research article higher order commutators of fractional ...usual lebesgue spaces 1 (r ) to 2 (r )...

8
Hindawi Publishing Corporation Journal of Function Spaces and Applications Volume 2013, Article ID 257537, 7 pages http://dx.doi.org/10.1155/2013/257537 Research Article Higher Order Commutators of Fractional Integral Operator on the Homogeneous Herz Spaces with Variable Exponent Liwei Wang, 1 Meng Qu, 2 and Lisheng Shu 2 1 School of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China 2 School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, China Correspondence should be addressed to Liwei Wang; [email protected] Received 28 March 2013; Accepted 20 May 2013 Academic Editor: Dachun Yang Copyright ยฉ 2013 Liwei Wang et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. By decomposing functions, we establish estimates for higher order commutators generated by fractional integral with BMO functions or the Lipschitz functions on the homogeneous Herz spaces with variable exponent. ese estimates extend some known results in the literatures. 1. Introduction Let be a locally integrable function, 0<<, and โˆˆ N; the higher order commutators of fractional integral operator , are de๏ฌned by , () = โˆซ R [ () โˆ’ ()] โˆ’ โˆ’ () . (1) Obviously, 0 , = and 1 , = [, ]. e famous Hardy-Littlewood-Sobolev theorem tells us that the frac- tional integral operator is a bounded operator from the usual Lebesgue spaces 1 (R ) to 2 (R ) when 0< 1 < 2 <โˆž and 1/ 1 โˆ’ 1/ 2 = /. Also, many generalized results about and the commutator [, ] on some function spaces have been studied; see [1โ€“3] for details. It is well known that the main motivation for studying the spaces with variable exponent arrived in the nonlinear elasticity theory and di๏ฌ€erential equations with nonstandard growth. Since the fundamental paper [4] by Kovยด a ฬŒ cik and Rยด akosnยด ฤฑk appeared in 1991, the Lebesgue spaces with variable exponent (โ‹…) (R ) have been extensively investigated. In the recent twenty years, boundedness of some important operat- ors, for example, the Calderยด on-Zygmund operators, frac- tional integrals, and commutators, on (โ‹…) (R ) has been obtained; see [5โ€“7]. Recently, Diening [8] extended the ( 1 (R ), 2 (R )) boundedness of to the Lebesgue spaces with variable exponent. Izuki [7] ๏ฌrst introduced the Herz spaces with variable exponent ฬ‡ , (โ‹…) (R ), which is a general- ized space of the Herz space ฬ‡ , (R ); see [9, 10], and in case of โˆˆ BMO(R ), he obtained the boundedness properties of the commutator [, ]. e paper [11] by Lu et al. indi- cates that the commutator [, ] with โˆˆ BMO(R ) and with โˆˆ Lip (R ) (0 < โ‰ค 1) has many di๏ฌ€erent pro- perties. In 2012, Zhou [12] studied the boundedness of on the Herz spaces with variable exponent and proved that the boundedness properties of the commutator [, ] also hold in case of โˆˆ Lip (R ) (0 < โ‰ค 1). e higher order commutators , are recently considered by Wang et al. in the paper [13, 14]; they established the BMO and the Lipschitz estimates for , on the Lebesgue spaces with vari- able exponent (โ‹…) (R ). Motivated by [7, 12โ€“14], in this note, we establish the boundedness of the higher order com- mutators , on the Herz spaces with variable exponent. For brevity, || denotes the Lebesgue measure for a measurable set โŠ‚ R , and denotes the mean value of on ( = (1/||) โˆซ ()). e exponent (โ‹…) means the conjugate of (โ‹…), that is, 1/(โ‹…)+1/ (โ‹…) = 1. denotes a pos- itive constant, which may have di๏ฌ€erent values even in the same line. Let us ๏ฌrst recall some de๏ฌnitions and nota- tions. CORE Metadata, citation and similar papers at core.ac.uk Provided by MUCC (Crossref)

Upload: others

Post on 10-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Hindawi Publishing CorporationJournal of Function Spaces and ApplicationsVolume 2013, Article ID 257537, 7 pageshttp://dx.doi.org/10.1155/2013/257537

    Research ArticleHigher Order Commutators of Fractional Integral Operator onthe Homogeneous Herz Spaces with Variable Exponent

    Liwei Wang,1 Meng Qu,2 and Lisheng Shu2

    1 School of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China2 School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, China

    Correspondence should be addressed to Liwei Wang; [email protected]

    Received 28 March 2013; Accepted 20 May 2013

    Academic Editor: Dachun Yang

    Copyright ยฉ 2013 Liwei Wang et al. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    By decomposing functions, we establish estimates for higher order commutators generated by fractional integral with BMOfunctions or the Lipschitz functions on the homogeneous Herz spaces with variable exponent.These estimates extend some knownresults in the literatures.

    1. Introduction

    Let ๐‘ be a locally integrable function, 0 < ๐›ฝ < ๐‘›, and ๐‘š โˆˆ N;the higher order commutators of fractional integral operator๐ผ๐‘š

    ๐›ฝ,๐‘are defined by

    ๐ผ๐‘š

    ๐›ฝ,๐‘๐‘“ (๐‘ฅ) = โˆซ

    R๐‘›

    [๐‘ (๐‘ฅ) โˆ’ ๐‘ (๐‘ฆ)]๐‘š

    ๐‘ฅ โˆ’ ๐‘ฆ๐‘›โˆ’๐›ฝ

    ๐‘“ (๐‘ฆ) ๐‘‘๐‘ฆ. (1)

    Obviously, ๐ผ0๐›ฝ,๐‘

    = ๐ผ๐›ฝand ๐ผ1

    ๐›ฝ,๐‘= [๐‘, ๐ผ

    ๐›ฝ]. The famous

    Hardy-Littlewood-Sobolev theorem tells us that the frac-tional integral operator ๐ผ

    ๐›ฝis a bounded operator from the

    usual Lebesgue spaces ๐ฟ๐‘1(R๐‘›) to ๐ฟ๐‘2(R๐‘›) when 0 < ๐‘1

    <

    ๐‘2

    < โˆž and 1/๐‘1โˆ’ 1/๐‘

    2= ๐›ฝ/๐‘›. Also, many generalized

    results about ๐ผ๐›ฝand the commutator [๐‘, ๐ผ

    ๐›ฝ] on some function

    spaces have been studied; see [1โ€“3] for details.It is well known that the main motivation for studying

    the spaces with variable exponent arrived in the nonlinearelasticity theory and differential equations with nonstandardgrowth. Since the fundamental paper [4] by KovaฬcฬŒik andRaฬkosnฤฑฬk appeared in 1991, the Lebesgue spaces with variableexponent ๐ฟ๐‘(โ‹…)(R๐‘›) have been extensively investigated. In therecent twenty years, boundedness of some important operat-ors, for example, the Calderoฬn-Zygmund operators, frac-tional integrals, and commutators, on ๐ฟ๐‘(โ‹…)(R๐‘›) has beenobtained; see [5โ€“7]. Recently, Diening [8] extended the

    (๐ฟ๐‘1(R๐‘›), ๐ฟ๐‘2(R๐‘›)) boundedness of ๐ผ

    ๐›ฝto the Lebesgue spaces

    with variable exponent. Izuki [7] first introduced the Herzspaces with variable exponent ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž

    ๐‘(โ‹…)(R๐‘›), which is a general-

    ized space of the Herz space ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž๐‘

    (R๐‘›); see [9, 10], and in caseof ๐‘ โˆˆ BMO(R๐‘›), he obtained the boundedness propertiesof the commutator [๐‘, ๐ผ

    ๐›ฝ]. The paper [11] by Lu et al. indi-

    cates that the commutator [๐‘, ๐ผ๐›ฝ] with ๐‘ โˆˆ BMO(R๐‘›) and

    with ๐‘ โˆˆ Lip๐›ผ(R๐‘›) (0 < ๐›ผ โ‰ค 1) has many different pro-

    perties. In 2012, Zhou [12] studied the boundedness of ๐ผ๐›ฝ

    on the Herz spaces with variable exponent and proved thatthe boundedness properties of the commutator [๐‘, ๐ผ

    ๐›ฝ] also

    hold in case of ๐‘ โˆˆ Lip๐›ผ(R๐‘›) (0 < ๐›ผ โ‰ค 1). The higher

    order commutators ๐ผ๐‘š๐›ฝ,๐‘

    are recently considered byWang et al.in the paper [13, 14]; they established the BMO and theLipschitz estimates for ๐ผ๐‘š

    ๐›ฝ,๐‘on the Lebesgue spaces with vari-

    able exponent ๐ฟ๐‘(โ‹…)(R๐‘›). Motivated by [7, 12โ€“14], in thisnote, we establish the boundedness of the higher order com-mutators ๐ผ๐‘š

    ๐›ฝ,๐‘on the Herz spaces with variable exponent.

    For brevity, |๐ธ| denotes the Lebesgue measure for ameasurable set ๐ธ โŠ‚ R๐‘›, and ๐‘“

    ๐ธdenotes the mean value of ๐‘“

    on ๐ธ (๐‘“๐ธ= (1/|๐ธ|) โˆซ

    ๐ธ

    ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ). The exponent ๐‘(โ‹…)means theconjugate of ๐‘(โ‹…), that is, 1/๐‘(โ‹…)+1/๐‘(โ‹…) = 1.๐ถ denotes a pos-itive constant, which may have different values even in thesame line. Let us first recall some definitions and nota-tions.

    CORE Metadata, citation and similar papers at core.ac.uk

    Provided by MUCC (Crossref)

    https://core.ac.uk/display/186894263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

  • 2 Journal of Function Spaces and Applications

    Definition 1. For 0 < ๐›พ โ‰ค 1, the Lipschitz space Lip๐›พ(R๐‘›) is

    the space of functions ๐‘“ satisfying

    ๐‘“Lip๐›พ

    = sup๐‘ฅ,๐‘ฆโˆˆR๐‘›,๐‘ฅ ฬธ= ๐‘ฆ

    ๐‘“ (๐‘ฅ) โˆ’ ๐‘“ (๐‘ฆ)

    ๐‘ฅ โˆ’ ๐‘ฆ๐›พ

    < โˆž. (2)

    Definition 2. For๐‘“ โˆˆ ๐ฟ1loc(R๐‘›

    ), the boundedmean oscillationspace BMO(R๐‘›) is the space of functions ๐‘“ satisfying

    ๐‘“BMO = sup

    ๐ต

    1

    |๐ต|โˆซ๐ต

    ๐‘“ (๐‘ฅ) โˆ’ ๐‘“๐ต ๐‘‘๐‘ฅ < โˆž, (3)

    where the supremum is taken over all balls ๐ต in R๐‘›.

    Definition 3. Let ๐‘(โ‹…) : ๐ธ โ†’ [1,โˆž) be a measurable func-tion.

    (1) The Lebesgue space with variable exponent ๐ฟ๐‘(โ‹…)(๐ธ) isdefined by

    ๐ฟ๐‘(โ‹…)

    (๐ธ) = {๐‘“ is measurable : โˆซ๐ธ

    (

    ๐‘“ (๐‘ฅ)

    ๐œ†)

    ๐‘(๐‘ฅ)

    ๐‘‘๐‘ฅ

    < โˆž for some constant ๐œ† > 0} .

    (4)

    (2) The space with variable exponent ๐ฟ๐‘(โ‹…)loc (๐ธ) is definedby

    ๐ฟ๐‘(โ‹…)

    loc (๐ธ)

    = {๐‘“ : ๐‘“ โˆˆ ๐ฟ๐‘(โ‹…)

    (๐พ) for all compact subsets ๐พ โŠ‚ ๐ธ } .(5)

    The Lebesgue space ๐ฟ๐‘(โ‹…)(๐ธ) is a Banach space with theLuxemburg norm

    ๐‘“๐ฟ๐‘(โ‹…)(๐ธ) = inf {๐œ† > 0 : โˆซ

    ๐ธ

    (

    ๐‘“ (๐‘ฅ)

    ๐œ†)

    ๐‘(๐‘ฅ)

    ๐‘‘๐‘ฅ โ‰ค 1} . (6)

    We denote

    ๐‘โˆ’= ess inf {๐‘ (๐‘ฅ) : ๐‘ฅ โˆˆ ๐ธ} ,

    ๐‘+= ess sup {๐‘ (๐‘ฅ) : ๐‘ฅ โˆˆ ๐ธ} ,

    P (๐ธ) = {๐‘ (โ‹…) : ๐‘โˆ’> 1, ๐‘

    +< โˆž} ,

    B (๐ธ) = {๐‘ (โ‹…) : ๐‘ (โ‹…) โˆˆ P (๐ธ) ,

    ๐‘€ is bounded on ๐ฟ๐‘(โ‹…) (๐ธ)} ,

    (7)

    where the Hardy-Littlewood maximal operator ๐‘€ is definedby

    ๐‘€๐‘“(๐‘ฅ) = sup๐‘Ÿ>0

    ๐‘Ÿโˆ’๐‘›

    โˆซ๐ต(๐‘ฅ,๐‘Ÿ)โˆฉ๐ธ

    ๐‘“ (๐‘ฆ) ๐‘‘๐‘ฆ, (8)

    where ๐ต(๐‘ฅ, ๐‘Ÿ) = {๐‘ฆ โˆˆ R๐‘› : |๐‘ฅ โˆ’ ๐‘ฆ| < ๐‘Ÿ}.

    Proposition 4 (see [15]). If ๐‘(โ‹…) โˆˆ P(๐ธ) satisfies

    ๐‘ (๐‘ฅ) โˆ’ ๐‘ (๐‘ฆ) โ‰ค

    โˆ’๐ถ

    log (๐‘ฅ โˆ’ ๐‘ฆ),

    ๐‘ฅ โˆ’ ๐‘ฆ โ‰ค

    1

    2,

    ๐‘ (๐‘ฅ) โˆ’ ๐‘ (๐‘ฆ) โ‰ค

    ๐ถ

    log (๐‘’ + |๐‘ฅ|),

    ๐‘ฆ โ‰ค |๐‘ฅ| ,

    (9)

    then one has ๐‘(โ‹…) โˆˆ B(๐ธ).

    Let ๐ต๐‘˜= {๐‘ฅ โˆˆ R๐‘› : |๐‘ฅ| โฉฝ 2๐‘˜}, ๐‘…

    ๐‘˜= ๐ต๐‘˜\๐ต๐‘˜โˆ’1

    , and ๐œ’๐‘˜= ๐œ’๐‘…๐‘˜

    be the characteristic function of the set ๐‘…๐‘˜for ๐‘˜ โˆˆ Z. For

    ๐‘š โˆˆ N, we denote ๐œ’๐‘š

    = ๐œ’๐‘…๐‘š

    if๐‘š โ‰ฅ 1, and ๐œ’0= ๐œ’๐ต0

    .

    Definition 5 (see [7]). For ๐›ผ โˆˆ R, 0 < ๐‘ž โ‰ค โˆž and ๐‘(โ‹…) โˆˆP(R๐‘›).

    (1) The homogeneous Herz spaces ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž๐‘(โ‹…)

    (R๐‘›) are definedby

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž

    ๐‘(โ‹…)(R๐‘›

    ) = {๐‘“ โˆˆ ๐ฟ๐‘(โ‹…)

    loc (R๐‘›

    \ {0}) :๐‘“

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž

    ๐‘(โ‹…)(R๐‘›)

    < โˆž} , (10)

    where๐‘“

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž

    ๐‘(โ‹…)(R๐‘›)

    ={2๐›ผ๐‘˜๐‘“๐œ’๐‘˜

    ๐ฟ๐‘(โ‹…)(R๐‘›)}โˆž

    ๐‘˜=โˆ’โˆž

    โ„“๐‘ž(Z). (11)

    (2) The nonhomogeneous Herz spaces ๐พ๐›ผ,๐‘ž๐‘(โ‹…)

    (R๐‘›) are de-fined by

    ๐พ๐›ผ,๐‘ž

    ๐‘(โ‹…)(R๐‘›

    ) = {๐‘“ โˆˆ ๐ฟ๐‘(โ‹…)

    loc (R๐‘›

    ) :๐‘“

    ๐พ๐›ผ,๐‘ž

    ๐‘(โ‹…)(R๐‘›)

    < โˆž} , (12)

    where๐‘“

    ๐พ๐›ผ,๐‘ž

    ๐‘(โ‹…)(R๐‘›)

    ={2๐›ผ๐‘š๐‘“๐œ’๐‘š

    ๐ฟ๐‘(โ‹…)(R๐‘›)}โˆž

    ๐‘š=0

    โ„“๐‘ž(N). (13)

    In this note, we obtain the following results.

    Theorem 6. Suppose that ๐‘ โˆˆ Lip๐›ฝ1

    (R๐‘›) (0 < ๐›ฝ1

    < 1),๐‘2(โ‹…) โˆˆ P(R๐‘›) satisfies conditions (9) in Proposition 4. If

    0 < ๐‘Ÿ < min {1/(๐‘1)+, 1/(๐‘

    2)+}, 0 < ๐›ฝ + ๐‘š๐›ฝ

    1< ๐‘›๐‘Ÿ, 0 <

    ๐›ผ < ๐‘›๐‘Ÿ โˆ’ ๐›ฝ โˆ’ ๐‘š๐›ฝ1, 0 < ๐‘ž

    1โ‰ค ๐‘ž2

    < โˆž, and 1/๐‘1(๐‘ฅ) โˆ’

    1/๐‘2(๐‘ฅ) = (๐›ฝ + ๐‘š๐›ฝ

    1)/๐‘›, then the higher order commutators

    ๐ผ๐‘š

    ๐›ฝ,๐‘are bounded from ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž1

    ๐‘1(โ‹…)(R๐‘›) to ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž2

    ๐‘2(โ‹…)(R๐‘›).

    Theorem 7. Suppose that ๐‘ โˆˆ BMO(Rn), ๐‘2(โ‹…) โˆˆ P(R๐‘›)

    satisfies conditions (9) in Proposition 4. If 0 < ๐‘Ÿ <min {1/(๐‘

    1)+, 1/(๐‘

    2)+}, 0 < ๐›ฝ < ๐‘›๐‘Ÿ, 0 < ๐›ผ < ๐‘›๐‘Ÿ โˆ’ ๐›ฝ,

    0 < ๐‘ž1

    โ‰ค ๐‘ž2

    < โˆž, and 1/๐‘1(๐‘ฅ) โˆ’ 1/๐‘

    2(๐‘ฅ) = ๐›ฝ/๐‘›, then the

    higher order commutators ๐ผ๐‘š๐›ฝ,๐‘

    are bounded from ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž1๐‘1(โ‹…)(R๐‘›) to

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž2

    ๐‘2(โ‹…)(R๐‘›).

    Remark A. The previous main results generalize the(๐ฟ๐‘(โ‹…)

    (R๐‘›), ๐ฟ๐‘ž(โ‹…)(R๐‘›)) boundedness of the higher ordercommutators ๐ผ๐‘š

    ๐›ฝ,๐‘in [13] to the case of the Herz spaces with

    variable exponent. If ๐‘š = 1, our conclusions coincide withthe corresponding results in [7, 12]. Moreover, the sameboundedness also holds for the nonhomogeneous case.

  • Journal of Function Spaces and Applications 3

    2. Proof of Theorems 6 and 7

    To prove our main results, we need the following lemmas.

    Lemma 8 (see [4]). Let ๐‘(โ‹…) โˆˆ P(R๐‘›); if ๐‘“ โˆˆ ๐ฟ๐‘(โ‹…)(R๐‘›) and๐‘” โˆˆ ๐ฟ๐‘

    (โ‹…)

    (R๐‘›), then

    โˆซR๐‘›

    ๐‘“ (๐‘ฅ) ๐‘” (๐‘ฅ) ๐‘‘๐‘ฅ โ‰ค ๐‘Ÿ๐‘

    ๐‘“๐ฟ๐‘(โ‹…)(R๐‘›)

    ๐‘”๐ฟ๐‘(โ‹…)(R๐‘›)

    , (14)

    where ๐‘Ÿ๐‘= 1 + 1/๐‘

    โˆ’โˆ’ 1/๐‘

    +.

    Lemma 9 (see [7]). Let ๐‘(โ‹…) โˆˆ B(R๐‘›); then for all balls ๐ต inR๐‘›,

    1

    |๐ต|

    ๐œ’๐ต๐ฟ๐‘(โ‹…)(R๐‘›)

    ๐œ’๐ต๐ฟ๐‘(โ‹…)(R๐‘›)

    โ‰ค ๐ถ. (15)

    Lemma 10 (see [7]). Let ๐‘2(โ‹…) โˆˆ B(R๐‘›); then for all balls ๐ต in

    R๐‘› and all measurable subsets ๐‘† โŠ‚ ๐ต, one can take a constant0 < ๐‘Ÿ < 1/(๐‘

    2)+, so that

    ๐œ’๐‘†๐ฟ๐‘

    2(โ‹…)

    (R๐‘›)๐œ’๐ต

    ๐ฟ๐‘

    2(โ‹…)

    (R๐‘›)

    โ‰ค ๐ถ(|๐‘†|

    |๐ต|)

    ๐‘Ÿ

    . (16)

    Lemma 11 (see [8]). Suppose that ๐‘1(โ‹…) โˆˆ P(R๐‘›) satisfies

    conditions (9) in Proposition 4, 0 < ๐›ฝ < ๐‘›/(๐‘1)+and 1/๐‘

    1(๐‘ฅ)โˆ’

    1/๐‘2(๐‘ฅ) = ๐›ฝ/๐‘›; then

    ๐ผ๐›ฝ(๐‘“)

    ๐ฟ๐‘2(โ‹…)(R๐‘›)โ‰ค ๐ถ

    ๐‘“๐ฟ๐‘1(โ‹…)(R๐‘›). (17)

    Lemma 12 (see [13]). Suppose that ๐‘1(โ‹…), ๐‘2(โ‹…) โˆˆ P(R๐‘›).

    (1) Let 0 < ๐›ฝ < ๐‘›/(๐‘1)+, ๐‘ โˆˆ BMO(Rn). If ๐‘

    2(โ‹…) satisfies

    conditions (9) in Proposition 4 and 1/๐‘1(๐‘ฅ)โˆ’1/๐‘

    2(๐‘ฅ) =

    ๐›ฝ/๐‘›, then๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“)

    ๐ฟ๐‘2(โ‹…)(R๐‘›)โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š

    BMO๐‘“

    ๐ฟ๐‘1(โ‹…)(R๐‘›). (18)

    (2) Let 0 < ๐›ฝ + ๐‘š๐›ฝ1< ๐‘›/(๐‘

    1)+, ๐‘ โˆˆ Lip

    ๐›ฝ1

    (R๐‘›) (0 < ๐›ฝ1<

    1). If ๐‘2(โ‹…) satisfies conditions (9) in Proposition 4 and

    1/๐‘1(๐‘ฅ) โˆ’ 1/๐‘

    2(๐‘ฅ) = (๐›ฝ + ๐‘š๐›ฝ

    1)/๐‘›, then

    ๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“)

    ๐ฟ๐‘2(โ‹…)(R๐‘›)โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š

    Lip๐›ฝ1

    ๐‘“๐ฟ๐‘1(โ‹…)(R๐‘›). (19)

    Lemma 13 (see [16]). Let ๐‘ โˆˆ BMO(Rn), ๐‘˜ > ๐‘— (๐‘˜, ๐‘— โˆˆ N);one has

    (1) ๐ถโˆ’1||๐‘||๐‘šBMO โ‰ค sup๐ตโŠ‚R๐‘›(1/||๐œ’๐ต||๐ฟ๐‘(โ‹…)(R๐‘›))||(๐‘ โˆ’๐‘๐ต)๐‘š

    ๐œ’๐ต||๐ฟ๐‘(โ‹…)(R๐‘›) โ‰ค ๐ถ||๐‘||

    ๐‘š

    BMO;(2) ||(๐‘ โˆ’ ๐‘

    ๐ต๐‘—

    )๐‘š

    ๐œ’๐ต๐‘˜

    ||๐ฟ๐‘(โ‹…)(R๐‘›) โ‰ค ๐ถ(๐‘˜ โˆ’ ๐‘—)

    ๐‘š

    ||๐‘||๐‘š

    BMOร—||๐œ’๐ต๐‘˜

    ||๐ฟ๐‘(โ‹…)(R๐‘›).

    Proof of Theorem 6. Let ๐‘“ โˆˆ ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž1๐‘1(โ‹…)(R๐‘›); we can write

    ๐‘“ (๐‘ฅ) =

    โˆž

    โˆ‘

    ๐‘—=โˆ’โˆž

    ๐‘“ (๐‘ฅ) ๐œ’๐‘—(๐‘ฅ) =

    โˆž

    โˆ‘

    ๐‘—=โˆ’โˆž

    ๐‘“๐‘—(๐‘ฅ) . (20)

    For 0 < ๐‘ž1/๐‘ž2โ‰ค 1, applying the inequality

    (

    โˆž

    โˆ‘

    ๐‘–=1

    ๐‘Ž๐‘–)

    ๐‘ž1/๐‘ž2

    โ‰ค

    โˆž

    โˆ‘

    ๐‘–=1

    ๐‘Ž๐‘ž1/๐‘ž2

    ๐‘–(๐‘Ž๐‘–> 0, ๐‘– = 1, 2 . . .) , (21)

    we obtain๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“)

    ๐‘ž1

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž2

    ๐‘2(โ‹…)(R๐‘›)

    = ๐ถ(

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    2๐›ผ๐‘ž2๐‘˜๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“) ๐œ’๐‘˜

    ๐‘ž2

    ๐ฟ๐‘2(โ‹…)(R๐‘›)

    )

    ๐‘ž1/๐‘ž2

    โ‰ค ๐ถ

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    2๐›ผ๐‘ž1๐‘˜

    (

    ๐‘˜โˆ’2

    โˆ‘

    ๐‘—=โˆ’โˆž

    ๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“๐‘—) ๐œ’๐‘˜

    ๐ฟ๐‘2(โ‹…)(R๐‘›))

    ๐‘ž1

    + ๐ถ

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    2๐›ผ๐‘ž1๐‘˜

    (

    โˆž

    โˆ‘

    ๐‘—=๐‘˜โˆ’1

    ๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“๐‘—) ๐œ’๐‘˜

    ๐ฟ๐‘2(โ‹…)(R๐‘›))

    ๐‘ž1

    = ๐‘ˆ1+ ๐‘ˆ2.

    (22)

    We first estimate ๐‘ˆ1. Noting that if ๐‘ฅ โˆˆ ๐‘…

    ๐‘˜, ๐‘ฆ โˆˆ ๐‘…

    ๐‘—, and

    ๐‘— โ‰ค ๐‘˜ โˆ’ 2, then |๐‘ฅ โˆ’ ๐‘ฆ| โˆผ |๐‘ฅ| โˆผ 2๐‘˜, we get

    ๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“๐‘—) ๐œ’๐‘˜

    โ‰ค โˆซ๐‘…๐‘—

    ๐‘ (๐‘ฅ) โˆ’ ๐‘ (๐‘ฆ)๐‘š

    ๐‘ฅ โˆ’ ๐‘ฆ๐‘›โˆ’๐›ฝ

    ๐‘“๐‘—(๐‘ฆ)

    ๐‘‘๐‘ฆ โ‹… ๐œ’

    ๐‘˜(๐‘ฅ)

    โ‰ค ๐ถ2๐‘˜(๐›ฝโˆ’๐‘›)

    โˆซ๐‘…๐‘—

    ๐‘ (๐‘ฅ)โˆ’ ๐‘ (๐‘ฆ)๐‘š

    ๐‘“๐‘—(๐‘ฆ)

    ๐‘‘๐‘ฆ โ‹… ๐œ’

    ๐‘˜(๐‘ฅ)

    โ‰ค ๐ถ2๐‘˜(๐›ฝ+๐‘š๐›ฝ

    1โˆ’๐‘›)

    โ€–๐‘โ€–๐‘š

    Lip๐›ฝ1

    โˆซ๐‘…๐‘—

    ๐‘“๐‘—(๐‘ฆ)

    ๐‘‘๐‘ฆ โ‹… ๐œ’

    ๐‘˜(๐‘ฅ) .

    (23)

    By Hoฬˆlderโ€™s inequality, Lemmas 9 and 10, we have๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“๐‘—) ๐œ’๐‘˜

    ๐ฟ๐‘2(โ‹…)(R๐‘›)

    โ‰ค ๐ถ2๐‘˜(๐›ฝ+๐‘š๐›ฝ

    1โˆ’๐‘›)

    โ€–๐‘โ€–๐‘š

    Lip๐›ฝ1

    ๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร—๐œ’๐ต๐‘˜

    ๐ฟ๐‘2(โ‹…)(R๐‘›)

    ๐œ’๐ต๐‘—

    ๐ฟ๐‘

    1(โ‹…)

    (R๐‘›)

    โ‰ค ๐ถ2๐‘˜(๐›ฝ+๐‘š๐›ฝ

    1)

    โ€–๐‘โ€–๐‘š

    Lip๐›ฝ1

    ๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร—๐œ’๐ต๐‘—

    ๐ฟ๐‘

    1(โ‹…)

    (R๐‘›)

    ๐œ’๐ต๐‘˜

    โˆ’1

    ๐ฟ๐‘

    2(โ‹…)

    (R๐‘›)

    โ‰ค ๐ถ2๐‘˜(๐›ฝ+๐‘š๐›ฝ

    1)

    โ€–๐‘โ€–๐‘š

    Lip๐›ฝ1

    ๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร—๐œ’๐ต๐‘—

    ๐ฟ๐‘

    1(โ‹…)

    (R๐‘›)

    ๐œ’๐ต๐‘—

    โˆ’1

    ๐ฟ๐‘

    2(โ‹…)

    (R๐‘›)

    ๐œ’๐ต๐‘—

    ๐ฟ๐‘

    2(โ‹…)

    (R๐‘›)๐œ’๐ต๐‘˜

    ๐ฟ๐‘

    2(โ‹…)

    (R๐‘›)

    โ‰ค ๐ถ2๐‘˜(๐›ฝ+๐‘š๐›ฝ

    1)

    2๐‘›๐‘Ÿ(๐‘—โˆ’๐‘˜)

    โ€–๐‘โ€–๐‘š

    Lip๐›ฝ1

    ๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร—๐œ’๐ต๐‘—

    ๐ฟ๐‘

    1(โ‹…)

    (R๐‘›)

    ๐œ’๐ต๐‘—

    โˆ’1

    ๐ฟ๐‘

    2(โ‹…)

    (R๐‘›).

    (24)

  • 4 Journal of Function Spaces and Applications

    Note that

    ๐ผ๐›ฝ+๐‘š๐›ฝ

    1

    (๐œ’๐ต๐‘—

    ) (๐‘ฅ) โ‰ฅ ๐ผ๐›ฝ+๐‘š๐›ฝ

    1

    (๐œ’๐ต๐‘—

    ) (๐‘ฅ) โ‹… ๐œ’๐ต๐‘—

    (๐‘ฅ)

    = โˆซ๐ต๐‘—

    ๐‘‘๐‘ฆ

    ๐‘ฅ โˆ’ ๐‘ฆ๐‘›โˆ’๐›ฝโˆ’๐‘š๐›ฝ

    1

    โ‹… ๐œ’๐ต๐‘—

    (๐‘ฅ)

    โ‰ฅ ๐ถ2๐‘—(๐›ฝ+๐‘š๐›ฝ

    1)

    โ‹… ๐œ’๐ต๐‘—

    (๐‘ฅ) .

    (25)

    By Lemmas 8 and 11, we obtain

    ๐œ’๐ต๐‘—

    โˆ’1

    ๐ฟ๐‘

    2(โ‹…)

    (R๐‘›)โ‰ค ๐ถ2โˆ’๐‘›๐‘—

    ๐œ’๐ต๐‘—

    ๐ฟ๐‘2(โ‹…)(R๐‘›)

    โ‰ค ๐ถ2โˆ’๐‘›๐‘—

    2โˆ’๐‘—(๐›ฝ+๐‘š๐›ฝ

    1)๐ผ๐›ฝ+๐‘š๐›ฝ

    1

    (๐œ’๐ต๐‘—

    )๐ฟ๐‘2(โ‹…)(R๐‘›)

    โ‰ค ๐ถ2โˆ’๐‘—(๐›ฝ+๐‘š๐›ฝ

    1)

    2โˆ’๐‘›๐‘—

    ๐œ’๐ต๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    โ‰ค ๐ถ2โˆ’๐‘—(๐›ฝ+๐‘š๐›ฝ

    1)๐œ’๐ต๐‘—

    โˆ’1

    ๐ฟ๐‘

    1(โ‹…)

    (R๐‘›).

    (26)

    Combining (24) and (26), we have the estimate

    ๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“๐‘—) ๐œ’๐‘˜

    ๐ฟ๐‘2(โ‹…)(R๐‘›)โ‰ค ๐ถ2(๐‘˜โˆ’๐‘—)(๐›ฝ+๐‘š๐›ฝ

    1โˆ’๐‘›๐‘Ÿ)

    ร— โ€–๐‘โ€–๐‘š

    Lip๐›ฝ1

    ๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›).

    (27)

    Thus,

    ๐‘ˆ1โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š๐‘ž1

    Lip๐›ฝ1

    ร—

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    (

    ๐‘˜โˆ’2

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)2(๐‘˜โˆ’๐‘—)(๐›ฝ+๐‘š๐›ฝ

    1โˆ’๐‘›๐‘Ÿ+๐›ผ)

    )

    ๐‘ž1

    .

    (28)

    If 1 < ๐‘ž1

    < โˆž, noting that ๐›ฝ + ๐‘š๐›ฝ1โˆ’ ๐‘›๐‘Ÿ + ๐›ผ < 0, by

    Hoฬˆlderโ€™s inequality, we have

    ๐‘ˆ1โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š๐‘ž1

    Lip๐›ฝ1

    ร—

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    (

    ๐‘˜โˆ’2

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    2(๐‘˜โˆ’๐‘—)(๐›ฝ+๐‘š๐›ฝ

    1โˆ’๐‘›๐‘Ÿ+๐›ผ)๐‘ž

    1/2

    )

    ร— (

    ๐‘˜โˆ’2

    โˆ‘

    ๐‘—=โˆ’โˆž

    2(๐‘˜โˆ’๐‘—)(๐›ฝ+๐‘š๐›ฝ

    1โˆ’๐‘›๐‘Ÿ+๐›ผ)๐‘ž

    1/2

    )

    ๐‘ž1/๐‘ž

    1

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    Lip๐›ฝ1

    โˆž

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    โˆž

    โˆ‘

    ๐‘˜=๐‘—+2

    2(๐‘˜โˆ’๐‘—)(๐›ฝ+๐‘š๐›ฝ

    1โˆ’๐‘›๐‘Ÿ+๐›ผ)๐‘ž

    1/2

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    Lip๐›ฝ1

    ๐‘“๐‘ž1

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž1

    ๐‘1(โ‹…)(R๐‘›)

    .

    (29)

    If 0 < ๐‘ž1โ‰ค 1, by inequality (21), we have

    ๐‘ˆ1โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š๐‘ž1

    Lip๐›ฝ1

    ร—

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    ๐‘˜โˆ’2

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    2(๐‘˜โˆ’๐‘—)(๐›ฝ+๐‘š๐›ฝ

    1โˆ’๐‘›๐‘Ÿ+๐›ผ)๐‘ž

    1

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    Lip๐›ฝ1

    โˆž

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    โˆž

    โˆ‘

    ๐‘˜=๐‘—+2

    2(๐‘˜โˆ’๐‘—)(๐›ฝ+๐‘š๐›ฝ

    1โˆ’๐‘›๐‘Ÿ+๐›ผ)๐‘ž

    1

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    Lip๐›ฝ1

    ๐‘“๐‘ž1

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž1

    ๐‘1(โ‹…)(R๐‘›)

    .

    (30)

    Next, we estimate ๐‘ˆ2. By Lemma 12(2), we obtain

    ๐‘ˆ2โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š๐‘ž1

    Lip๐›ฝ1

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    (

    โˆž

    โˆ‘

    ๐‘—=๐‘˜โˆ’1

    2๐›ผ๐‘—๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)2๐›ผ(๐‘˜โˆ’๐‘—)

    )

    ๐‘ž1

    . (31)

    If 1 < ๐‘ž1< โˆž, by Hoฬˆlderโ€™s inequality, we have

    ๐‘ˆ2โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š๐‘ž1

    Lip๐›ฝ1

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    (

    โˆž

    โˆ‘

    ๐‘—=๐‘˜โˆ’1

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    2๐›ผ(๐‘˜โˆ’๐‘—)๐‘ž

    1/2

    )

    ร— (

    โˆž

    โˆ‘

    ๐‘—=๐‘˜โˆ’1

    2๐›ผ(๐‘˜โˆ’๐‘—)๐‘ž

    1/2

    )

    ๐‘ž1/๐‘ž

    1

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    Lip๐›ฝ1

    โˆž

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ๐‘—+1

    โˆ‘

    ๐‘˜=โˆ’โˆž

    2๐›ผ(๐‘˜โˆ’๐‘—)๐‘ž

    1/2

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    Lip๐›ฝ1

    ๐‘“๐‘ž1

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž1

    ๐‘1(โ‹…)(R๐‘›)

    .

    (32)

    If 0 < ๐‘ž1โ‰ค 1, by inequality (21), we have

    ๐‘ˆ2โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š๐‘ž1

    Lip๐›ฝ1

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    โˆž

    โˆ‘

    ๐‘—=๐‘˜โˆ’1

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    2๐›ผ(๐‘˜โˆ’๐‘—)๐‘ž

    1

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    Lip๐›ฝ1

    โˆž

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ๐‘—+1

    โˆ‘

    ๐‘˜=โˆ’โˆž

    2๐›ผ(๐‘˜โˆ’๐‘—)๐‘ž

    1

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    Lip๐›ฝ1

    ๐‘“๐‘ž1

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž1

    ๐‘1(โ‹…)(R๐‘›)

    .

    (33)

    Combining the estimates for ๐‘ˆ1and ๐‘ˆ

    2, the proof of

    Theorem 6 is completed.

    Proof of Theorem 7. Let ๐‘“ โˆˆ ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž1๐‘1(โ‹…)(R๐‘›); we can write

    ๐‘“ (๐‘ฅ) =

    โˆž

    โˆ‘

    ๐‘—=โˆ’โˆž

    ๐‘“ (๐‘ฅ) ๐œ’๐‘—(๐‘ฅ) =

    โˆž

    โˆ‘

    ๐‘—=โˆ’โˆž

    ๐‘“๐‘—(๐‘ฅ) . (34)

  • Journal of Function Spaces and Applications 5

    By inequality (21), we obtain

    ๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“)

    ๐‘ž1

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž2

    ๐‘2(โ‹…)(R๐‘›)

    = ๐ถ(

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    2๐›ผ๐‘ž2๐‘˜๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“) ๐œ’๐‘˜

    ๐‘ž2

    ๐ฟ๐‘2(โ‹…)(R๐‘›)

    )

    ๐‘ž1/๐‘ž2

    โ‰ค ๐ถ

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    2๐›ผ๐‘ž1๐‘˜

    (

    ๐‘˜โˆ’2

    โˆ‘

    ๐‘—=โˆ’โˆž

    ๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“๐‘—) ๐œ’๐‘˜

    ๐ฟ๐‘2(โ‹…)(R๐‘›))

    ๐‘ž1

    + ๐ถ

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    2๐›ผ๐‘ž1๐‘˜

    (

    โˆž

    โˆ‘

    ๐‘—=๐‘˜โˆ’1

    ๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“๐‘—) ๐œ’๐‘˜

    ๐ฟ๐‘2(โ‹…)(R๐‘›))

    ๐‘ž1

    = ๐‘‰1+ ๐‘‰2.

    (35)

    For ๐‘‰1, using Hoฬˆlderโ€™s inequality and Lemma 8, we have

    ๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“๐‘—) ๐œ’๐‘˜

    โ‰ค ๐ถ2๐‘˜(๐›ฝโˆ’๐‘›)

    โˆซ๐‘…๐‘—

    ๐‘ (๐‘ฅ) โˆ’ ๐‘ (๐‘ฆ)๐‘š

    ๐‘“๐‘—(๐‘ฆ)

    ๐‘‘๐‘ฆ โ‹… ๐œ’

    ๐‘˜(๐‘ฅ)

    โ‰ค ๐ถ2๐‘˜(๐›ฝโˆ’๐‘›)

    ๐‘š

    โˆ‘

    ๐‘–=0

    ๐ถ๐‘–

    ๐‘š

    ๐‘ (๐‘ฅ) โˆ’ ๐‘

    ๐ต๐‘—

    ๐‘šโˆ’๐‘–

    ร— โˆซ๐‘…๐‘—

    ๐‘๐ต๐‘—

    โˆ’ ๐‘ (๐‘ฆ)

    ๐‘– ๐‘“๐‘—(๐‘ฆ)

    ๐‘‘๐‘ฆ

    โ‰ค ๐ถ2๐‘˜(๐›ฝโˆ’๐‘›)

    ๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร—

    ๐‘š

    โˆ‘

    ๐‘–=0

    ๐ถ๐‘–

    ๐‘š

    ๐‘ (๐‘ฅ) โˆ’ ๐‘

    ๐ต๐‘—

    ๐‘šโˆ’๐‘–(๐‘๐ต๐‘—

    โˆ’ ๐‘)๐‘–

    ๐œ’๐‘—

    ๐ฟ๐‘

    1(โ‹…)

    (R๐‘›).

    (36)

    By Lemmas 9, 10, and 13, we have

    ๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“๐‘—) ๐œ’๐‘˜

    ๐ฟ๐‘2(โ‹…)(R๐‘›)

    โ‰ค ๐ถ2๐‘˜(๐›ฝโˆ’๐‘›)

    ๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร—

    ๐‘š

    โˆ‘

    ๐‘–=0

    ๐ถ๐‘–

    ๐‘š

    (๐‘ (๐‘ฅ) โˆ’ ๐‘

    ๐ต๐‘—

    )๐‘šโˆ’๐‘–

    ๐œ’๐‘˜

    ๐ฟ๐‘2(โ‹…)(R๐‘›)

    ร—

    (๐‘๐ต๐‘—

    โˆ’ ๐‘)๐‘–

    ๐œ’๐‘—

    ๐ฟ๐‘

    1(โ‹…)

    (R๐‘›)

    โ‰ค ๐ถ2๐‘˜(๐›ฝโˆ’๐‘›)

    ๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร—

    ๐‘š

    โˆ‘

    ๐‘–=0

    ๐ถ๐‘–

    ๐‘š(๐‘˜ โˆ’ ๐‘—)

    ๐‘šโˆ’๐‘–

    โ€–๐‘โ€–๐‘šโˆ’๐‘–

    BMO๐œ’๐ต๐‘˜

    ๐ฟ๐‘2(โ‹…)(R๐‘›)

    ร— โ€–๐‘โ€–๐‘–

    BMO๐œ’๐ต๐‘—

    ๐ฟ๐‘

    1(โ‹…)

    (R๐‘›)

    = ๐ถ(๐‘˜ โˆ’ ๐‘— + 1)๐‘š

    โ€–๐‘โ€–๐‘š

    BMO๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร— 2๐‘˜(๐›ฝโˆ’๐‘›)

    ๐œ’๐ต๐‘˜

    ๐ฟ๐‘2(โ‹…)(R๐‘›)

    ๐œ’๐ต๐‘—

    ๐ฟ๐‘

    1(โ‹…)

    (R๐‘›)

    โ‰ค ๐ถ(๐‘˜ โˆ’ ๐‘— + 1)๐‘š

    โ€–๐‘โ€–๐‘š

    BMO๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร— 2๐‘˜๐›ฝ๐œ’๐ต๐‘—

    ๐ฟ๐‘

    1(โ‹…)

    (R๐‘›)

    ๐œ’๐ต๐‘˜

    โˆ’1

    ๐ฟ๐‘

    2(โ‹…)

    (R๐‘›)

    โ‰ค ๐ถ(๐‘˜ โˆ’ ๐‘— + 1)๐‘š

    โ€–๐‘โ€–๐‘š

    BMO๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร— 2๐‘˜๐›ฝ๐œ’๐ต๐‘—

    ๐ฟ๐‘

    1(โ‹…)

    (R๐‘›)

    ๐œ’๐ต๐‘˜

    โˆ’1

    ๐ฟ๐‘

    2(โ‹…)

    (R๐‘›)

    ๐œ’๐ต๐‘—

    ๐ฟ๐‘

    2(โ‹…)

    (R๐‘›)๐œ’๐ต๐‘˜

    ๐ฟ๐‘

    2(โ‹…)

    (R๐‘›)

    โ‰ค ๐ถ(๐‘˜ โˆ’ ๐‘— + 1)๐‘š

    โ€–๐‘โ€–๐‘š

    BMO๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร— 2๐‘˜๐›ฝ

    2๐‘›๐‘Ÿ(๐‘—โˆ’๐‘˜)

    ๐œ’๐ต๐‘—

    ๐ฟ๐‘

    1(โ‹…)

    (R๐‘›)

    ๐œ’๐ต๐‘—

    โˆ’1

    ๐ฟ๐‘

    2(โ‹…)

    (R๐‘›).

    (37)

    Note that

    ๐ผ๐›ฝ(๐œ’๐ต๐‘—

    ) (๐‘ฅ) โ‰ฅ โˆซ๐ต๐‘—

    ๐‘‘๐‘ฆ

    ๐‘ฅ โˆ’ ๐‘ฆ๐‘›โˆ’๐›ฝ

    โ‹… ๐œ’๐ต๐‘—

    (๐‘ฅ) โ‰ฅ ๐ถ2๐‘—๐›ฝ

    โ‹… ๐œ’๐ต๐‘—

    (๐‘ฅ) .

    (38)

    By Lemmas 8 and 11, we obtain

    ๐œ’๐ต๐‘—

    โˆ’1

    ๐ฟ๐‘

    2(โ‹…)

    (R๐‘›)โ‰ค ๐ถ2โˆ’๐‘›๐‘—

    ๐œ’๐ต๐‘—

    ๐ฟ๐‘2(โ‹…)(R๐‘›)

    โ‰ค ๐ถ2โˆ’๐‘›๐‘—

    2โˆ’๐‘—๐›ฝ

    ๐ผ๐›ฝ(๐œ’๐ต๐‘—

    )๐ฟ๐‘2(โ‹…)(R๐‘›)

    โ‰ค ๐ถ2โˆ’๐‘—๐›ฝ

    2โˆ’๐‘›๐‘—

    ๐œ’๐ต๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    โ‰ค ๐ถ2โˆ’๐‘—๐›ฝ

    ๐œ’๐ต๐‘—

    โˆ’1

    ๐ฟ๐‘

    1(โ‹…)

    (R๐‘›).

    (39)

    Combining (37) and (39), we have the estimate

    ๐ผ๐‘š

    ๐›ฝ,๐‘(๐‘“๐‘—) ๐œ’๐‘˜

    ๐ฟ๐‘2(โ‹…)(R๐‘›)โ‰ค ๐ถ(๐‘˜ โˆ’ ๐‘— + 1)

    ๐‘š

    ร— โ€–๐‘โ€–๐‘š

    BMO2(๐‘˜โˆ’๐‘—)(๐›ฝโˆ’๐‘›๐‘Ÿ)

    ๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›).

    (40)

    Thus,

    ๐‘‰1โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š๐‘ž1

    BMO

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    (

    ๐‘˜โˆ’2

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร—(๐‘˜ โˆ’ ๐‘— + 1)๐‘š

    2(๐‘˜โˆ’๐‘—)(๐›ฝโˆ’๐‘›๐‘Ÿ+๐›ผ)

    )

    ๐‘ž1

    .

    (41)

  • 6 Journal of Function Spaces and Applications

    In case of 1 < ๐‘ž1

    < โˆž, noting that ๐›ฝ โˆ’ ๐‘›๐‘Ÿ + ๐›ผ < 0, byHoฬˆlderโ€™s inequality, we have

    ๐‘‰1โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š๐‘ž1

    BMO

    ร—

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    (

    ๐‘˜โˆ’2

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    2(๐‘˜โˆ’๐‘—)(๐›ฝโˆ’๐‘›๐‘Ÿ+๐›ผ)๐‘ž

    1/2

    )

    ร— (

    ๐‘˜โˆ’2

    โˆ‘

    ๐‘—=โˆ’โˆž

    (๐‘˜ โˆ’ ๐‘— + 1)๐‘š๐‘ž

    2(๐‘˜โˆ’๐‘—)(๐›ฝโˆ’๐‘›๐‘Ÿ+๐›ผ)๐‘ž

    1/2

    )

    ๐‘ž1/๐‘ž

    1

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    BMO

    โˆž

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    โˆž

    โˆ‘

    ๐‘˜=๐‘—+2

    2(๐‘˜โˆ’๐‘—)(๐›ฝโˆ’๐‘›๐‘Ÿ+๐›ผ)๐‘ž

    1/2

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    BMO๐‘“

    ๐‘ž1

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž1

    ๐‘1(โ‹…)(R๐‘›)

    .

    (42)

    In case of 0 < ๐‘ž1โ‰ค 1, by inequality (21), we have

    ๐‘‰1โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š๐‘ž1

    BMO

    ร—

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    ๐‘˜โˆ’2

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร— (๐‘˜ โˆ’ ๐‘— + 1)๐‘š๐‘ž1

    2(๐‘˜โˆ’๐‘—)(๐›ฝโˆ’๐‘›๐‘Ÿ+๐›ผ)๐‘ž

    1

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    BMO

    โˆž

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ร—

    โˆž

    โˆ‘

    ๐‘˜=๐‘—+2

    (๐‘˜ โˆ’ ๐‘— + 1)๐‘š๐‘ž1

    2(๐‘˜โˆ’๐‘—)(๐›ฝโˆ’๐‘›๐‘Ÿ+๐›ผ)๐‘ž

    1

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    BMO๐‘“

    ๐‘ž1

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž1

    ๐‘1(โ‹…)(R๐‘›)

    .

    (43)

    For ๐‘‰2, by Lemma 12(1), we obtain

    ๐‘‰2โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š๐‘ž1

    BMO

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    (

    โˆž

    โˆ‘

    ๐‘—=๐‘˜โˆ’1

    2๐›ผ๐‘—๐‘“๐‘—

    ๐ฟ๐‘1(โ‹…)(R๐‘›)2๐›ผ(๐‘˜โˆ’๐‘—)

    )

    ๐‘ž1

    . (44)

    If 1 < ๐‘ž1< โˆž, by Hoฬˆlderโ€™s inequality, we have

    ๐‘‰2โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š๐‘ž1

    BMO

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    (

    โˆž

    โˆ‘

    ๐‘—=๐‘˜โˆ’1

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    2๐›ผ(๐‘˜โˆ’๐‘—)๐‘ž

    1/2

    )

    ร— (

    โˆž

    โˆ‘

    ๐‘—=๐‘˜โˆ’1

    2๐›ผ(๐‘˜โˆ’๐‘—)๐‘ž

    1/2

    )

    ๐‘ž1/๐‘ž

    1

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    BMO

    โˆž

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ๐‘—+1

    โˆ‘

    ๐‘˜=โˆ’โˆž

    2๐›ผ(๐‘˜โˆ’๐‘—)๐‘ž

    1/2

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    BMO๐‘“

    ๐‘ž1

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž1

    ๐‘1(โ‹…)(R๐‘›)

    .

    (45)

    If 0 < ๐‘ž1โ‰ค 1, by inequality (21), we have

    ๐‘‰2โ‰ค ๐ถโ€–๐‘โ€–

    ๐‘š๐‘ž1

    BMO

    โˆž

    โˆ‘

    ๐‘˜=โˆ’โˆž

    โˆž

    โˆ‘

    ๐‘—=๐‘˜โˆ’1

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    2๐›ผ(๐‘˜โˆ’๐‘—)๐‘ž

    1

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    BMO

    โˆž

    โˆ‘

    ๐‘—=โˆ’โˆž

    2๐›ผ๐‘—๐‘ž1

    ๐‘“๐‘—

    ๐‘ž1

    ๐ฟ๐‘1(โ‹…)(R๐‘›)

    ๐‘—+1

    โˆ‘

    ๐‘˜=โˆ’โˆž

    2๐›ผ(๐‘˜โˆ’๐‘—)๐‘ž

    1

    โ‰ค ๐ถโ€–๐‘โ€–๐‘š๐‘ž1

    BMO๐‘“

    ๐‘ž1

    ๏ฟฝฬ‡๏ฟฝ๐›ผ,๐‘ž1

    ๐‘1(โ‹…)(R๐‘›)

    .

    (46)

    Combining the estimates for ๐‘‰1and ๐‘‰

    2, consequently, we

    have provedTheorem 7.

    Acknowledgments

    The authors thank the referees for their valuable commentsto the original version of this note. This paper is supportedby the NSF of China (no. 11201003); the Natural ScienceFoundation of Anhui Higher Education Institutions of China(no. KJ2011A138; no. KJ2013B034).

    References

    [1] D. R. Adams, โ€œA note on Riesz potentials,โ€ Duke MathematicalJournal, vol. 42, no. 4, pp. 765โ€“778, 1975.

    [2] S. Lu and D. Yang, โ€œHardy-Littlewood-Sobolev theorems offractional integration on Herz-type spaces and its applications,โ€Canadian Journal of Mathematics, vol. 48, no. 2, pp. 363โ€“380,1996.

    [3] S. G. Shi and Z. W. Fu, โ€œBoundedness of sublinear operatorswith rough kernels on weighted Morrey spaces,โ€ Journal ofFunction Spaces and Applications, vol. 2013, Article ID 784983,9 pages, 2013.

    [4] O. KovaฬcฬŒik and J. Raฬkosnฤฑฬk, โ€œOn spaces ๐ฟ๐‘(๐‘ฅ) and ๐‘Š๐‘˜,๐‘(๐‘ฅ),โ€Czechoslovak Mathematical Journal, vol. 41, no. 4, pp. 592โ€“618,1991.

    [5] L. Diening and M. RuฬŠzฬŒicฬŒka, โ€œCalderoฬn-Zygmund operators ongeneralized Lebesgue spaces ๐ฟ๐‘(โ‹…) and problems related to fluiddynamics,โ€ Journal fuฬˆr die Reine und Angewandte Mathematik,vol. 563, pp. 197โ€“220, 2003.

    [6] C. Capone, D. Cruz-Uribe, and A. Fiorenza, โ€œThe fractionalmaximal operator and fractional integrals on variable ๐ฟ๐‘spaces,โ€ Revista Mathemaฬtica Iberoamericana, vol. 23, no. 3, pp.743โ€“770, 2007.

    [7] M. Izuki, โ€œCommutators of fractional integrals on Lebesgueand Herz spaces with variable exponent,โ€ Rendiconti del CircoloMatematico di Palermo, vol. 59, no. 3, pp. 461โ€“472, 2010.

    [8] L. Diening, โ€œRiesz potential and Sobolev embeddings on gene-ralized Lebesgue and Sobolev spaces ๐ฟ๐‘(โ‹…) and ๐‘Š๐‘˜,๐‘(โ‹…),โ€ Mathe-matische Nachrichten, vol. 268, pp. 31โ€“43, 2004.

    [9] S. Z. Lu, D. C. Yang, and G. E. Hu, Herz Type Spaces and TheirApplications, Science Press, Beijing, China, 2008.

    [10] Z.-W. Fu, Z.-G. Liu, S.-Z. Lu, andH.-B.Wang, โ€œCharacterizationfor commutators of ๐‘›-dimensional fractional Hardy operators,โ€Science in China A, vol. 50, no. 10, pp. 1418โ€“1426, 2007.

    [11] S. Lu, Q. Wu, and D. Yang, โ€œBoundedness of commutators onHardy type spaces,โ€ Science in China A, vol. 45, no. 8, pp. 984โ€“997, 2002.

  • Journal of Function Spaces and Applications 7

    [12] T. Zhou, Commutators of Fractional Integrals on Spaces WithVariable Exponent, Dalian Maritime University, 2012.

    [13] H. B.Wang, Z.W. Fu, andZ.G. Liu, โ€œHigher order commutatorsof Marcinkiewicz integrals on variable Lebesgue spaces,โ€ ActaMathematica Scientia A, vol. 32, no. 6, pp. 1092โ€“1101, 2012.

    [14] H. B.Wang, Function Spaces withVariable Exponent andRelatedTopics, China University of Mining and Technology, 2012.

    [15] A. Nekvinda, โ€œHardy-Littlewood maximal operator on๐ฟ๐‘(๐‘ฅ)

    (R๐‘›),โ€ Mathematical Inequalities & Applications, vol. 7, no.2, pp. 255โ€“265, 2004.

    [16] M. Izuki, โ€œBoundedness of commutators on Herz spaceswith variable exponent,โ€ Rendiconti del Circolo Matematico diPalermo, vol. 59, no. 2, pp. 199โ€“213, 2010.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of