(R119899) (35)

The case 1199041= 119904 1199042= 119873 will be used later

We will make a more accurate estimation of 119898119895 Notice

thatΦ is a119862infin function supported on [12 2] By substitutionof variables 2119895119905 rarr 119905 it is shown that

119898119895(120585) = 2

119895120572

int

infin

0

Φ (119905)

1199051+120572119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )d119905 = 2119895120572

119898120572120573

(36)

where we extend the upper limit of the integral into infinityConsidering the support of Φ and 119895 ge 0 this extension willnot make essential difference to the result

In [5] the authors use Van der Corput Lemma and anelementary statement to prove

119898120572120573

119871infin

(R119899) ⪯ 2minus119895120573(119899+1)

(37)

After thoughtful investigation of the proof in [5] it isunearthed that the part Φ(119905)119905

1+120572 will only contribute to thecontrol constant in the inequality above without any effect onthe order of the index

In the subsequent calculation we will substitute the partΦ(119905)119905

1+120572 with notationΨ(119905) AfterwardsΨ(119905) always meansa 119862infin function supported on [12 2] With the process Ψ(119905)

will represent different functions which will not do harm tothe final result That is ifΨ(119905) is a 119862

infin function supported on[12 2] then

10038171003817100381710038171003817100381710038171003817

int

infin

0

Ψ (119905) 119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )d11990510038171003817100381710038171003817100381710038171003817119871infin(R119899)

⪯ 2minus119895120573119899+1

(38)

119898120572120573

(120585) =119894

2119895120573int

infin

0

119890minus119894(sum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )

Ψ (119905) d1198901198942119895120573

119905minus120573

(39)

using integration by parts

119898120572120573

(120585)

=minus119894

2119895120573int

infin

0

119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )

Ψ (119905) d119905

+

119899

sum

119896=1

1205851198961199011198962minus119895119901119896

2119895120573int

infin

0

119890119894(2119895120573

119905minus120573

minussum119899

119896=1

120585119896

2minus119895119901

119896 119905119901

119896 )

Ψ (119905) d119905

(40)

Notice thatΨ indicates different functions in different placesstill they are all 119862infin functions supported on [12 2]

By (38) the absolute value of every integral above can bedominated by 2

minus119895120573(119899+1) Along with Cauchyrsquos inequality wehave

10038161003816100381610038161003816119898120572120573

(120585)10038161003816100381610038161003816⪯ 2minus119895120573(119899+1)

2minus119895120573

(1 +10038161003816100381610038161205851003816100381610038161003816

2

)12

(41)

Repeating integration by parts it is suggested for any119872 that

10038161003816100381610038161003816119898120572120573

(120585)10038161003816100381610038161003816⪯ 2minus119895120573(119899+1)

2minus119895119872120573

(1 + |120585|2

)1198722

(42)

So an estimation to the 1198712 norm of 119867

119895119891 could be made

Recall that119873 represents the largest integer not exceeding 119904

1198671198951198911198712

(R119899) =10038171003817100381710038171003817119867119895119891100381710038171003817100381710038171198712(R119899)

=10038171003817100381710038171003817119898119895119891100381710038171003817100381710038171198712(R119899)

⪯ 2119895120572minus119895119873120573minus119895120573(119899+1)

1003817100381710038171003817100381710038171003817(1 + |120585|

2

)1198732

119891

10038171003817100381710038171003817100381710038171198712(R119899)

= 2119895120572minus119895119873120573minus119895120573(119899+1)1003817100381710038171003817119891

10038171003817100381710038171198712119873

(R119899)

le 2119895120572minus119895119873120573minus119895120573(119899+1)1003817100381710038171003817119891

10038171003817100381710038171198712119904

(R119899)

(43)

Further on to guarantee 119867119899120572120573

is bounded from 1198712

119904(R119899) to

1198712

(R119899) it is only needed that

120572 minus 119873120573 minus120573

119899 + 1lt 0 (44)

that is 120572 lt 120573(119873 + 1(119899 + 1))When 119904 = 0 119873 = 0 that is 120573 gt (119899 + 1)120572 which is the

result in [5]

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This research was supported by PSF of Zhejiang province(BSH1302046)

References

[1] A P Calderon and A Zygmund ldquoOn singular integralsrdquo Amer-ican Journal of Mathematics vol 78 no 2 pp 289ndash309 1956

[2] E B Fabes and N M Riviere ldquoSingular integrals with mixedhomogeneityrdquo Studia Mathematica vol 27 no 1 pp 19ndash381966

[3] M Zielinski Highly oscillatory singular integrals along curves[PhD dissertation] University of Wisconsin-Madison Madi-son Wis USA 1985

[4] S Chandarana ldquo119871119901-bounds for hypersingular integral opera-tors along curvesrdquo Pacific Journal of Mathematics vol 175 no2 pp 389ndash416 1996

Journal of Function Spaces 5

[5] J ChenD S FanMWang andX R Zhu ldquo119871119901 bounds for oscil-latory hyper-hilbert transform along curvesrdquo Proceedings of theAmerican Mathematical Society vol 136 no 9 pp 3145ndash31532008

[6] J C Chen D S Fan and X R Zhu ldquoSharp 1198712 boundedness

of the oscillatory hyper-Hilbert transform along curvesrdquo ActaMathematica Sinica English Series vol 26 no 4 pp 653ndash6582010

[7] L Grafakos Classical and Modern Fourier Analysis ChinaMachine Press Beijing China 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Boundedness of Oscillatory Hyper-Hilbert

Journal of Function Spaces 5

[5] J ChenD S FanMWang andX R Zhu ldquo119871119901 bounds for oscil-latory hyper-hilbert transform along curvesrdquo Proceedings of theAmerican Mathematical Society vol 136 no 9 pp 3145ndash31532008

[6] J C Chen D S Fan and X R Zhu ldquoSharp 1198712 boundedness

of the oscillatory hyper-Hilbert transform along curvesrdquo ActaMathematica Sinica English Series vol 26 no 4 pp 653ndash6582010

[7] L Grafakos Classical and Modern Fourier Analysis ChinaMachine Press Beijing China 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Boundedness of Oscillatory Hyper-Hilbert

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of